1
|
Hu D, Wang L, Zhang Y, Liu X, Lu Z, Li H. Sanqi oral solution ameliorates renal fibrosis by suppressing fibroblast activation via HIF-1α/PKM2/glycolysis pathway in chronic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118679. [PMID: 39121930 DOI: 10.1016/j.jep.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanqi oral solution (SQ) is a traditional Chinese patent medicine, widely used to treat chronic kidney diseases (CKD) in the clinic in China. Previous studies have confirmed its anti-renal fibrosis effect, but the specific pharmacological mechanism is still unclear. AIM OF THE STUDY Focusing on energy metabolism in fibroblasts, the renoprotective mechanism of SQ was investigated in vitro and in vivo. METHODS Firstly, the fingerprint of SQ was constructed and its elementary chemical composition was analyzed. In the 5/6Nx rats experiment, the efficacy of SQ on the kidney was evaluated by detecting serum and urine biochemical indexes and pathological staining of renal tissues. Lactic acid and pyruvic acid levels in serum and renal tissues were detected. PCNA protein expression in kidney tissue was detected by immunofluorescence assay and Western blot. Expression levels of HIF-1α, PKM2 and HK2 were determined by immunohistochemistry, Western blot or RT-qPCR assay. In addition, the effect of SQ intervention on cell proliferation and glycolysis was evaluated in TGF-β1-induced NRK-49F cells, and the role of SQ exposure and HIF-1α/PKM2/glycolysis pathway were further investigated by silencing and overexpressing HIF-1α gene in NRK-49F cells. RESULTS In 5/6 Nx rats, SQ effectively improved renal function and treated renal injury. It reduced the levels of lactic acid and pyruvic acid in kidney homogenates from CKD rats and decreased the expression levels of HIF-1α, PKM2, HK2, α-SMA, vimentin, collagen I and PCNA in kidney tissues. Similar results were observed in vitro. SQ inhibited NRK-49F cell proliferation, glycolysis and the expression levels of HIF-1α, PKM2 induced by TGF-β1. Furthermore, we established NRK-49F cells transfected with siRNA or pDNA to silence or overexpress the HIF-1α gene. Overexpression of HIF-1α promoted cellular secretion of lactic acid and pyruvic acid in TGF-β1-induced NRK-49F cells, however, this change was reversed by intervention with SQ or silencing the HIF-1α gene. Overexpression of HIF-1α can further induce increased PKM2 expression, while SQ intervention can reduce PKM2 expression. Moreover, PKM2 expression was also inhibited after silencing HIF-1α gene, and SQ was not effective even when given. CONCLUSION The mechanism of action of SQ was explored from the perspective of energy metabolism, and it was found to regulate PKM2-activated glycolysis, inhibit fibroblast activation, and further ameliorate renal fibrosis in CKD by targeting HIF-1α.
Collapse
Affiliation(s)
- Dongmei Hu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Lixin Wang
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hucai Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Lin Z, Huo H, Huang M, Tao J, Yang Y, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetic kidney disease in mice via inhibiting the SGLT2/glycolysis pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118698. [PMID: 39151712 DOI: 10.1016/j.jep.2024.118698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi (FTZ) capsule is a hospital preparation of a patented traditional Chinese medicine compound. FTZ has been clinically used for nearly 13 years in the treatment of diabetes and glycolipid metabolic diseases. With the significant benefits of SGLT2 inhibitor in patients with diabetic kidney disease (DKD), it provides a research avenue to explore the mechanism of FTZ in treating this disease based on glycolysis pathway. AIM OF THE STUDY To explore the pharmacological characteristics of FTZ in DKD mice and its impact on the glycolysis pathway. MATERIALS AND METHODS We induced a DKD model in C57BL/6 mice by injection of streptozotocin (STZ) combined with long-term high-fat diet. We administered three doses of FTZ for 12 weeks of treatment. Kidney function, blood lipid levels, glucose tolerance, and key glycolytic enzymes were evaluated. Renal pathological changes were observed using HE, MASSON, and PAS staining. The potential targets of the active ingredients of FTZ in the glycolysis pathway were predicted using network pharmacology and molecular docking. Validation was performed using immunohistochemistry and Western blotting. RESULTS FTZ effectively reduces blood glucose, total cholesterol, triglyceride, low density lipoprotein cholesterol, 24 h proteinuria, serum creatinine, blood urea nitrogen, and increases urinary glucose levels. Glucose tolerance and renal pathological changes were significantly improved by FTZ treatment. Pinusolidic acid, a component of FTZ, shows good binding affinity with three active pockets of SGLT2. WB and immunohistochemistry revealed that FTZ significantly inhibits the expression of SGLT2 and its glycolytic related proteins (GLUT2/PKM2/HK2). Hexokinase, pyruvate kinase, and lactate dehydrogenase in the kidney were also significantly inhibited by FTZ in a dose-dependent manner. CONCLUSION FTZ may alleviate the progression of DKD by inhibiting the activation of the SGLT2/glycolytic pathway. Our study provides new insights into the clinical application of FTZ in DKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Minyi Huang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Jie Tao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China.
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China.
| |
Collapse
|
3
|
Hu JQ, Zheng DC, Huang L, Yang X, Ning CQ, Zhou J, Yu LL, Zhou H, Xie Y. Suppression of ZEB1 by Ethyl caffeate attenuates renal fibrosis via switching glycolytic reprogramming. Pharmacol Res 2024; 209:107407. [PMID: 39270946 DOI: 10.1016/j.phrs.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Renal fibrosis (RF) is a common endpoint of various chronic kidney diseases, leading to functional impairment and ultimately progressing to end-stage renal failure. Glycolytic reprogramming plays a critical role in the pathogenesis of fibrosis, which maybe a potential therapeutic target for treating renal fibrosis. Here, we revealed the novel role of ZEB1 in renal fibrosis, and whether targeting ZEB1 is the underlying mechanism for the anti-fibrotic effects of ethyl caffeate (EC) to regulate the glycolytic process. Treatment of EC attenuated the renal fibrosis and inhibited ZEB1 expression in vivo and in vitro, reducing the upregulated expression of glycolytic enzymes (HK2, PKM2, PFKP) and key metabolites (lactic acid, pyruvate). ZEB1 overexpression promoted the renal fibrosis and glycolysis, whereas knockout of ZEB1 apparently attenuated renal fibrosis in vivo and in vitro. EC interacted with ZEB1 to modulate the glycolytic enzymes for suppressing the elevated glycolytic reprogramming during renal fibrosis. In summary, our study reveals that ZEB1 plays an important role in regulating glycolytic reprogramming during the renal tubular epithelial cell fibrosis, suggesting inhibition of ZEB1 may be a potential strategy for treating renal fibrosis. Additionally, EC is a potential new drug candidate for the treatment of renal fibrosis and CKD.
Collapse
Affiliation(s)
- Jia-Qin Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China
| | - Li Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China
| | - Xi Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China
| | - Cang-Qiong Ning
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Hengqin, Guangdong, China.
| |
Collapse
|
4
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
5
|
Wu HH, Du JM, Liu P, Meng FL, Li YY, Li WJ, Wang SX, Du NL, Zheng Y, Zhang L, Wang HY, Liu YR, Song CH, Ni X, Li Y, Su GH. LDHA contributes to nicotine induced cardiac fibrosis through autophagy flux impairment. Int Immunopharmacol 2024; 136:112338. [PMID: 38850787 DOI: 10.1016/j.intimp.2024.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Hui-Hui Wu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Peng Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fan-Liang Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Yan Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Nai-Li Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Zheng
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Zhang
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui-Yun Wang
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi-Ran Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chun-Hong Song
- Department of Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xi Ni
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
6
|
Salminen A. AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology 2024; 25:83-106. [PMID: 37917219 PMCID: PMC10794430 DOI: 10.1007/s10522-023-10072-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Disruption of the extracellular matrix (ECM) and an accumulation of fibrotic lesions within tissues are two of the distinctive hallmarks of the aging process. Tissue fibroblasts are mesenchymal cells which display an impressive plasticity in the regulation of ECM integrity and thus on tissue homeostasis. Single-cell transcriptome studies have revealed that tissue fibroblasts exhibit a remarkable heterogeneity with aging and in age-related diseases. Excessive stress and inflammatory insults induce the differentiation of fibroblasts into myofibroblasts which are fusiform contractile cells and abundantly secrete the components of the ECM and proteolytic enzymes as well as many inflammatory mediators. Detrimental stresses can also induce the transdifferentiation of certain mesenchymal and myeloid cells into myofibroblasts. Interestingly, many age-related stresses, such as oxidative and endoplasmic reticulum stresses, ECM stiffness, inflammatory mediators, telomere shortening, and several alarmins from damaged cells are potent inducers of myofibroblast differentiation. Intriguingly, there is convincing evidence that the signaling pathways stimulated by the AMP-activated protein kinase (AMPK) are potent inhibitors of myofibroblast differentiation and accordingly AMPK signaling reduces fibrotic lesions within tissues, e.g., in age-related cardiac and pulmonary fibrosis. AMPK signaling is not only an important regulator of energy metabolism but it is also able to control cell fate determination and many functions of the immune system. It is known that AMPK signaling can delay the aging process via an integrated signaling network. AMPK signaling inhibits myofibroblast differentiation, e.g., by suppressing signaling through the TGF-β, NF-κB, STAT3, and YAP/TAZ pathways. It seems that AMPK signaling can alleviate age-related tissue fibrosis and degeneration by inhibiting the differentiation of myofibroblasts.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
7
|
Yakupova E, Semenovich D, Abramicheva P, Zorova L, Pevzner I, Andrianova N, Popkov V, Manskikh V, Bocharnikov A, Voronina Y, Zorov D, Plotnikov E. Effects of caloric restriction and ketogenic diet on renal fibrosis after ischemia/reperfusion injury. Heliyon 2023; 9:e21003. [PMID: 37928038 PMCID: PMC10623167 DOI: 10.1016/j.heliyon.2023.e21003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
The beneficial effects of caloric restriction (CR) and a ketogenic diet (KD) have been previously shown when performed prior to kidney injury. We investigated the effects of CR and KD on fibrosis development after unilateral kidney ischemia/reperfusion (UIR). Post-treatment with CR significantly (p < 0.05) affected blood glucose (2-fold decrease), ketone bodies (3-fold increase), lactate (1.5-fold decrease), and lipids (1.4-fold decrease). In the kidney, CR improved succinate dehydrogenase and malate dehydrogenase activity by 2-fold each, but worsened fibrosis progression. Similar results were shown for the KD, which restored the post-UIR impaired activities of succinate dehydrogenase, malate dehydrogenase, and α-ketoglutarate dehydrogenase (which was decreased 2-fold) but had no effect on fibrosis progression. Thus, our study shows that the use of CR or KD after UIR did not reduce the development of fibrosis, as shown by hydroxyproline content, western-blotting, and RT-PCR, whereas it caused significant metabolic changes in kidney tissue after UIR.
Collapse
Affiliation(s)
- E.I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - D.S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - P.A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - L.D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - I.B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - N.V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - V.A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - V.N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A.D. Bocharnikov
- Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Y.A. Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow 119234, Russia
- Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow 121552, Russia
| | - D.B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - E.Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| |
Collapse
|
8
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
9
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
10
|
He J, Fang B, Shan S, Li Q. Mechanical stiffness promotes skin fibrosis through Piezo1-mediated arginine and proline metabolism. Cell Death Discov 2023; 9:354. [PMID: 37752116 PMCID: PMC10522626 DOI: 10.1038/s41420-023-01656-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The increased mechanics of fibrotic skin tissue continuously regulate fibroblast functions such as survival and differentiation. Although all these processes consume metabolites, it is unclear whether and how cells adapt their metabolic activity to increased matrix stiffness. Here, we show that transferring mouse dermal fibroblasts from soft to stiff substrates causes an up-regulation of arginine and proline metabolism. Increased matrix stiffness stimulates the expression and activity of key metabolic enzymes, leading to the synthesis of L-proline, a major source of collagen. In addition, the novel mechanosensitive channel Piezo1 was identified as a key regulator of arginine and proline metabolism in fibroblasts under increased stiffness. Consistently, targeting Piezo1 to dermal fibroblasts in vivo effectively reduces fibrosis and arginine-proline metabolism in mouse skin. Therefore, mechanical stiffness is a critical environmental cue for fibroblast metabolism and skin fibrosis progression.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
11
|
Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol 2023; 11:1266973. [PMID: 37808079 PMCID: PMC10556696 DOI: 10.3389/fcell.2023.1266973] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Succinate serves as an essential circulating metabolite within the tricarboxylic acid (TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH), thereby contributing to energy production in fundamental mitochondrial metabolic pathways. Aberrant changes in succinate concentrations have been associated with pathological states, including chronic inflammation, ischemia/reperfusion (IR) injury, and cancer, resulting from the exaggerated response of specific immune cells, thereby rendering it a central area of investigation. Recent studies have elucidated the pivotal involvement of succinate and SDH in immunity beyond metabolic processes, particularly in the context of cancer. Current scientific endeavors are concentrated on comprehending the functional repercussions of metabolic modifications, specifically pertaining to succinate and SDH, in immune cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH alterations to manipulate immune cell functions in hypoxia-related diseases have been demonstrated. Consequently, a comprehensive understanding of succinate's role in metabolism and the regulation of SDH is crucial for effectively targeting succinate and SDH as therapeutic interventions to influence the progression of specific diseases. This review provides a succinct overview of the latest advancements in comprehending the emerging functions of succinate and SDH in metabolic processes. Furthermore, it explores the involvement of succinate, an intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with particular emphasis on the mechanisms underlying succinate accumulation. This review critically assesses the potential of modulating succinate accumulation and metabolism within the hypoxic milieu as a means to combat various diseases. It explores potential targets for therapeutic interventions by focusing on succinate metabolism and the regulation of SDH in hypoxia-related disorders.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Semenovich DS, Andrianova NV, Zorova LD, Pevzner IB, Abramicheva PA, Elchaninov AV, Markova OV, Petrukhina AS, Zorov DB, Plotnikov EY. Fibrosis Development Linked to Alterations in Glucose and Energy Metabolism and Prooxidant-Antioxidant Balance in Experimental Models of Liver Injury. Antioxidants (Basel) 2023; 12:1604. [PMID: 37627599 PMCID: PMC10451385 DOI: 10.3390/antiox12081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The development of liver fibrosis is one of the most severe and life-threatening outcomes of chronic liver disease (CLD). For targeted therapy of CLD, it is highly needed to reveal molecular targets for normalizing metabolic processes impaired in damaged liver and associated with fibrosis. In this study, we investigated the morphological and biochemical changes in rat liver models of fibrosis induced by chronic administration of thioacetamide, carbon tetrachloride, bile duct ligation (BDL), and ischemia/reperfusion (I/R), with a specific focus on carbohydrate and energy metabolism. Changes in the levels of substrates and products, as well as enzyme activities of the major glucose metabolic pathways (glycolysis, glucuronidation, and pentose phosphate pathway) were examined in rat liver tissue after injury. We examined key markers of oxidative energy metabolism, such as the activity of the Krebs cycle enzymes, and assessed mitochondrial respiratory activity. In addition, pro- and anti-oxidative status was assessed in fibrotic liver tissue. We found that 6 weeks of exposure to thioacetamide, carbon tetrachloride, BDL or I/R resulted in a decrease in the activity of glycolytic enzymes, retardation of mitochondrial respiration, elevation of glucuronidation, and activation of pentose phosphate pathways, accompanied by a decrease in antioxidant activity and the onset of oxidative stress in rat liver. Resemblance and differences in the changes in the fibrosis models used are described, including energy metabolism alterations and antioxidant status in the used fibrosis models. The least pronounced changes in glucose metabolism and mitochondrial functions in the I/R and thioacetamide models were associated with the least advanced fibrosis. Ultimately, liver fibrosis significantly altered the metabolic profile in liver tissue and the flux of glucose metabolic pathways, which could be the basis for targeted therapy of liver fibrosis in CLD caused by toxic, cholestatic, or I/R liver injury.
Collapse
Affiliation(s)
- Dmitry S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Polina A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Andrey V. Elchaninov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Olga V. Markova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Aleksandra S. Petrukhina
- K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
13
|
Miguel V, Kramann R. Metabolic reprogramming heterogeneity in chronic kidney disease. FEBS Open Bio 2023; 13:1154-1163. [PMID: 36723270 PMCID: PMC10315765 DOI: 10.1002/2211-5463.13568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
Fibrosis driven by excessive accumulation of extracellular matrix (ECM) is the hallmark of chronic kidney disease (CKD). Myofibroblasts, which are the cells responsible for ECM production, are activated by cross talk with injured proximal tubule and immune cells. Emerging evidence suggests that alterations in metabolism are not only a feature of but also play an influential role in the pathogenesis of renal fibrosis. The application of omics technologies to cell-tracing animal models and follow-up functional data suggest that cell-type-specific metabolic shifts have particular roles in the fibrogenic response. In this review, we cover the main metabolic reprogramming outcomes in renal fibrosis and provide a future perspective on the field of renal fibrometabolism.
Collapse
Affiliation(s)
- Verónica Miguel
- Institute of Experimental Medicine and Systems BiologyRWTH Aachen University HospitalAachenGermany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems BiologyRWTH Aachen University HospitalAachenGermany
| |
Collapse
|
14
|
Kuo CW, Chen DH, Tsai MT, Lin CC, Cheng HW, Tsay YG, Wang HT. Pyruvate kinase M2 modification by a lipid peroxidation byproduct acrolein contributes to kidney fibrosis. Front Med (Lausanne) 2023; 10:1151359. [PMID: 37007793 PMCID: PMC10050374 DOI: 10.3389/fmed.2023.1151359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Renal fibrosis is a hallmark of diabetic nephropathy (DN) and is characterized by an epithelial-to-mesenchymal transition (EMT) program and aberrant glycolysis. The underlying mechanisms of renal fibrosis are still poorly understood, and existing treatments are only marginally effective. Therefore, it is crucial to comprehend the pathophysiological mechanisms behind the development of renal fibrosis and to generate novel therapeutic approaches. Acrolein, an α-,β-unsaturated aldehyde, is endogenously produced during lipid peroxidation. Acrolein shows high reactivity with proteins to form acrolein-protein conjugates (Acr-PCs), resulting in alterations in protein function. In previous research, we found elevated levels of Acr-PCs along with kidney injuries in high-fat diet-streptozotocin (HFD-STZ)-induced DN mice. This study used a proteomic approach with an anti-Acr-PC antibody followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis to identify several acrolein-modified protein targets. Among these protein targets, pyruvate kinase M2 (PKM2) was found to be modified by acrolein at Cys358, leading to the inactivation of PKM2 contributing to the pathogenesis of renal fibrosis through HIF1α accumulation, aberrant glycolysis, and upregulation of EMT in HFD-STZ-induced DN mice. Finally, PKM2 activity and renal fibrosis in DN mice can be reduced by acrolein scavengers such as hydralazine and carnosine. These results imply that acrolein-modified PKM2 contributes to renal fibrosis in the pathogenesis of DN.
Collapse
Affiliation(s)
- Chin-Wei Kuo
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dong-Hao Chen
- Molecular Medicine Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctor Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Hsiang-Tsui Wang,
| |
Collapse
|
15
|
Wang Z, Yu Y, Jin L, Tan X, Liu B, Zhang Z, Wang Z, Long C, Shen L, Wei G, He D. HucMSC exosomes attenuate partial bladder outlet obstruction-induced renal injury and cell proliferation via the Wnt/β-catenin pathway. Eur J Pharmacol 2023:175523. [PMID: 36736526 DOI: 10.1016/j.ejphar.2023.175523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Bladder outlet obstruction (BOO) can cause serious complications including kidney damage; nevertheless, there are currently no animal models for studying BOO-induced kidney damage. Mesenchymal stem cells (MSCs) are widely used in therapeutic studies of renal fibrosis. However, MSC-derived exosomes show improved safety profile and more controllable characteristics compared with those of MSCs. Herein, we established a kidney injury mouse model of partial bladder outlet obstruction (PBOO) and evaluated the effects of human umbilical cord MSC-derived exosomes (hucMSC-Exos) on PBOO-induced reflux kidney injury in this model. Exosomes were isolated from a hucMSC-conditioned medium, purified by ultracentrifugation, and examined. Living image was performed to indicate the distribution of hucMSC-Exos. The PBOO-treated mice interacted with PBS (phosphate-buffered saline) or hucMSC-Exos. Morphologic changes and expression of interstitial-fibrosis-related, cell proliferation and Wnt/β-catenin signaling-pathway indices were evaluated. At 7 days after induction of PBOO, structural destruction of renal tubules was observed. Expression of the interstitial markers and the cellular-proliferation index increased significantly in the PBOO group compared with the control group (p < 0.05). The isolated exosomes were 30-150 nm in diameter, showing a round shape and bilayer membrane structure with CD63, TSG101, Alix expressed, enriched in the kidney of the PBOO group. Administering hucMSC-Exos to post-PBOO mice reversed renal injury and suppressed expression of Wnt/β-catenin signaling pathway-related proteins. hucMSC-Exos inhibited PBOO-induced kidney injury and cellular proliferation and suppressed the Wnt/β-catenin signaling pathway. Our findings will spur the development of novel hucMSC-Exo-mediated therapies for treating patients with renal fibrosis.
Collapse
Affiliation(s)
- Zhaoying Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Yihang Yu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Liming Jin
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Xiaojun Tan
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Bo Liu
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Zhaoxia Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Zhang Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China.
| |
Collapse
|
16
|
Li L, Wang M, Ma Q, Ye J, Sun G. Role of glycolysis in the development of atherosclerosis. Am J Physiol Cell Physiol 2022; 323:C617-C629. [PMID: 35876285 DOI: 10.1152/ajpcell.00218.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease associated with atherosclerotic plaques and endothelial dysfunction, inflammation, and plaque formation. Glycolysis is a conservative and rigorous biological process that decomposes glucose into pyruvate. Its function is to provide the body with energy and intermediate products required for life activities. However, abnormalities in glycolytic flux during the progression of atherosclerosis accelerate disease progression. Here, we review the role of glycolysis in the development of atherosclerosis to provide new ideas for developing novel anti-atherosclerosis strategies.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiuxiao Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Yeh HC, Su CC, Wu YH, Lee CH, Bao BY, Cheng WC, Wang SC, Liu PL, Chiu CC, Chuu CP, Ke CC, Wu HE, Chen YR, Chung WJ, Huang SP, Li CY. Novel insights into the anti-cancer effects of 3-bromopyruvic acid against castration-resistant prostate cancer. Eur J Pharmacol 2022; 923:174929. [PMID: 35364071 DOI: 10.1016/j.ejphar.2022.174929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 12/09/2022]
Abstract
3-bromopyruvic acid (3-BP), a small molecule alkylating agent, has been emerged as a glycolytic inhibitor with anticancer activities. However, the effects of 3-BP on the growth and metastasis in prostate cancer have not been well investigated. Here we investigated the anti-cancer effects of 3-BP on prostate cancer in vitro and in vivo. Cell growth, apoptosis, migration, motility, and invasion were examined. The tumor growth ability was determined using a xenograft murine model. Transcriptome analysis using RNA-seq was performed to explore the mechanism of action of 3-BP. Our experimental results showed that 3-BP effectively inhibits prostate cancer cell growth, especially in castration-resistant prostate cancer (CRPC) cells. Moreover, 3-BP induces apoptosis and suppresses cell migration, motility, epithelial-mesenchymal transition (EMT), and invasion in CRPC cells. In addition, 3-BP also attenuates tumor growth in a xenograft murine model. Through transcriptome analysis using RNA-seq, 3-BP significantly regulates the cell cycle pathway and decreases the expression of downstream cycle cycle-associated genes in CRPC cells. The results of cell cycle analysis indicated that 3-BP arrests cell cycle progression at G2/M in CRPC cells. These results suggest that 3-BP has the potential in inhibiting CRPC progression and might be a promising drug for CRPC treatment.
Collapse
Affiliation(s)
- Hsin-Chih Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
| | - Chia-Cheng Su
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan; Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Yen-Hsuan Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Cheng Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, 404333, Taiwan; Sex Hormone Research Center, China Medical University Hospital, Taichung, 404332, Taiwan; Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Research Center for Tumor Medical Science, China Medical University, Taichung, 404333, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, 404333, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 350401, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Ju Chung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
18
|
Zhu Y, Shu D, Gong X, Lu M, Feng Q, Zeng XB, Zhang H, Gao J, Guo YW, Liu L, Ma R, Zhu L, Hu Q, Ming ZY. Platelet-Derived TGF (Transforming Growth Factor)-β1 Enhances the Aerobic Glycolysis of Pulmonary Arterial Smooth Muscle Cells by PKM2 Upregulation. Hypertension 2022; 79:932-945. [PMID: 35232222 DOI: 10.1161/hypertensionaha.121.18684] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of pulmonary arterial hypertension. Platelet activation has been implicated in pulmonary arterial hypertension (PAH), whereas the role of platelet in the pathogenesis of PAH remains unclear. METHODS First, we explored the platelet function of SU5416/hypoxia mice and monocrotaline-injected rats PAH model. Then we investigated pulmonary arterial smooth muscle cell aerobic glycolysis after being treated with platelet supernatant. TGF (transforming growth factor)-βRI, PKM2, and other antagonists were applied to identify the underlying mechanism. In addition, platelet-specific deletion TGF-β1 mice were exposed to chronic hypoxia and SU5416. Cardiopulmonary hemodynamics, vascular remodeling, and aerobic glycolysis of pulmonary arterial smooth muscle cell were determined. RESULTS Here, we demonstrate that platelet-released TGF-β1 enhances the aerobic glycolysis of pulmonary arterial smooth muscle cells after platelet activation via increasing PKM2 expression. Mechanistically, platelet-derived TGF-β1 regulates PKM2 expression through mTOR (mammalian target of rapamycin)/c-Myc/PTBP1-hnRNPA1 pathway. Platelet TGF-β1 deficiency mice are significantly protected from SU5416 plus chronic hypoxia-induced PAH, including attenuated increases in right ventricular systolic pressure and less pulmonary vascular remodeling. Also, in Pf4cre+ Tgfb1fl/fl mice, pulmonary arterial smooth muscle cells showed lower glycolysis capacity and their PKM2 expression decreased. CONCLUSIONS Our data demonstrate that TGF-β1 released by platelet contributes to the pathogenesis of PAH and further highlights the role of platelet in PAH.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Dan Shu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,Department of Pharmacy, School of Medicine, Wuhan University of Science and Technology, Wuhan, China (D.S.)
| | - Xue Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Qinyu Feng
- Department of Gastroenterology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Q.F.)
| | - Xiang-Bin Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Han Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan China (H.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Wuhan China (H.Z., L.Z., Q.H.)
| | - Jiahui Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Ya-Wei Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Luman Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan China (H.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Wuhan China (H.Z., L.Z., Q.H.)
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Liping Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan China (H.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Wuhan China (H.Z., L.Z., Q.H.)
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| |
Collapse
|
19
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne) 2022; 13:927329. [PMID: 35957825 PMCID: PMC9357883 DOI: 10.3389/fendo.2022.927329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis is the result of renal tissue damage and repair response disorders. If fibrosis is not effectively blocked, it causes loss of renal function, leading to chronic renal failure. Metabolic reprogramming, which promotes cell proliferation by regulating cellular energy metabolism, is considered a unique tumor cell marker. The transition from oxidative phosphorylation to aerobic glycolysis is a major feature of renal fibrosis. Hypoxia-inducible factor-1 α (HIF-1α), a vital transcription factor, senses oxygen status, induces adaptive changes in cell metabolism, and plays an important role in renal fibrosis and glucose metabolism. This review focuses on the regulation of proteins related to aerobic glycolysis by HIF-1α and attempts to elucidate the possible regulatory mechanism underlying the effects of HIF-1α on glucose metabolism during renal fibrosis, aiming to provide new ideas for targeted metabolic pathway intervention in renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yujun Du,
| |
Collapse
|
20
|
Zhu X, Jiang L, Long M, Wei X, Hou Y, Du Y. Metabolic Reprogramming and Renal Fibrosis. Front Med (Lausanne) 2021; 8:746920. [PMID: 34859009 PMCID: PMC8630632 DOI: 10.3389/fmed.2021.746920] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
There are several causes of chronic kidney disease, but all of these patients have renal fibrosis. Although many studies have examined the pathogenesis of renal fibrosis, there are still no effective treatments. A healthy and balanced metabolism is necessary for normal cell growth, proliferation, and function, but metabolic abnormalities can lead to pathological changes. Normal energy metabolism is particularly important for maintaining the structure and function of the kidneys because they consume large amounts of energy. We describe the metabolic reprogramming that occurs during renal fibrosis, which includes changes in fatty acid metabolism and glucose metabolism, and the relationship of these changes with renal fibrosis. We also describe the potential role of novel drugs that disrupt this metabolic reprogramming and the development of fibrosis, and current and future challenges in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Yakupova EI, Zorov DB, Plotnikov EY. Bioenergetics of the Fibrosis. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1599-1606. [PMID: 34937539 DOI: 10.1134/s0006297921120099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is known that the development of fibrosis is associated with many diseases, being both a cause and effect of the damage to organs and tissues. Replacement of functional tissue with a scar can lead to organ dysfunction, which is often a life-threatening condition. The development of effective approaches for the prevention or treatment of fibrosis requires an in-depth understanding of all aspects of its pathogenesis, from epithelial-mesenchymal transformation to fibroblast proliferation. Fibrosis can be induced by trauma, ischemic injury, inflammation, and many other pathological states accompanied by repeated cycles of tissue damage and repair. Energy metabolism is the basis of functioning of all cells in an organism and its disruptions are associated with the development of different diseases, hence, it could be a target for the therapy of such pathological processes as ischemia/reperfusion, epilepsy, diabetes, cancer, and neurological disorders. The emergence of fibrosis is also associated with the changes in cell bioenergetics. In this work, we analyzed the changes in the energy metabolism that occur with the progression of fibrosis and evaluated the possibility of affecting energetics as target in the anti-fibrotic approach.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
22
|
Lovisa S. Epithelial-to-Mesenchymal Transition in Fibrosis: Concepts and Targeting Strategies. Front Pharmacol 2021; 12:737570. [PMID: 34557100 PMCID: PMC8454779 DOI: 10.3389/fphar.2021.737570] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT), an embryonic program relaunched during wound healing and in pathological conditions such as fibrosis and cancer, continues to gain the attention of the research community, as testified by the exponential trend of publications since its discovery in the seventies. From the first description as a mesenchymal transformation, the concept of EMT has been substantially refined as an in-depth comprehension of its functional role has recently emerged thanks to the implementation of novel mouse models as well as the use of sophisticated mathematical modeling and bioinformatic analysis. Nevertheless, attempts to targeting EMT in fibrotic diseases are at their infancy and continue to pose several challenges. The aim of this mini review is to recapitulate the most recent concepts in the EMT field and to summarize the different strategies which have been exploited to target EMT in fibrotic disorders.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.,IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| |
Collapse
|