1
|
Liu B, Yin X, Wei H, Zhang X, Peng Y, Bi H, Guo D. MiR-30b-5p ameliorates experimental autoimmune uveitis by inhibiting the Atg5/Atg12/Becn1 Axis. Int Immunopharmacol 2025; 151:114370. [PMID: 40020463 DOI: 10.1016/j.intimp.2025.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
CONTEXT Uveitis is a severe autoimmune eye disease that poses a significant threat to visual health. Autophagy is essential for maintaining cellular homeostasis and becomes dysregulated in autoimmune conditions like uveitis. MicroRNAs (miRNAs) can influence autophagy and apoptosis by targeting autophagy-related genes (Atg). OBJECTIVE This study aimed to investigate the role of miR-30b-5p in regulating autophagy-related genes and to explore its therapeutic potential in experimental autoimmune uveitis (EAU). MATERIALS AND METHODS EAU was induced and RT(Vega-Tapia et al., 2021 [2]) Profiler PCR Arrays were used to identify significant interactions among Atg genes and their role in uveitic pathogenesis. Both in vitro and in vivo experiments were used to assess the expression of Atg-related genes. Additionally, miR-30b-5p-carrying lentivirus injections were administered, and the levels of Atg5, Atg12, and Becn1 were measured, along with autophagosome formation through electron microscopy. Meanwhile, we also assessed inflammatory markers (i.e., IL-10, IL-17), the Th17/Treg ratio, and apoptosis. RESULTS In vitro experiments demonstrated that miR-30b-5p led to decreased expression of Atg5, Atg12, and Becn1, which resulted in a lower number of autophagosomes. In vivo validation confirmed these outcomes, showing reduced mRNA and protein levels of Atg-related molecules and diminished autophagosome formation after the injection of miR-30b-5p. Furthermore, miR-30b-5p exhibited anti-inflammatory effects by increasing IL-10 levels and decreasing IL-17, thereby improving the balance of the Th17/Treg ratio. CONCLUSION This study highlights the importance of autophagy in the pathogenesis of uveitis and identifies miR-30b-5p as a regulator of autophagy and inflammation. Targeting miR-30b-5p presents a promising therapeutic approach for treating uveitis.
Collapse
Affiliation(s)
- Bin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Huixia Wei
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, No. 48#, Yingxiongshan Road, Jinan 250002, China.
| |
Collapse
|
2
|
Lu Y, Zuo Z. Pyrrolidine Dithiocarbamate Ameliorates Sepsis-Associated Encephalopathy by Inhibiting Autophagy and Inflammation in the Brain. Neurochem Res 2025; 50:106. [PMID: 40011296 PMCID: PMC11865106 DOI: 10.1007/s11064-025-04355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is common and has poor clinical outcome. Sepsis increases autophagy in the brain. This study was designed to determine the role of autophagy on SAE including the brain structures related to learning and memory and the effects of pyrrolidine dithiocarbamate (PDTC), an anti-inflammatory agent, on autophagy and SAE. Six- to eight-week old CD-1 male mice were subjected to cecal ligation and puncture (CLP). Some mice received intracerebroventricular injection of the autophagy suppressor 3-methyladenine (3-MA) or intraperitoneal injection of PDTC immediately at the completion of the CLP. ELISA was used to measure interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor α. Autophagy-related protein expression in the cerebral cortex and hippocampus was analyzed by Western blotting. The cognitive functions of mice were analyzed by Barnes maze and fear conditioning tests. CLP increased microtubuleassociated protein light chain 3 II (LC3II) and Beclin 1 and decreased p62 in the brain. CLP also increased proinflammatory cytokines and impaired learning and memory. These effects were inhibited by 3-MA and PDTC. Spine proliferation and maturation were impaired by CLP, which was attenuated by PDTC and 3MA. Abundant autophagic vacuoles were observed by transmission electron microscopy in CLP group. LC3II immunostaining was co-localized with that of ionized calcium-binding adapter molecule 1 and microtubule-associated protein-2. The co-staining was attenuated by 3-MA and PDTC. Our results suggest that sepsis increases autophagy in the microglia and neurons. Inhibiting autophagy improves SAE and brain structures related to learning and memory in mice. Autophagy and inflammation in the brain may regulate each other during sepsis.
Collapse
Affiliation(s)
- Yang Lu
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA.
| |
Collapse
|
3
|
Fang JY, Ayyadurai S, Pybus AF, Sugimoto H, Qian MG. Exploring the diagnostic potential of miRNA signatures in the Fabry disease serum: A comparative study of automated and manual sample isolations. PLoS One 2024; 19:e0301733. [PMID: 39466827 PMCID: PMC11515968 DOI: 10.1371/journal.pone.0301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Fabry disease, an X-linked lysosomal storage disorder caused by galactosidase α (GLA) gene mutations, exhibits diverse clinical manifestations, and poses significant diagnostic challenges. Early diagnosis and treatment are crucial for improved patient outcomes, pressing the need for reliable biomarkers. In this study, we aimed to identify miRNA candidates as potential biomarkers for Fabry disease using the KingFisher™ automated isolation method and NanoString nCounter® miRNA detection assay. Clinical serum samples were collected from both healthy subjects and Fabry disease patients. RNA extraction from the samples was performed using the KingFisher™ automated isolation method with the MagMAX mirVanaTM kit or manually using the Qiagen miRNeasy kit. The subsequent NanoString nCounter® miRNA detection assay showed consistent performance and no correlation between RNA input concentration and raw count, ensuring reliable and reproducible results. Interestingly, the detection range and highly differential miRNA between the control and disease groups were found to be distinct depending on the isolation method employed. Nevertheless, enrichment analysis of miRNA-targeting genes consistently revealed significant associations with angiogenesis pathways in both isolation methods. Additionally, our investigation into the impact of enzyme replacement therapy on miRNA expression indicated that some differential miRNAs may be sensitive to treatment. Our study provides valuable insights to identify miRNA biomarkers for Fabry disease. While different isolation methods yielded various detection ranges and highly differential miRNAs, the consistent association with angiogenesis pathways suggests their significance in disease progression. These findings lay the groundwork for further investigations and validation studies, ultimately leading to the development of non-invasive and reliable biomarkers to aid in early diagnosis and treatment monitoring for Fabry disease.
Collapse
Affiliation(s)
- Josephine Y. Fang
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Saravanan Ayyadurai
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Alyssa F. Pybus
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Hiroshi Sugimoto
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| | - Mark G. Qian
- Takeda Development Center Americas Inc., Cambridge, MA, United States of America
| |
Collapse
|
4
|
Çelik E, Cemali Ö, Şahin TÖ, Deveci G, Biçer NÇ, Hirfanoğlu İM, Ağagündüz D, Budán F. Human Breast Milk Exosomes: Affecting Factors, Their Possible Health Outcomes, and Future Directions in Dietetics. Nutrients 2024; 16:3519. [PMID: 39458514 PMCID: PMC11510026 DOI: 10.3390/nu16203519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Human breast milk is a complex biological fluid containing multifaceted biological compounds that boost immune and metabolic system development that support the short- and long-term health of newborns. Recent literature suggests that human breast milk is a substantial source of nutrients, bioactive molecules, and exosomes. Objectives: This review examines the factors influencing exosomes noted in human milk and the impacts of exosomes on infant health. Furthermore, it discusses potential future prospects for exosome research in dietetics. Methods: Through a narrative review of the existing literature, we focused on exosomes in breast milk, exosome components and their potential impact on exosome health. Results: Exosomes are single-membrane extracellular vesicles of endosomal origin, with an approximate radius of 20-200 nm. They are natural messengers that cells secrete to transport a wide range of diverse cargoes, including deoxyribonucleic acid, ribonucleic acid, proteins, and lipids between various cells. Some studies have reported that the components noted in exosomes in human breast milk could be transferred to the infant and cause epigenetic changes. Thus, it can affect gene expression and cellular event regulation in several tissues. Conclusions: In this manner, exosomes are associated with several pathways, including the immune system, oxidative stress, and cell cycle, and they can affect the short- and long-term health of infants. However, there is still much to learn about the functions, effectiveness, and certain impacts on the health of human breast milk exosomes.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta 32260, Türkiye;
| | - Özge Cemali
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Trakya University, Edirne 22030, Türkiye;
| | - Teslime Özge Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye;
| | - Gülsüm Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye;
| | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Türkiye;
| | | | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
5
|
Scuruchi M, Avenoso A, Aliquò F, Pantano A, Campo GM, Campo S, D'Ascola A. miR-21 attenuated inflammation targeting MyD88 in human chondrocytes stimulated with Hyaluronan oligosaccharides. Arch Biochem Biophys 2024; 759:110112. [PMID: 39111613 DOI: 10.1016/j.abb.2024.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Inflammation is the body's response to injuries, which depends on numerous regulatory factors. Among them, miRNAs have gained much attention for their role in regulating inflammatory gene expression at multiple levels. In particular, miR-21 is up-regulated during the inflammatory response and reported to be involved in the resolution of inflammation by down-regulating pro-inflammatory mediators, including MyD88. Herein, we evaluated the regulatory effects of miR-21 on the TLR-4/MyD88 pathway in an in vitro model of 6-mer HA oligosaccharides-induced inflammation in human chondrocytes. The exposition of chondrocytes to 6-mer HA induced the activation of the TLR4/MyD88 pathway, which culminates in NF-kB activation. Changes in miR-21, TLR-4, MyD88, NLRP3 inflammasome, IL-29, Caspase1, MMP-9, iNOS, and COX-2 mRNA expression of 6-mer HA-stimulated chondrocytes were examined by qRT-PCR. Protein amounts of TLR-4, MyD88, NLRP3 inflammasome, p-ERK1/2, p-AKT, IL-29, caspase1, MMP-9, p-NK-kB p65 subunit, and IKB-a have been evaluated by ELISA kits. NO and PGE2 levels have been assayed by colorimetric and ELISA kits, respectively. HA oligosaccharides induced a significant increase in the expression of the above parameters, including NF-kB activity. The use of a miR-21 mimic attenuated MyD88 expression levels and the downstream effectors. On the contrary, treatment with a miR-21 inhibitor induced opposite effects. Interestingly, the use of a MyD88 siRNA confirmed MyD88 as the target of miR-21 action. Our results suggest that miR-21 expression could increase in an attempt to reduce the inflammatory response, targeting MyD88.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy.
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98122, Messina, Italy.
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98122, Messina, Italy
| | - Alice Pantano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98122, Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
6
|
Ai X, Yu H, Cai Y, Guan Y. Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neurosci Bull 2024; 40:992-1006. [PMID: 38421513 PMCID: PMC11251008 DOI: 10.1007/s12264-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
Neuroimmune disorders, such as multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, and Guillain-Barré syndrome, are characterized by the dysfunction of both the immune system and the nervous system. Increasing evidence suggests that extracellular vesicles and autophagy are closely associated with the pathogenesis of these disorders. In this review, we summarize the current understanding of the interactions between extracellular vesicles and autophagy in neuroimmune disorders and discuss their potential diagnostic and therapeutic applications. Here we highlight the need for further research to fully understand the mechanisms underlying these disorders, and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiwen Ai
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Yu Cai
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yangtai Guan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| |
Collapse
|
7
|
Grodzka O, Słyk S, Domitrz I. The Role of MicroRNA in Migraine: A Systemic Literature Review. Cell Mol Neurobiol 2023; 43:3315-3327. [PMID: 37432603 PMCID: PMC10477106 DOI: 10.1007/s10571-023-01387-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Migraine is a common primary headache disorder, affecting about 14% of the population. Importantly, it was indicated as the second cause of disability globally and the leading cause among young women. Despite the widespread prevalence, migraine remains underdiagnosed and undertreated. The possible solution may be microRNAs-small, non-coding molecules. Until now, multiple studies have shown the great value of microRNA in both the diagnosis and treatment of different human diseases. Furthermore, a significant role in neurological disorders has been suggested. Little research regarding the utility of microRNA in migraine has been conducted, however, the results so far appear to be promising. We performed an electronic article search through PubMed and Embase Database to further explore the topic. After the analysis, according to PRISMA 2020 guidelines, we included 21 studies. The dysregulation was observed in migraine in general, as well as in different types and phases; thus, miRNAs emerge as promising diagnostic biomarkers. Additionally, some studies showed the influence of the intervention with miRNA levels on neuroinflammation and the expression of peptides, which are crucial in migraine pathogenesis. This review aims to summarize the current knowledge about the role of miRNAs in migraine and encourage to further research in this field.Kindly check and confirm the edit made in the title.I checked and confirm.
Collapse
Affiliation(s)
- Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809, Warsaw, Poland.
| | - Stanisław Słyk
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Izabela Domitrz
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809, Warsaw, Poland
| |
Collapse
|
8
|
Mu YR, Zou SY, Li M, Ding YY, Huang X, He ZH, Kong WJ. Role and mechanism of FOXG1-related epigenetic modifications in cisplatin-induced hair cell damage. Front Mol Neurosci 2023; 16:1064579. [PMID: 37181652 PMCID: PMC10169754 DOI: 10.3389/fnmol.2023.1064579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Cisplatin is widely used in clinical tumor chemotherapy but has severe ototoxic side effects, including tinnitus and hearing damage. This study aimed to determine the molecular mechanism underlying cisplatin-induced ototoxicity. In this study, we used CBA/CaJ mice to establish an ototoxicity model of cisplatin-induced hair cell loss, and our results showed that cisplatin treatment could reduce FOXG1 expression and autophagy levels. Additionally, H3K9me2 levels increased in cochlear hair cells after cisplatin administration. Reduced FOXG1 expression caused decreased microRNA (miRNA) expression and autophagy levels, leading to reactive oxygen species (ROS) accumulation and cochlear hair cell death. Inhibiting miRNA expression decreased the autophagy levels of OC-1 cells and significantly increased cellular ROS levels and the apoptosis ratio in vitro. In vitro, overexpression of FOXG1 and its target miRNAs could rescue the cisplatin-induced decrease in autophagy, thereby reducing apoptosis. BIX01294 is an inhibitor of G9a, the enzyme in charge of H3K9me2, and can reduce hair cell damage and rescue the hearing loss caused by cisplatin in vivo. This study demonstrates that FOXG1-related epigenetics plays a role in cisplatin-induced ototoxicity through the autophagy pathway, providing new ideas and intervention targets for treating ototoxicity.
Collapse
Affiliation(s)
- Yu-rong Mu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-yu Zou
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-yan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Huang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zu-hong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Koduru TS, Gupta VN, Veeranna B, Seetharaman S. A Dual Therapy of Nanostructured Lipid Carrier Loaded with Teriflunomide-A Dihydro-Orotate Dehydrogenase Inhibitor and an miR-155-Antagomir in Cuprizone-Induced C57BL/6J Mouse. Pharmaceutics 2023; 15:pharmaceutics15041254. [PMID: 37111739 PMCID: PMC10143733 DOI: 10.3390/pharmaceutics15041254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The effective treatment of central nervous system (CNS) disorders such as multiple sclerosis (MS) has been challenging due to the limited ability of therapeutic agents to cross the blood-brain barrier (BBB). In this study, we investigated the potential of nanocarrier systems to deliver miR-155-antagomir-teriflunomide (TEF) dual therapy to the brain via intranasal (IN) administration to manage MS-associated neurodegeneration and demyelination. Our results showed that the combinatorial therapy of miR-155-antagomir and TEF loaded in nanostructured lipid carriers (NLCs) significantly increased brain concentration and improved targeting potential. The novelty of this study lies in the use of a combinatorial therapy approach of miR-155-antagomir and TEF loaded in NLCs. This is a significant finding, as the effective delivery of therapeutic molecules to the CNS has been a challenge in treating neurodegenerative disorders. Additionally, this study sheds light on the potential use of RNA-targeting therapies in personalized medicine, which could revolutionize the way CNS disorders are managed. Furthermore, our findings suggest that nanocarrier-loaded therapeutic agents have great potential for safe and economical delivery in treating CNS disorders. Our study provides novel insights into the effective delivery of therapeutic molecules via the IN route for managing neurodegenerative disorders. In particular, our results demonstrate the potential of delivering miRNA and TEF via the intranasal route using the NLC system. We also demonstrate that the long-term use of RNA-targeting therapies could be a promising tool in personalized medicine. Importantly, using a cuprizone-induced animal model, our study also investigated the effects of TEF-miR155-antagomir-loaded NLCs on demyelination and axonal damage. Following six weeks of treatment, the TEF-miR155-antagomir-loaded NLCs potentially lowered the demyelination and enhanced the bioavailability of the loaded therapeutic molecules. Our study is a paradigm shift in delivering miRNAs and TEF via the intranasal route and highlights the potential of this approach for managing neurodegenerative disorders. In conclusion, our study provides critical insights into the effective delivery of therapeutic molecules via the IN route for managing CNS disorders, and especially MS. Our findings have significant implications for the future development of nanocarrier-based therapies and personalized medicine. Our results provide a strong foundation for further studies and the potential to develop safe and economic therapeutics for CNS disorders.
Collapse
Affiliation(s)
- Trideva Sastri Koduru
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | - Vishal N Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | | |
Collapse
|
10
|
Rashid F, Zaongo SD, Song F, Chen Y. The diverse roles of miRNAs in HIV pathogenesis: Current understanding and future perspectives. Front Immunol 2023; 13:1091543. [PMID: 36685589 PMCID: PMC9849909 DOI: 10.3389/fimmu.2022.1091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Despite noteworthy progress made in the management and treatment of HIV/AIDS-related disease, including the introduction of the now almost ubiquitous HAART, there remains much to understand with respect to HIV infection. Although some roles that miRNAs play in some diseases have become more obvious of late, the roles of miRNAs in the context of HIV pathogenesis have not, as yet, been elucidated, and require further investigations. miRNAs can either be beneficial or harmful to the host, depending upon the genes they target. Some miRNAs target the 3' UTR of viral mRNAs to accomplish restriction of viral infection. However, upon HIV-1 infection, there are several dysregulated host miRNAs which target their respective host factors to either facilitate or abrogate viral infection. In this review, we discuss the miRNAs which play roles in various aspects of viral pathogenesis. We describe in detail the various mechanisms thereby miRNAs either directly or indirectly regulate HIV-1 infection. Moreover, the predictive roles of miRNAs in various aspects of the HIV viral life cycle are also discussed. Contemporary antiretroviral therapeutic drugs have received much attention recently, due to their success in the treatment of HIV/AIDS; therefore, miRNA involvement in various aspects of antiretroviral therapeutics are also elaborated upon herein. The therapeutic potential of miRNAs are discussed, and we also propose herein that the therapeutic potential of one specific miRNA, miR-34a, warrants further exploration, as this miRNA is known to target three host proteins to promote HIV-1 pathogenesis. Finally, future perspectives and some controversy around the expression of miRNAs by HIV-1 are also discussed.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,*Correspondence: Yaokai Chen,
| |
Collapse
|
11
|
Beyrampour-Basmenj H, Rahmati M, Moghamddam MP, Kalan ME, Alivand M, Aliyari-Serej Z, Nastarin P, Omrani M, Khodakarimi S, Ebrahimi-Kalan A. Association between miRNAs expression and multiple sclerosis pathogenesis: A novel therapeutic approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|