1
|
Zhang C, Xiang J, Wang G, Di T, Chen L, Zhao W, Wei L, Zhou S, Wu X, Zhang Y, Wang Y, Liu H. Salvianolic acid B improves diabetic skin wound repair through Pink1/Parkin-mediated mitophagy. Arch Physiol Biochem 2025; 131:40-51. [PMID: 39101795 DOI: 10.1080/13813455.2024.2387693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Diabetic skin wound is a disturbing and rapidly evolving clinical issue. Here, we investigated how salvianolic acid B (Sal B) affected the diabetic wound healing process. Following Sal B administration, histopathological damage was investigated by H&E and Masson staining, and CD34, apoptosis and mitophagy markers were measured by immunofluorescence, immunohistochemistry, and western blotting. Migration, proliferation, and mitochondrial function of high glucose (HG) -induced HMEC-1 cells were measured. The effects of si-Parkin on endothelial cell migration, apoptosis and mitochondrial autophagy were examined. Sal B alleviated inflammatory cell infiltration and promoted angiogenesis in skin wound tissue. Apoptosis and mitophagy were ameliorated by Sal B in diabetic skin wound tissues and HG-induced HMEC-1 cells. Parkin inhibition impaired the migratorypromoted cell apoptosis and inhibited mitophagy of HMEC-1 cells. This finding demonstrated that Sal B promoted diabetic skin wound repair via Pink1/Parkin-mediated mitophagy, improved our understanding of the diabetic wound healing process.
Collapse
Affiliation(s)
- Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Xiang
- Department of Monitoring, Guizhou Center for Disease Control and Prevention, Institute of Chronic Disease Prevention and Treatment, Guiyang, China
| | - Gengxin Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tietao Di
- Department of Trauma Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lianggang Wei
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shiyong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xueli Wu
- Central Laboratory, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yun Zhang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanhui Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haiyan Liu
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Zhao M, Mu F, Lin R, Gao K, Zhang W, Tao X, Xu D, Wang J. Chinese Medicine-Derived Salvianolic Acid B for Disease Therapy: A Scientometric Study. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1359-1396. [PMID: 39212495 DOI: 10.1142/s0192415x2450054x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Salvianolic acid B (SalB), among the most abundant bioactive polyphenolic compounds found in Salvia miltiorrhiza Bge., exerts therapeutic and protective effects against various diseases. Although some summaries of the activities of SalB exist, there is lack of a scientometric and in-depth review regarding disease therapy. In this review, scientometrics was employed to analyze the number of articles, publication trends, countries, institutions, keywords, and highly cited papers pertaining to SalB research. The scientometric findings showed that SalB exerts excellent protective effects on the heart, lungs, liver, bones, and brain, along with significant therapeutic effects against atherosclerosis (AS), Alzheimer's disease (AD), liver fibrosis, diabetes, heart/brain ischemia, and osteoporosis, by regulating signaling pathways and acting on specific molecular targets. Moreover, this review delves into in-depth insights and perspectives, such as the utilization of SalB in combination with other drugs, the validation of molecular mechanisms and targets, and the research and development of novel drug carriers and dosage forms. In conclusion, this review aimed to offer a comprehensive scientometric analysis and in-depth appraisal of SalB research, encompassing both present achievements and future prospects, thereby providing a valuable resource for the clinical application and therapeutic exploitation of SalB.
Collapse
Affiliation(s)
- Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| |
Collapse
|
4
|
Zong Y, Wang X, Zhang Y, Tan N, Zhang Y, Li L, Liu L. Sitagliptin Ameliorates Creb5/lncRNA ENSMUST00000213271-Mediated Vascular Endothelial Dysfunction in Obese Mice. Cardiovasc Drugs Ther 2024; 38:679-691. [PMID: 36738369 DOI: 10.1007/s10557-023-07436-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE Obesity is mediated by the changes in dyslipidemia, oxidative stress, and inflammation, leading to vascular endothelial dysfunction. Glucagon-like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 inhibitors prevent the development of endothelial dysfunction. However, the underlying mechanism still remains largely unclear. Long non-coding RNAs (lncRNAs), one class of non-coding small RNAs, have been shown to exert a regulatory impact on the endothelial function in obesity. This study aimed to investigate whether the elevation of GLP-1 by a DPP-4 inhibitor sitagliptin improved vascular endothelial function by modulating lncRNAs in obese mice and to clarify the underlying molecular mechanism. METHODS Male C57BL/6J mice were fed a high-fat diet for 4 months to induce obesity and some obese mice were treated with sitagliptin for the last 1 month. Levels of total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and glucagon-like peptide-1 (GLP-1) in plasma were detected by ELISA. LncRNA expression profile was analyzed via microarray. Aortic relaxations were examined by myograph. Protein expressions and phosphorylations were determined using western blot. The differentially expressed lncRNAs were validated using qRT-PCR. RESULTS Obese mice exhibited increased levels of TC and LDL, decreased concentrations of HDL and GLP-1 in plasma, and impaired aortic endothelium-dependent relaxations; such effects could be reversed by sitagliptin. Moreover, the altered expression profile of lncRNAs in the obese mouse aortae could be modulated by sitagliptin. Consistent with microarray analysis, qRT-PCR also revealed that lncRNA ENSMUST00000213271 was up-regulated in obese mouse aortae and aortic endothelial cells (ECs), which could be down-regulated by sitagliptin. Creb5 silencing reduced lncRNA ENSMUST00000213271 in obese mouse ECs. Knockdown of either Creb5 or lncRNA ENSMUST00000213271 restored the activation of AMPK/eNOS in obese mouse ECs. Furthermore, sitagliptin also suppressed Creb5 and lncRNA ENSMUST00000213271 and increased the phosphorylations of AMPK and eNOS in obese mice. CONCLUSION Creb5/lncRNA ENSMUST00000213271 mediated vascular endothelial dysfunction through inhibiting AMPK/eNOS cascade in obesity. Elevation of GLP-1 by sitagliptin possibly improved endothelial function by suppressing Creb5/lncRNA ENSMUST00000213271 and subsequently restoring AMPK/eNOS activation in obese mice. This study will provide new evidence for the benefits of GLP-1 against vasculopathy in obesity.
Collapse
MESH Headings
- Animals
- Sitagliptin Phosphate/pharmacology
- Male
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/drug effects
- Mice, Inbred C57BL
- Obesity/drug therapy
- Obesity/metabolism
- Dipeptidyl-Peptidase IV Inhibitors/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Glucagon-Like Peptide 1/metabolism
- Diet, High-Fat
- Cyclic AMP Response Element-Binding Protein/metabolism
- Disease Models, Animal
- Vasodilation/drug effects
- Mice
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Mice, Obese
- Signal Transduction/drug effects
- Phosphorylation
Collapse
Affiliation(s)
- Yi Zong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaorui Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Na Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
5
|
Qin M, Ou R, He W, Han H, Zhang Y, Huang Y, Chen Z, Pan X, Chi Y, He S, Gao L. Salvianolic acid B enhances tissue repair and regeneration by regulating immune cell migration and Caveolin-1-mediated blastema formation in zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155553. [PMID: 38820664 DOI: 10.1016/j.phymed.2024.155553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Non-healing wounds resulting from trauma, surgery, and chronic diseases annually affect millions of individuals globally, with limited therapeutic strategies available due to the incomplete understanding of the molecular processes governing tissue repair and regeneration. Salvianolic acid B (Sal B) has shown promising bioactivities in promoting angiogenesis and inhibiting inflammation. However, its regulatory mechanisms in tissue regeneration remain unclear. PURPOSE This study aims to investigate the effects of Sal B on wound healing and regeneration processes, along with its underlying molecular mechanisms, by employing zebrafish as a model organism. METHODS In this study, we employed a multifaceted approach to evaluate the impact of Sal B on zebrafish tail fin regeneration. We utilized whole-fish immunofluorescence, TUNEL staining, mitochondrial membrane potential (MMP), and Acridine Orange (AO) probes to analyze the tissue repair and regenerative under Sal B treatment. Additionally, we utilized transgenic zebrafish strains to investigate the migration of inflammatory cells during different phases of fin regeneration. To validate the importance of Caveolin-1 (Cav1) in tissue regeneration, we delved into its functional role using molecular docking and Morpholino-based gene knockdown techniques. Additionally, we quantified Cav1 expression levels through the application of in situ hybridization. RESULTS Our findings demonstrated that Sal B expedites zebrafish tail fin regeneration through a multifaceted mechanism involving the promotion of cell proliferation, suppression of apoptosis, and enhancement of MMP. Furthermore, Sal B was found to exert regulatory control over the dynamic aggregation and subsequent regression of immune cells during tissue regenerative processes. Importantly, we observed that the knockdown of Cav1 significantly compromised tissue regeneration, leading to an excessive infiltration of immune cells and increased levels of apoptosis. Moreover, the knockdown of Cav1 also affects blastema formation, a critical process influenced by Cav1 in tissue regeneration. CONCLUSION The results of this study showed that Sal B facilitated tissue repair and regeneration through regulating of immune cell migration and Cav1-mediated fibroblast activation, promoting blastema formation and development. This study highlighted the potential pharmacological effects of Sal B in promoting tissue regeneration. These findings contributed to the advancement of regenerative medicine research and the development of novel therapeutic approaches for trauma.
Collapse
Affiliation(s)
- Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rouxuan Ou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weiyi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haoyang Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuxue Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaohan Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yali Chi
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University (SMU), Guangzhou, China.
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Wang Y, Chang J, Qiao S, Yang Y, Yun C, Li Y, Wang F. Salvianolic acid B attenuates diabetic nephropathy through alleviating ADORA2B, NALP3 in flammasome, and NFκB activity. Can J Physiol Pharmacol 2024; 102:318-330. [PMID: 38070193 DOI: 10.1139/cjpp-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Diabetic nephropathy is one of the microvascular complications of diabetes. This study is aimed at investigating the role and mechanisms of salvianolic acid B (Sal B) in diabetic nephropathy. High glucose (HG)-induced human renal tubular epithelial HK-2 cells were treated with Sal B, BAY-60-6583 (agonist of adenosine 2B receptor), or PSB-603 (antagonist of adenosine 2B receptor) for 24 h. Adenosine A2b receptor (ADORA2B), NACHT, leucine-rich repeat (LRR), and pyrin (PYD) domains-containing protein 3 (NALP3), and nuclear factor Kappa B (NFκB) expressions, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) levels were examined. Following 6 weeks of Sal B treatment, db/db mice blood and kidney tissue were harvested for biochemical detection with hematoxylin-eosin (H&E), Masson's, periodic acid schiff (PAS), and Sirius red staining and detection of ADORA2B, NALP3, NFκB, interleukin 1β (IL-1β), and toll-like receptor 4 (TLR4) activity. NFκB, NALP3, and ADORA2B were found to be downregulated in Sal B treated HK-2 cells exposed to high glucose (HG), accompanied by elevated levels of MMPs and reduced intracellular ROS production. Sal B-treated diabetic mice had the improvement in body weight, water intake, hyperglycemia, hyperlipidemia, and liver and kidney function. Altogether, Sal B attenuates HG-induced kidney tubule cell injury and diabetic nephropathy in diabetic mice, providing clues to other novel mechanisms by which Sal B is beneficial in diabetic nephropathy.
Collapse
Affiliation(s)
- Ying Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Jiang Chang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Shubin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Department of Pulmonary and Critical Care Medicine, Beijing 100071, China
| | - Ying Yang
- Department of Endocrinology, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China
| | - Chuan Yun
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Yongyan Li
- Department of Nephrology, Hainan Medical University, Haikou 570102, Hainan, China
| | - Fa Wang
- Department of Anesthesiology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
7
|
Lin P, Qiu F, Wu M, Xu L, Huang D, Wang C, Yang X, Ye C. Salvianolic acid B attenuates tubulointerstitial fibrosis by inhibiting EZH2 to regulate the PTEN/Akt pathway. PHARMACEUTICAL BIOLOGY 2023; 61:23-29. [PMID: 36524761 PMCID: PMC9762854 DOI: 10.1080/13880209.2022.2148169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 05/25/2023]
Abstract
CONTEXT Salvianolic acid B (SAB) can alleviate renal fibrosis and improve the renal function. OBJECTIVE To investigate the effect of SAB on renal tubulointerstitial fibrosis and explore its underlying mechanisms. MATERIALS AND METHODS Male C57 mice were subjected to unilateral ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) for renal fibrosis indication. Vehicle or SAB (10 mg/kg/d, i.p.) were given consecutively for 2 weeks in UUO mice while 4 weeks in AAN mice. The serum creatinine (Scr) and blood urine nitrogen (BUN) were measured. Masson's trichrome staining and the fibrotic markers (FN and α-SMA) were used to evaluate renal fibrosis. NRK-49F cells exposed to 2.5 ng/mL TGF-β were treated with SAB in the presence or absence of 20 μM 3-DZNep, an inhibitor of EZH2. The protein expression of EZH2, H3k27me3 and PTEN/Akt signaling pathway in renal tissue and NRK-49F cells were measured by Western blots. RESULTS SAB significantly improved the levels of Scr by 24.3% and BUN by 35.7% in AAN mice. SAB reduced renal interstitial collagen deposition by 34.7% in UUO mice and 72.8% in AAN mice. Both in vivo and in vitro studies demonstrated that SAB suppressed the expression of FN and α-SMA, increased PTEN and decreased the phosphorylation of Akt, which were correlated with the down-regulation of EZH2 and H3k27me3. The inhibition of EZH2 attenuated the anti-fibrotic effects of SAB in NRK-49Fs. CONCLUSION SAB might have therapeutic potential on renal fibrosis of CKD through inhibiting EZH2, which encourages further clinical trials.
Collapse
Affiliation(s)
- Pinglan Lin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, P. R. China
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, P. R. China
| | - Lin Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, P. R. China
| | - Di Huang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, P. R. China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, P. R. China
| | - Xuejun Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, P. R. China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, P. R. China
| |
Collapse
|
8
|
Foote CA, Ramirez-Perez FI, Smith JA, Ghiarone T, Morales-Quinones M, McMillan NJ, Augenreich MA, Power G, Burr K, Aroor AR, Bender SB, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Neuraminidase inhibition improves endothelial function in diabetic mice. Am J Physiol Heart Circ Physiol 2023; 325:H1337-H1353. [PMID: 37801046 PMCID: PMC10908409 DOI: 10.1152/ajpheart.00337.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.
Collapse
Affiliation(s)
- Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - James A Smith
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Thaysa Ghiarone
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Neil J McMillan
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Marc A Augenreich
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
9
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|