1
|
Wu J, Jia W, Min D, Yang G. Cinnamon for Metabolic Diseases and Their Cardiovascular and Hepatic Complications: A Mechanistic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2403-2421. [PMID: 39702975 DOI: 10.1142/s0192415x24500915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cinnamon is one of the world's oldest and most popular spices, and is derived from the inner bark of several tree species from the genus Cinnamomum. During the last two decades, cinnamon has demonstrated beneficial metabolic effects not only in animal experiments but also in clinical trials. Even recent meta-analyses have shown the protective effects of cinnamon on different components of metabolic syndrome and their complications. In the last 5 years, several experimental studies have unraveled the intricate molecular mechanisms underlying the antihypertensive, antihyperglycemic, lipid-lowering, weight-lowering, and cardioprotective properties of cinnamon. This review paper will discuss how cinnamon and its active components, particularly cinnamaldehyde, suppress inflammation and oxidative stress, modulate mitochondrial dysfunction, and regulate glucose uptake, insulin resistance, lipogenesis, beta-oxidation, Ca2+ signaling, and other cellar events at the molecular level. Specifically, we will delve into the molecular mechanisms involved in the metabolic effects of cinnamon to provide a deeper insight into how cinnamon can bring such beneficial effects. This review hopes to encourage the use of cinnamon in clinical settings, guide the combination of cinnamon with other drugs used to treat different components of metabolic syndrome based on their mechanism of action, and support the concept of complementary medicine for metabolic diseases.
Collapse
Affiliation(s)
- Junpeng Wu
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
| | - Wenhan Jia
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
| | - Dongyu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
| | - Guanlin Yang
- The First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine, Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110000, P. R. China
| |
Collapse
|
2
|
Chen S, Wang J, Sun L, Xia F, Li W, Yuan L, Liu C, Li P, Bao C, Wang M, Wang G, Li J, Xie Y, Lu W. A quick paster type of soluble nanoparticle microneedle patch for the treatment of obesity. Biomaterials 2024; 311:122687. [PMID: 38941683 DOI: 10.1016/j.biomaterials.2024.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Obesity is a major public burden on the working population and induces chronic diseases. Its treatment often requires long-term medication, which makes patient compliance difficult. In this study, we reported the value of HORN-MN, which comprised a fast-soluble hyaluronic acid microneedle matrix and a weak acid-degradable oleanolic acid dimer of rosiglitazone nanoparticles. The results showed that the microneedles easily punctured the stratum corneum and dissolved in the dermis of the abdominal wall within 5 min, followed by the release of rosiglitazone nanoparticles. Thereafter, the nanoparticles were endocytosed by macrophages and white adipocytes, then degraded to oleanolic acid in the lysosomes, thereby, releasing rosiglitazone. Oleanolic acid significantly improved the inflammatory status of obese adipose tissue and promoted white adipocyte browning, and rosiglitazone significantly potentiated WAC browning. Accordingly, the patch demonstrated a remarkable obesity-reducing efficacy in mice. In conclusion, this study developed a quick paster type of soluble rosiglitazone nanoparticle microneedle for the treatment of obesity. This patch can be suitable for working people, with an evident obesity-reducing efficacy but no effect on skin integrity despite multiple administrations.
Collapse
Affiliation(s)
- Songyue Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Junbo Wang
- School of Public Health, Peking University, And Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China
| | - Liyu Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fangzhi Xia
- School of Public Health, Peking University, And Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lan Yuan
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Chang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chunjie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mengjie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery System, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
3
|
Sarg NH, Zaher DM, Abu Jayab NN, Mostafa SH, Ismail HH, Omar HA. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts. Biochem Pharmacol 2024; 225:116307. [PMID: 38797269 DOI: 10.1016/j.bcp.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Mitochondria play a crucial role in cellular metabolism and bioenergetics, orchestrating various cellular processes, including energy production, metabolism, adaptation to stress, and redox balance. Besides, mitochondria regulate cellular metabolic homeostasis through coordination with multiple signaling pathways. Importantly, the p38 mitogen-activated protein kinase (MAPK) signaling pathway is a key player in the intricate communication with mitochondria, influencing various functions. This review explores the multifaced interaction between the mitochondria and p38 MAPK signaling and the consequent impact on metabolic alterations. Overall, the p38 MAPK pathway governs the activities of key mitochondrial proteins, which are involved in mitochondrial biogenesis, oxidative phosphorylation, thermogenesis, and iron homeostasis. Additionally, p38 MAPK contributes to the regulation of mitochondrial responses to oxidative stress and apoptosis induced by cancer therapies or natural substances by coordinating with other pathways responsible for energy homeostasis. Therefore, dysregulation of these interconnected pathways can lead to various pathologies characterized by aberrant metabolism. Consequently, gaining a deeper understanding of the interaction between mitochondria and the p38 MAPK pathway and their implications presents exciting forecasts for novel therapeutic interventions in cancer and other disorders characterized by metabolic dysregulation.
Collapse
Affiliation(s)
- Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Salma H Mostafa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussein H Ismail
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Wen X, Song Y, Zhang M, Kang Y, Chen D, Ma H, Nan F, Duan Y, Li J. Polyphenol Compound 18a Modulates UCP1-Dependent Thermogenesis to Counteract Obesity. Biomolecules 2024; 14:618. [PMID: 38927022 PMCID: PMC11201655 DOI: 10.3390/biom14060618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies increasingly suggest that targeting brown/beige adipose tissues to enhance energy expenditure offers a novel therapeutic approach for treating metabolic diseases. Brown/beige adipocytes exhibit elevated expression of uncoupling protein 1 (UCP1), which is a thermogenic protein that efficiently converts energy into heat, particularly in response to cold stimulation. Polyphenols possess potential anti-obesity properties, but their pharmacological effects are limited by their bioavailability and distribution within tissue. This study discovered 18a, a polyphenol compound with a favorable distribution within adipose tissues, which transcriptionally activates UCP1, thereby promoting thermogenesis and enhancing mitochondrial respiration in brown adipocytes. Furthermore, in vivo studies demonstrated that 18a prevents high-fat-diet-induced weight gain and improves insulin sensitivity. Our research provides strong mechanistic evidence that UCP1 is a complex mediator of 18a-induced thermogenesis, which is a critical process in obesity mitigation. Brown adipose thermogenesis is triggered by 18a via the AMPK-PGC-1α pathway. As a result, our research highlights a thermogenic controlled polyphenol compound 18a and clarifies its underlying mechanisms, thus offering a potential strategy for the thermogenic targeting of adipose tissue to reduce the incidence of obesity and its related metabolic problems.
Collapse
Affiliation(s)
- Xueping Wen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufei Song
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yiping Kang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Dandan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Hui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Fajun Nan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Yanan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China (F.N.)
| |
Collapse
|
5
|
Abdillah AM, Yun JW. Capsaicin induces ATP-dependent thermogenesis via the activation of TRPV1/β3-AR/α1-AR in 3T3-L1 adipocytes and mouse model. Arch Biochem Biophys 2024; 755:109975. [PMID: 38531438 DOI: 10.1016/j.abb.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Capsaicin (CAP) is a natural bioactive compound in chili pepper that activates the transient receptor potential vanilloid subfamily 1 (TRPV1) and is known to stimulate uncoupling protein 1 (UCP1)-dependent thermogenesis. However, its effect on ATP-dependent thermogenesis remains unknown. In this study, we employed qRT-PCR, immunoblot, staining method, and assay kit to investigate the role of CAP on ATP-dependent thermogenesis and its modulatory roles on the TRPV1, β3-adrenergic receptor (β3-AR), and α1-AR using in vitro and in vivo models. The studies showed that CAP treatment in high-fat diet-induced obese mice resulted in lower body weight gain and elevated ATP-dependent thermogenic effectors' protein and gene expression through ATP-consuming calcium and creatine futile cycles. In both in vitro and in vivo experiments, CAP treatment elevated the protein and gene expressions of sarcoendoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), ryanodine receptor 2 (RYR2), creatine kinase B (CKB), and creatine kinase mitochondrial 2 (CKMT2) mediated by the activation of β3-AR, α1-AR, and TRPV1. Our study showed that CAP increased intracellular Ca2+ levels and the expression of voltage-dependent anion channel (VDAC) and mitochondrial calcium uniporter (MCU) which indicates that increased mitochondrial Ca2+ levels lead to increased expression of oxidative phosphorylation protein complexes as a result of ATP-futile cycle activation. A mechanistic study in 3T3-L1 adipocytes revealed that CAP induces UCP1- and ATP-dependent thermogenesis mediated by the β3-AR/PKA/p38MAPK/ERK as well as calcium-dependent α1-AR/TRPV1/CaMKII/AMPK/SIRT1 pathway. Taken together, we identified CAP's novel functional and modulatory roles in UCP1- and ATP-dependent thermogenesis, which is important for developing therapeutic strategies for combating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Alfin Mohammad Abdillah
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
6
|
Kim S, Yazawa T, Koide A, Yoneda E, Aoki R, Okazaki T, Tomita K, Watanabe H, Muroi Y, Testuka M, Muranishi Y. Potential Role of Pig UCP3 in Modulating Adipocyte Browning via the Beta-Adrenergic Receptor Signaling Pathway. BIOLOGY 2024; 13:284. [PMID: 38785767 PMCID: PMC11117546 DOI: 10.3390/biology13050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Adipose tissue plays an important role in regulating body temperature and metabolism, with white adipocytes serving as storage units for energy. Recent research focused on the browning of white adipocytes (beige adipocytes), causing thermogenesis and lipolysis. The process of browning is linked to the activation of uncoupling protein (UCP) expression, which can be mediated by the β3 adrenergic receptor pathway. Transcriptional factors, such as peroxisome proliferator activated receptor γ (PPARγ) and PPARγ coactivator 1 alpha, play vital roles in cell fate determination for fat cells. Beige adipocytes have metabolic therapeutic potential to combat diseases such as obesity, diabetes mellitus, and dyslipidemia, owing to their significant impact on metabolic functions. However, the molecular mechanisms that cause the induction of browning are unclear. Therefore, research using animal models and primary culture is essential to provide an understanding of browning for further application in human metabolic studies. Pigs have physiological similarities to humans; hence, they are valuable models for research on adipose tissue. This study demonstrates the browning potential of pig white adipocytes through primary culture experiments. The results show that upregulation of UCP3 gene expression and fragmentation of lipid droplets into smaller particles occur due to isoproterenol stimulation, which activates beta-adrenergic receptor signaling. Furthermore, PPARγ and PGC-1α were found to activate the UCP3 promoter region, similar to that of UCP1. These findings suggest that pigs undergo metabolic changes that induce browning in white adipocytes, providing a promising approach for metabolic research with potential implications for human health. This study offers valuable insights into the mechanism of adipocyte browning using pig primary culture that can enhance our understanding of human metabolism, leading to cures for commonly occurring diseases.
Collapse
Affiliation(s)
- Sangwoo Kim
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan;
| | - Akari Koide
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Erina Yoneda
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Risa Aoki
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Tatsuki Okazaki
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Kisaki Tomita
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Hiroyuki Watanabe
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Yoshikage Muroi
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Masafumi Testuka
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
| | - Yuki Muranishi
- School of Agriculture and Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan (E.Y.); (R.A.); (T.O.); (K.T.); (H.W.); (Y.M.); (M.T.)
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|
7
|
Shang Q, Bian X, Zhu L, Liu J, Wu M, Lou S. Lactate Mediates High-Intensity Interval Training-Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway. Antioxidants (Basel) 2023; 12:2087. [PMID: 38136207 PMCID: PMC10740508 DOI: 10.3390/antiox12122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondrial biogenesis and fusion are essential for maintaining healthy mitochondria and ATP production. High-intensity interval training (HIIT) can enhance mitochondrial function in mouse hippocampi, but its underlying mechanism is not completely understood. Lactate generated during HIIT may mediate the beneficial effects of HIIT on neuroplasticity by activating the lactate receptor GPR81. Furthermore, growing evidence shows that lactate contributes to mitochondrial function. Given that mitochondrial function is crucial for cerebral physiological processes, the current study aimed to determine the mechanism of HIIT in hippocampal mitochondrial function. In vivo, GPR81 was knocked down in the hippocampi of mice via the injection of adeno-associated virus (AAV) vectors. The GPR81-knockdown mice were subjected to HIIT. The results demonstrated that HIIT increased mitochondria numbers, ATP production, and oxidative phosphorylation (OXPHOS) in the hippocampi of mice. In addition, HIIT induced mitochondrial biogenesis, fusion, synaptic plasticity, and ERK1/2 phosphorylation but not in GPR81-knockdown mice. In vitro, Neuro-2A cells were treated with L-lactate, a GPR81 agonist, and an ERK1/2 inhibitor. The results showed that both L-lactate and the GPR81 agonist increased mitochondrial biogenesis, fusion, ATP levels, OXPHOS, mitochondrial membrane potential, and synaptic plasticity. However, the inhibition of ERK1/2 phosphorylation blunted L-lactate or the GPR81 agonist-induced promotion of mitochondrial function and synaptic plasticity. In conclusion, our findings suggest that lactate mediates HIIT-induced promotion of mitochondrial function through the GPR81-ERK1/2 pathway.
Collapse
Affiliation(s)
- Qinghui Shang
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Xuepeng Bian
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Lutao Zhu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Jun Liu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Min Wu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| |
Collapse
|
8
|
Liu TY, Feng H, Yousuf S, Xie LL, Miao XY. Functional analysis of differentially expressed circular RNAs in sheep subcutaneous fat. BMC Genomics 2023; 24:591. [PMID: 37798722 PMCID: PMC10557293 DOI: 10.1186/s12864-023-09401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/23/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), as important non-coding RNAs (ncRNAs), are involved in many biological activities. However, the exact chemical mechanism behind fat accumulation is unknown. In this paper, we obtained the expression profiles of circRNAs using high-throughput sequencing and investigated their differential expression in subcutaneous fat tissue of Duolang and Small Tail Han sheep. RESULTS From the transcriptomic analysis, 141 differentially expressed circRNAs were identified, comprising 61 up-regulated circRNAs and 80 down-regulated circRNAs. These host genes were primarily enriched in the MAPK and AMPK signaling pathways which is closely associated with fat deposition regulation. We identified circRNA812, circRNA91, and circRNA388 as vital genes in fat deposition by miRNA-circRNA target gene prediction. The functional annotation results of target genes of key circRNAs showed that the signaling pathways mainly included PI3K-Akt and AMPK. We constructed the competing endogenous RNA (ceRNA) regulatory network to study the role of circRNAs in sheep lipid deposition, and circRNA812, circRNA91, and circRNA388 can adsorb more miRNAs. NC_040253.1_5757, as the source of miRNA response element (MRE) among the three, may play an important role during the process of sheep fat deposition. CONCLUSIONS Our study gives a systematic examination of the circRNA profiles expressed in sheep subcutaneous fat. These results from this study provide some new basis for understanding circRNA function and sheep fat metabolism.
Collapse
Affiliation(s)
- Tian-Yi Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Hui Feng
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Salsabeel Yousuf
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Ling-Li Xie
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xiang-Yang Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
9
|
Choi M, Yun JW. β-Carotene induces UCP1-independent thermogenesis via ATP-consuming futile cycles in 3T3-L1 white adipocytes. Arch Biochem Biophys 2023; 739:109581. [PMID: 36948352 DOI: 10.1016/j.abb.2023.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
The activation of brown fat and induction of beige adipocytes, so-called non-shivering thermogenesis, is emerging as a promising target for therapeutic intervention in obesity management. Our previous report demonstrated that β-carotene (BC) induces beige adipocytes to increase UCP1-dependent thermogenic activity. However, the UCP1-independent thermogenic effect of BC on adipose tissues remains unexplored. In this study, we examined the effects of BC on UCP1-independent thermogenic activity with a focus on the ATP-consuming futile cycles in 3T3-L1 adipocytes. BC increased intracellular calcium levels and stimulated the expression of calcium cycling-related proteins, including sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) 2b, ryanodine receptor 2 (RyR2), voltage-dependent anion channel (VDAC), mitochondrial calcium uniporter (MCU), and Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) in 3T3-L1 white adipocytes. In addition, BC stimulated thermogenesis by activating the creatine metabolism-related thermogenic pathway. Moreover, BC activated β-carotene oxygenase 1 (BCO1), which efficiently cleaved BC to retinal and consequently converted to its transcriptionally active form retinoic acid. These BC conversion products also exhibited thermogenic effects comparable to a similar level of BC. The mechanistic study revealed that retinal exhibited thermogenic activity independently of retinoic acid and retinoic acid-mediated thermogenesis was resulted partly from conversion of retinal. Moreover, BC activated α1-AR and UCP1-independent thermogenic effectors independently of UCP1 expression. In conclusion, the thermogenic response to BC and its conversion products in 3T3-L1 white adipocytes involves two interacting pathways, one mediated via β3-adrenergic receptors (β3-AR) and cyclic adenosine monophosphate (cAMP) and the other via α1-AR and increases in cytosolic Ca2+ levels activated by calcium regulatory proteins.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
10
|
Chen F, Wu S, Li D, Dong J, Huang X. Leaf Extract of Perilla frutescens (L.) Britt Promotes Adipocyte Browning via the p38 MAPK Pathway and PI3K-AKT Pathway. Nutrients 2023; 15:nu15061487. [PMID: 36986217 PMCID: PMC10054491 DOI: 10.3390/nu15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The leaf of Perilla frutescens (L.) Britt (PF) has been reported to negatively affect adipocyte formation, inhibit body-fat formation, and lower body weight. However, its effect on adipocyte browning remains unknown. Thus, the mechanism of PF in promoting adipocyte browning was investigated. The ingredients of PF were acquired from the online database and filtered with oral bioavailability and drug-likeness criteria. The browning-related target genes were obtained from the Gene Card database. A Venn diagram was employed to obtain the overlapped genes that may play a part in PF promoting adipocyte browning, and an enrichment was analysis conducted based on these overlapped genes. A total of 17 active ingredients of PF were filtered, which may regulate intracellular receptor-signaling pathways, the activation of protein kinase activity, and other pathways through 56 targets. In vitro validation showed that PF promotes mitochondrial biogenesis and upregulates brite adipocyte-related gene expression. The browning effect of PF can be mediated by the p38 MAPK pathway as well as PI3K-AKT pathway. The study revealed that PF could promote adipocyte browning through multitargets and multipathways. An in vitro study validated that the browning effect of PF can be mediated by both the P38 MAPK pathway and the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Fancheng Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Orthopaedics & Rehabilitation, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Silin Wu
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200120, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaowei Huang
- Facutly of Medicine, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
11
|
Wang Y, Ma P, Wang Z, Sun M, Hou B, Xu T, Li W, Yang X, Du G, Ji T, Qiang G. Uncovering the effect and mechanism of Panax notoginseng saponins on metabolic syndrome by network pharmacology strategy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115680. [PMID: 36058479 DOI: 10.1016/j.jep.2022.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metabolic syndrome (MetS) is a cluster of disease centered on obesity, which is the result of stagnation of liver qi according to traditional Chinese medicine. Panax notoginseng is a traditional Chinese herbal medicine, entering liver and stomach meridians and dissipating blood stasis, in which panax notoginseng saponins (PNS) are the main active components. However, its effects and mechanism on metabolic syndrome has not been revealed yet. AIM OF STUDY To evaluate the anti-MetS effect of PNS, including body weight and adiposity, glucose metabolism and non-alcoholic fatty liver disease (NAFLD), as well as to explore the mechanism and signaling pathway of PNS on MetS effect. MATERIALS AND METHODS HPLC was utilized to affirm the percentages of saponins in PNS. In vivo, normal C57BL/6J mice and high-fat diet (HFD)-induced MetS mice were used to evaluate anti-MetS effect of PNS. Body weight, food and water intake were recorded. NMR imager was used for NMR imaging and lipid-water analysis. Blood glucose detection, glucose and insulin tolerance test were performed to evaluate glucose metabolism. Biochemical indexes analysis and histopathological staining were used to evaluate the effect on NAFLD. The expressions of mRNA and proteins related to thermogenesis in adipose tissue were determined using real-time PCR and Western blot. In silico, network pharmacology was utilized to predict potential mechanism. In vitro, matured 3T3-L1 adipocyte was used as subject to confirm the signaling pathway by Western blot. RESULTS We determined the content of PNS component by HPLC. In vivo, PNS could improve metabolic syndrome with weight loss, reduction of adiposity, improvement of adipose distribution, correction of glucose metabolism disorder and attenuation of NAFLD. Mechanismly, PNS boosted energy exhaustion and dramatically enhanced thermogenesis in brown adipose tissue (BAT), induced white adipose tissue (WAT) browning. In silico, utilizing network pharmacology strategy, we identified 307 candidate targets which were enriched in MAPK signaling pathway specifically in liver tissue and adipocyte. In vitro validation confirmed ERK and p38MAPK mediated anti-MetS effects of PNS, not JNK signaling pathway. CONCLUSION PNS exerted protective effect on metabolic syndrome through MAPK-mediated adipose thermogenic activation, which may serve as a prospective therapeutic drug for metabolic syndrome.
Collapse
Affiliation(s)
- Yisa Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China; College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Zijing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Mingxia Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Tianshu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Wenlan Li
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| |
Collapse
|