1
|
Miao X, Liu P, Liu Y, Zhang W, Li C, Wang X. Epigenetic targets and their inhibitors in the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 289:117463. [PMID: 40048798 DOI: 10.1016/j.ejmech.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease characterized by fibroblast proliferation, excessive extracellular matrix buildup, inflammation, and tissue damage, resulting in respiratory failure and death. Recent studies suggest that impaired interactions among epithelial, mesenchymal, immune, and endothelial cells play a key role in IPF development. Advances in bioinformatics have also linked epigenetics, which bridges gene expression and environmental factors, to IPF. Despite the incomplete understanding of the pathogenic mechanisms underlying IPF, recent preclinical studies have identified several novel epigenetic therapeutic targets, including DNMT, EZH2, G9a/GLP, PRMT1/7, KDM6B, HDAC, CBP/p300, BRD4, METTL3, FTO, and ALKBH5, along with potential small-molecule inhibitors relevant for its treatment. This review explores the pathogenesis of IPF, emphasizing epigenetic therapeutic targets and potential small molecule drugs. It also analyzes the structure-activity relationships of these epigenetic drugs and summarizes their biological activities. The objective is to advance the development of innovative epigenetic therapies for IPF.
Collapse
Affiliation(s)
- Xiaohui Miao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Pan Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yangyang Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenying Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chunxin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiujiang Wang
- Department of Pulmonary Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
2
|
Ritzmann F, Brand M, Bals R, Wegmann M, Beisswenger C. Role of Epigenetics in Chronic Lung Disease. Cells 2025; 14:251. [PMID: 39996724 PMCID: PMC11853132 DOI: 10.3390/cells14040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetics regulates gene expression and thus cellular processes that underlie the pathogenesis of chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Environmental factors (e.g., air pollution, smoking, infections, poverty), but also conditions such as gastroesophageal reflux, induce epigenetic changes long before lung disease is diagnosed. Therefore, epigenetic signatures have the potential to serve as biomarkers that can be used to identify younger patients who are at risk for premature loss of lung function or diseases such as IPF. Epigenetic analyses also contribute to a better understanding of chronic lung disease. This can be used directly to improve therapies, as well as for the development of innovative drugs. Here, we highlight the role of epigenetics in the development and progression of chronic lung disease, with a focus on DNA methylation.
Collapse
Affiliation(s)
- Felix Ritzmann
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| | - Michelle Brand
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
- Helmholtz Institute for Pharmaceutical Research, 66123 Saarbrücken, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Asthma and Allergy, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V—Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, 66421 Homburg, Germany; (F.R.); (M.B.); (R.B.)
| |
Collapse
|
3
|
Vithalkar MP, Sandra KS, Bharath HB, Krishnaprasad B, Fayaz SM, Sathyanarayana B, Nayak Y. Network Pharmacology-driven therapeutic interventions for Interstitial Lung Diseases using Traditional medicines: A Narrative Review. Int Immunopharmacol 2025; 147:113979. [PMID: 39746273 DOI: 10.1016/j.intimp.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
This review explores the progressive domain of network pharmacology and its potential to revolutionize therapeutic approaches for Interstitial Lung Diseases (ILDs), a collective term encompassing Interstitial Pneumonia, Pneumoconiosis, Connective Tissue Disease-related ILDs, and Sarcoidosis. The exploration focuses on the profound legacy of traditional medicines, particularly Ayurveda and Traditional Chinese Medicines (TCM), and their largely unexplored capacity in ILD treatment. These ancient healing systems, characterized by their holistic methodologies and multifaceted treatment modalities, offer a promising foundation for discovering innovative therapeutic strategies. Moreover, the review underscores the amalgamation of artificial intelligence (AI) and machine learning (ML) methodologies with bioinformatics, creating a computational synergy capable of deciphering the intricate biological networks associated with ILDs. Network pharmacology has tailored the hypothesis from the conventional "one target, one drug" towards a "network target, multi-component therapeutics" approach. The fusion of traditional literature and computational technology can unveil novel drugs, targets, and pathways, augmenting effective therapies and diminishing adverse effects related to current medications. In conclusion, this review provides a comprehensive exposition of how Network Pharmacology tools can leverage the insights of Ayurveda and TCM to craft efficacious therapeutic solutions for ILDs. It sets the stage for future investigations in this captivating interdisciplinary domain, validating the use of traditional medicines worldwide.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - B Krishnaprasad
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - B Sathyanarayana
- Muniyal Institute of Ayurveda Medical Sciences, Manipal, Karnataka 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Wang Y, Zhang Y, Ma M, Zhuang X, Lu Y, Miao L, Lu X, Cui Y, Cui W. Mechanisms underlying the involvement of peritoneal macrophages in the pathogenesis and novel therapeutic strategies for dialysis-induced peritoneal fibrosis. Front Immunol 2024; 15:1507265. [PMID: 39749340 PMCID: PMC11693514 DOI: 10.3389/fimmu.2024.1507265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality. The causes and mechanisms underlying peritoneal fibrosis in patients undergoing peritoneal dialysis remain unknown, with no definitive treatment available. However, abnormal activation of the immune system appears to be involved in altering the structure of the peritoneum and promoting fibrotic changes. Macrophage infiltration and polarization are key contributors to pathological injury within the peritoneum, showing a strong correlation with the epithelial-to-mesenchymal transition of mesothelial cells and driving the process of fibrosis. This article discusses the role and mechanisms underlying macrophage activation-induced peritoneal fibrosis resulting from PD by analyzing relevant literature from the past decade and provides an overview of recent therapeutic approaches targeting macrophages to treat this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yingchun Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| |
Collapse
|
5
|
Hu X, Wei Z, Wu Y, Zhao M, Zhou L, Lin Q. Pathogenesis and Therapy of Hermansky-Pudlak Syndrome (HPS)-Associated Pulmonary Fibrosis. Int J Mol Sci 2024; 25:11270. [PMID: 39457053 PMCID: PMC11508683 DOI: 10.3390/ijms252011270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS)-associated pulmonary fibrosis (HPS-PF) is a progressive lung disease that is a major cause of morbidity and mortality in HPS patients. Previous studies have demonstrated that the HPS proteins play an essential role in the biogenesis and function of lysosome-related organelles (LROs) in alveolar epithelial type II (AT2) cells and found that HPS-PF is associated with dysfunction of AT2 cells and abnormal immune reactions. Despite recent advances in research on HPS and the pathology of HPS-PF, the pathological mechanisms underlying HPS-PF remain poorly understood, and no effective treatment has been established. Therefore, it is necessary to refresh the progress in the pathogenesis of HPS-PF to increase our understanding of the pathogenic mechanism of HPS-PF and develop targeted therapeutic strategies. This review summarizes the recent progress in the pathogenesis of HPS-PF provides information about the current treatment strategies for HPS-PF, and hopefully increases our understanding of the pathogenesis of HPS-PF and offers thoughts for new therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (X.H.); (Z.W.); (Y.W.); (M.Z.); (L.Z.)
| |
Collapse
|
6
|
Zhang K, Shi P, Li A, Zhou J, Chen M. Plasma genome-wide mendelian randomization identifies potentially causal genes in idiopathic pulmonary fibrosis. Respir Res 2024; 25:379. [PMID: 39425105 PMCID: PMC11490078 DOI: 10.1186/s12931-024-03008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a complex lung disease with a very poor prognosis. Existing drugs for the treatment of IPF are still insufficient. Therefore, there is still a need to explore new drug targets for preventing and treating IPF. METHODS We included quantitative trait loci (QTL) for genes, DNA methylation, and proteins in plasma, as well as the summary statistics for IPF. Genetic variants located within 500 kb of the gene and strongly associated with plasma exposure were used as instrumental variables. The causal association between plasma exposures and IPF was primarily estimated using summary-data-based Mendelian randomization (SMR) analysis. Five other MR methods and sensitivity analyses were employed to validate the SMR results. Bayesian tests for colocalization between QTL and IPF risk loci further strengthen the MR results. RESULTS We identified three genes and five DNA methylation sites causally associated with IPF by SMR analysis, validation of MR analysis, sensitivity analysis, and colocalization analysis. BTRC and LINC01252 were negatively associated with IPF risk (OR: 0.30, 95% CI: 0.17-0.54, FDRSMR = 0.029; OR: 0.85, 95% CI: 0.78-0.92, FDRSMR = 0.043), and RIPK4 was positively associated with IPF risk (OR: 2.60, 95% CI: 1.64-4.12, FDRSMR = 0.031). cg00045227 (OR8U8, OR: 1.16, 95% CI: 1.08-1.24, FDRSMR = 0.010), cg00577578 (GBAP1, OR: 1.23, 95% CI: 1.12-1.36, FDRSMR = 0.014), cg14222479 (ARPM1, OR: 3.17, 95% CI: 1.98-5.08, FDRSMR = 0.001), and cg19263494 (PMF1, OR: 1.20, 95% CI: 1.10-1.30, FDRSMR = 0.012) were positively associated with the risk of IPF, whereas cg07163735 (MAPT, OR: 0.22, 95% CI: 0.11-0.45, FDRSMR = 0.013) was negatively correlated with the risk of IPF. CONCLUSIONS This study demonstrated that genetically determined plasma levels of the BTRC, RIPK4, and LINC01252 genes, as well as methylation levels of cg00045227 (OR8U8), cg00577578 (GBAP1), cg07163735 (MAPT), cg14222479 (ARPM1), and cg19263494 (PMF1), have causal influences on the risk of IPF.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, Shaanxi Province, 710061, China
| | - Puyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, Shaanxi Province, 710061, China
| | - Anqi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, Shaanxi Province, 710061, China
| | - Jiejun Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, Shaanxi Province, 710061, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
7
|
Libra A, Sciacca E, Muscato G, Sambataro G, Spicuzza L, Vancheri C. Highlights on Future Treatments of IPF: Clues and Pitfalls. Int J Mol Sci 2024; 25:8392. [PMID: 39125962 PMCID: PMC11313529 DOI: 10.3390/ijms25158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.
Collapse
Affiliation(s)
- Alessandro Libra
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Enrico Sciacca
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology Outpatient Clinic, 95030 Mascalucia, CT, Italy;
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| |
Collapse
|
8
|
Byregowda BH, Baby K, Maity S, Nayak UY, S G, Fayaz SM, Nayak Y. Network pharmacology and in silico approaches to uncover multitargeted mechanism of action of Zingiber zerumbet rhizomes for the treatment of idiopathic pulmonary fibrosis. F1000Res 2024; 13:216. [PMID: 39931327 PMCID: PMC11809647 DOI: 10.12688/f1000research.142513.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 02/13/2025] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a disease with high mortality, and there are only two specific drugs available for therapeutic management with limitations. The study aims to identify comprehensive therapeutic mechanisms of Zingiber zerumbet rhizomes (ZZR) to treat IPF by using network pharmacology followed battery of in silico studies. Methods The protein-protein interaction network was developed using Cytoscape to obtain core disease targets involved in IPF and their interactive molecules of ZZR. Based on the pharmacophore properties of phytomolecules from ZZR, the drug targets in IPF were explored. Protein-protein interaction network was built in Cytoscape to screen potential targets and components of ZZR. Molecular docking and dynamics were conducted as an empirical study to investigate the mechanism explored through network pharmacology in relation to the hub targets. Results The network analysis conferred kaempferol derivatives that had demonstrated a promising therapeutic effect on the perturbed, robust network hubs of TGF-β1, EGFR, TNF-α, MMP2 & MMP9 reported to alter the biological process of mesenchymal transition, myofibroblast proliferation, and cellular matrix deposition in pulmonary fibrosis. The phytomolecules of ZZR act on two major significant pathways, namely the TGF-β-signaling pathway and the FOXO-signaling pathway, to inhibit IPF. Confirmational molecular docking and dynamics simulation studies possessed good stability and interactions of the protein-ligand complexes by RMSD, RMSF, rGyr, SASA, and principal component analysis (PCA). Validated molecular docking and dynamics simulations provided new insight into exploring the mechanism and multi-target effect of ZZR to treat pulmonary fibrosis by restoring the alveolar phenotype through cellular networking. Conclusions Network pharmacology and in silico studies confirm the multitargeted activity of ZZR in the treatment of IPF. Further in vitro and in vivo studies are to be conducted to validate these findings.
Collapse
Affiliation(s)
- Bharath Harohalli Byregowda
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576194, India
| | - Gayathri S
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaik Mohammad Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
9
|
Ren L, Chang YF, Jiang SH, Li XH, Cheng HP. DNA methylation modification in Idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1416325. [PMID: 38915445 PMCID: PMC11194555 DOI: 10.3389/fcell.2024.1416325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease with a prognosis worse than lung cancer. It is a fatal lung disease with largely unknown etiology and pathogenesis, and no effective therapeutic drugs render its treatment largely unsuccessful. With continuous in-depth research efforts, the epigenetic mechanisms in IPF pathogenesis have been further discovered and concerned. As a widely studied mechanism of epigenetic modification, DNA methylation is primarily facilitated by DNA methyltransferases (DNMTs), resulting in the addition of a methyl group to the fifth carbon position of the cytosine base, leading to the formation of 5-methylcytosine (5-mC). Dysregulation of DNA methylation is intricately associated with the advancement of respiratory disorders. Recently, the role of DNA methylation in IPF pathogenesis has also received considerable attention. DNA methylation patterns include methylation modification and demethylation modification and regulate a range of essential biological functions through gene expression regulation. The Ten-Eleven-Translocation (TET) family of DNA dioxygenases is crucial in facilitating active DNA demethylation through the enzymatic conversion of the modified genomic base 5-mC to 5-hydroxymethylcytosine (5-hmC). TET2, a member of TET proteins, is involved in lung inflammation, and its protein expression is downregulated in the lungs and alveolar epithelial type II cells of IPF patients. This review summarizes the current knowledge of pathologic features and DNA methylation mechanisms of pulmonary fibrosis, focusing on the critical roles of abnormal DNA methylation patterns, DNMTs, and TET proteins in impacting IPF pathogenesis. Researching DNA methylation will enchance comprehension of the fundamental mechanisms involved in IPF pathology and provide novel diagnostic biomarkers and therapeutic targets for pulmonary fibrosis based on the studies involving epigenetic mechanisms.
Collapse
Affiliation(s)
- Lu Ren
- Clinical Nursing Teaching and Research Section, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Fen Chang
- Medicine School, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Shi-He Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Xu Z, Davies ER, Yao L, Zhou Y, Li J, Alzetani A, Marshall BG, Hancock D, Wallis T, Downward J, Ewing RM, Davies DE, Jones MG, Wang Y. LKB1 depletion-mediated epithelial-mesenchymal transition induces fibroblast activation in lung fibrosis. Genes Dis 2024; 11:101065. [PMID: 38222900 PMCID: PMC7615521 DOI: 10.1016/j.gendis.2023.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/29/2023] [Accepted: 06/28/2023] [Indexed: 01/16/2024] Open
Abstract
The factors that determine fibrosis progression or normal tissue repair are largely unknown. We previously demonstrated that autophagy inhibition-mediated epithelial-mesenchymal transition (EMT) in human alveolar epithelial type II (ATII) cells augments local myofibroblast differentiation in pulmonary fibrosis by paracrine signalling. Here, we report that liver kinase B1 (LKB1) inactivation in ATII cells inhibits autophagy and induces EMT as a consequence. In IPF lungs, this is caused by downregulation of CAB39L, a key subunit within the LKB1 complex. 3D co-cultures of ATII cells and MRC5 lung fibroblasts coupled with RNA sequencing (RNA-seq) confirmed that paracrine signalling between LKB1-depleted ATII cells and fibroblasts augmented myofibroblast differentiation. Together these data suggest that reduced autophagy caused by LKB1 inhibition can induce EMT in ATII cells and contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.
Collapse
Affiliation(s)
- Zijian Xu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Elizabeth R. Davies
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- University Hospital Southampton, Southampton SO16 6YD, UK
| | - Ben G. Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- University Hospital Southampton, Southampton SO16 6YD, UK
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London NW1 1AT, UK
| | - Tim Wallis
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
- University Hospital Southampton, Southampton SO16 6YD, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London NW1 1AT, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
11
|
Zhang R, Jiang Q, Gao S, Zhang H, Xia Q, Liu B, Zhu J, Jiang H, Zhao R, Dong H, Li X, Zhang Y, Yang C, Gu X, Sun L, Zhou H. Favipiravir ameliorates bleomycin-induced pulmonary fibrosis by reprogramming M1/M2 macrophage polarization. Int Immunopharmacol 2024; 131:111774. [PMID: 38489971 DOI: 10.1016/j.intimp.2024.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Corona Virus Disease 2019 (COVID-19) is an infectious disease that seriously endangers human life and health. The pathological anatomy results of patients who died of the COVID-19 showed that there was an excessive inflammatory response in the lungs. It is also known that most of the COVID-19 infected patients will cause different degrees of lung damage after infection, and may have pulmonary fibrosis remaining after cure. Macrophages are a type of immune cell population with pluripotency and plasticity. In the early and late stages of infection, the dynamic changes of the balance and function of M1/M2 alveolar macrophages have a significant impact on the inflammatory response of the lungs. In the early stage of pulmonary fibrosis inflammation, the increase in the proportion of M1 type is beneficial to clear pathogenic microorganisms and promote the progress of inflammation; in the later stage of fibrosis, the increase in the number of M2 type macrophages can inhibit the inflammatory response and promote the degradation of fibrosis. As a potential treatment drug for new coronavirus pneumonia, favipiravir is in the process of continuously carried out relevant clinical trials. This study aims to discuss whether the antiviral drug favipiravir can suppress inflammation and immune response by regulating the M1/M2 type of macrophages, thereby alleviating fibrosis. We established a bleomycin-induced pulmonary fibrosis model, using IL-4/13 and LPS/IFN-γ cell stimulating factor to induce macrophage M1 and M2 polarization models, respectively. Our study shows that favipiravir exerts anti-fibrotic effects mainly by reprogramming M1/M2 macrophages polarization, that is, enhancing the expression of anti-fibrotic M1 type, reducing the expression of M2 type pro-fibrotic factors and reprogramming it to anti-fibrotic phenotype. Aspects of pharmacological mechanisms, favipiravir inhibits the activation of JAK2-STAT6 and JAK2-PI3K-AKT signaling by targeting JAK2 protein, thereby inhibiting pro-fibrotic M2 macrophages polarization and M2-induced myofibroblast activation. In summary, favipiravir can reduce the progression of pulmonary fibrosis, we hope to provide a certain reference for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruiqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Huizhe Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Qin Xia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Bowen Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Jingyan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Haixia Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Ruixi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Huixuan Dong
- College of Life Science, Tianjin Normal University, 30087 Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Yanping Zhang
- The second department of respiratory and critical care medicine, the second hospital of Hebei Medical University, 050000 Shijiazhuang, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Liang Sun
- Characteristic medical center of the Chinese people's Armed police Force, 300162 Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China.
| |
Collapse
|
12
|
Yang Y, Xiao Z, Yang W, Sun Y, Sui X, Lin X, Yang X, Bao Z, Cui Z, Ma Y, Li W, Wang S, Yang J, Wang Y, Luo Y. Role of transient receptor potential ankyrin 1 in idiopathic pulmonary fibrosis: modulation of M2 macrophage polarization. Cell Mol Life Sci 2024; 81:187. [PMID: 38635081 PMCID: PMC11026287 DOI: 10.1007/s00018-024-05219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-β1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xueyang Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenghao Bao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ziqi Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingkai Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weidong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shengran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
13
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Weng Z, Xu C, Chen X, Yan Q, Fu Z, Jiao J, Xu J, Liu Q, Wang D, Liang J, Li W, Gu A. Sp1-activated FGFR2 is involved in early-life exposure to nickel-induced craniosynostosis by regulating the ERK1/2 signaling pathway. ENVIRONMENT INTERNATIONAL 2024; 184:108477. [PMID: 38340406 DOI: 10.1016/j.envint.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Nickel, a common environmental hazard, is a risk factor for craniosynostosis. However, the underlying biological mechanism remains unclear. Here, we found that early-life nickel exposure induced craniosynostosis in mice. In vitro, nickel promoted the osteogenic differentiation of human mesenchymal stem cells (hMSCs), and its osteogenic ability in vivo was confirmed by an ectopic osteogenesis model. Further mRNA sequencing showed that ERK1/2 signaling and FGFR2 were aberrantly activated. FGFR2 was identified as a key regulator of ERK1/2 signaling. By promoter methylation prediction and methylation-specific PCR (MSP) assays, we found that nickel induced hypomethylation in the promoter of FGFR2, which increased its binding affinity to the transcription factor Sp1. During pregnancy and postnatal stages, AZD4547 rescued nickel-induced craniosynostosis by inhibiting FGFR2 and ERK1/2. Compared with normal individuals, nickel levels were increased in the serum of individuals with craniosynostosis. Further logistic and RCS analyses showed that nickel was an independent risk factor for craniosynostosis with a nonlinear correlation. Mediated analysis showed that FGFR2 mediated 30.13% of the association between nickel and craniosynostosis risk. Collectively, we demonstrate that early-life nickel exposure triggers the hypomethylation of FGFR2 and its binding to Sp1, thereby promoting the osteogenic differentiation of hMSCs by ERK1/2 signaling, leading to craniosynostosis.
Collapse
Affiliation(s)
- Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zuqiang Fu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; School of Public Health, Southeast University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jian Jiao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongmei Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
15
|
Shen M, Wang X, Chang X, Li Z, Jiang N, Han Z, Liu X. Circ_0007535 upregulates TGFBR1 to promote pulmonary fibrosis in TGF-β1-treated lung fibroblasts via sequestering miR-18a-5p. Autoimmunity 2023; 56:2259128. [PMID: 37724521 DOI: 10.1080/08916934.2023.2259128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
Circular RNAs (circRNAs) are functional molecules in all kinds of fibrosis diseases. The current study was performed for the exploration of circ_0007535 in pulmonary fibrosis. RNA levels for circ_0007535, miR-18a-5p, and transforming growth factor-β receptor 1 (TGFBR1) were assayed via a reverse transcription-quantitative polymerase chain reaction. Cell growth was determined by cell counting kit-8 assay for viability and ethynyl-2'-deoxyuridine assay for proliferation. Cell invasion and migration were examined by transwell assay and scratch assay. Western blot was performed for the detection of different proteins. Enzyme-linked immunosorbent assay was used to assess inflammatory response. The interaction analysis was conducted using dual-luciferase reporter assay, RNA immunoprecipitation assay, and biotin-coupled pull-down assay. Circ_0007535 was significantly upregulated by TGF-β1 in HFL1 cells. TGF-β1-induced proliferation, motility, ECM accumulation, and inflammatory reaction in HFL1 cells were alleviated by circ_0007535 knockdown. Circ_0007535 exhibited interaction with miR-18a-5p, and miR-18a-5p inhibition reversed all influences of circ_0007535 downregulation in TGF-β1-treated HFL1 cells. Circ_0007535 acted as a miR-18a-5p sponge to regulate the expression of downstream target TGFBR1. MiR-18a-5p induced TGFBR1 level inhibition to attenuate TGF-β1-mediated cell injury in HFL1 cells. This study evidenced that circ_0007535 facilitated TGF-β1-induced pulmonary fibrosis by depending on the absorption of miR-18a-5p to upregulate TGFBR1.
Collapse
Affiliation(s)
- Ming Shen
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Xinyi Wang
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Xiaofeng Chang
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Zhun Li
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Na Jiang
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Zhuoyue Han
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Xin Liu
- Department of Urology Surgery, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| |
Collapse
|
16
|
Hu Y, Li Z, Ren Y, Dai H. Association of family sequence similarity gene 13A gene polymorphism and interstitial lung disease susceptibility: A systematic review and meta-analysis. Mol Genet Genomic Med 2023; 11:e2279. [PMID: 37786320 PMCID: PMC10655521 DOI: 10.1002/mgg3.2279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Among present reports, the T/G allelic variation at the rs2609255 locus of the family sequence similarity gene 13A (FAM13A) was considerable associated with susceptibility to interstitial lung diseases (ILDs). In this study, we summarized relevant studies and applied a meta-analysis to explore whether the polymorphism of rs2609255 site of the FAM13A gene can be utilized to predict susceptibility to idiopathic pulmonary fibrosis (IPF) patients or rheumatoid arthritis-associated interstitial lung disease (RA-ILD) or silicosis patients in different populations for the first time. METHODS We compared the frequency of G allele on rs2609255 site of FAM13A between the control subjects and IPF or RA-ILD or silicosis patients from different races by using meta-analysis. Nine studies were involved in this meta-analysis, including five IPF studies, two RA-ILD studies, and two silicosis studies, and containing 14 subgroups. We conducted separate meta-analyses for different races. RESULTS In all individuals, a substantial link between the G allele of the FAM13A rs2609255 polymorphism and IPF (OR: 1.47, 95% CI: 1.33-1.63, p < 0.00001) was indicated. After dividing by ethnicity, the G allele was illustrated to be considerable correlation with IPF in Asian (OR: 2.63, 95% CI: 1.81-3.81, p < 0.00001) and with RA-ILD individuals (OR: 3.27, 95% CI: 1.26-8.49, p = 0.01). Conversely, there was no correlation with the G allele and IPF in European individuals (OR: 1.27, 95% CI: 0.89-1.83, p = 0.13) or silicosis in Chinese individuals (OR: 1.20, 95% CI: 0.99-1.46, p = 0.07). CONCLUSION This is the first meta-analysis that provides evidence that the rs2609255 of FAM13A might increase susceptibility to RA-ILD, and IPF especially in Asian but not in European individuals, and not be correlated with silicosis in Chinese individuals, which indicated the differences in susceptibility to disease by race were noteworthy.
Collapse
Affiliation(s)
- Yinan Hu
- National Center for Respiratory MedicineBeijingP.R. China
- National Clinical Research Center for Respiratory DiseasesBeijingP.R. China
- Institute of Respiratory Medicine, Chinese Academy of Medical SciencesBeijingP.R. China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingP.R. China
| | - Zhen Li
- China‐Japan Friendship HospitalBeijingP.R. China
- Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingP.R. China
| | - Yanhong Ren
- National Center for Respiratory MedicineBeijingP.R. China
- National Clinical Research Center for Respiratory DiseasesBeijingP.R. China
- Institute of Respiratory Medicine, Chinese Academy of Medical SciencesBeijingP.R. China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingP.R. China
| | - Huaping Dai
- National Center for Respiratory MedicineBeijingP.R. China
- National Clinical Research Center for Respiratory DiseasesBeijingP.R. China
- Institute of Respiratory Medicine, Chinese Academy of Medical SciencesBeijingP.R. China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingP.R. China
| |
Collapse
|
17
|
Gerokonstantis DT, Mantzourani C, Gkikas D, Wu KC, Hoang HN, Triandafillidi I, Barbayianni I, Kanellopoulou P, Kokotos AC, Moutevelis-Minakakis P, Aidinis V, Politis PK, Fairlie DP, Kokotos G. N-(2-Aminophenyl)-benzamide Inhibitors of Class I HDAC Enzymes with Antiproliferative and Antifibrotic Activity. J Med Chem 2023; 66:14357-14376. [PMID: 37795958 DOI: 10.1021/acs.jmedchem.3c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) have received special attention as novel anticancer agents. Among various types of synthetic inhibitors, benzamides constitute an important class, and one is an approved drug (chidamide). Here, we present a novel class of HDAC inhibitors containing the N-(2-aminophenyl)-benzamide functionality as the zinc-binding group linked to various cap groups, including the amino acids pyroglutamic acid and proline. We have identified benzamides that inhibit HADC1 and HDAC2 at nanomolar concentrations, with antiproliferative activity at micromolar concentrations against A549 and SF268 cancer cell lines. Docking studies shed light on the mode of binding of benzamide inhibitors to HDAC1, whereas cellular analysis revealed downregulated expression of EGFR mRNA and protein. Two benzamides were investigated in a mouse model of bleomycin-induced pulmonary fibrosis, and both showed efficacy on a preventative dosing schedule. N-(2-Aminophenyl)-benzamide inhibitors of class I HDACs might lead to new approaches for treating fibrotic disorders.
Collapse
Affiliation(s)
- Dimitrios Triantafyllos Gerokonstantis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Dimitrios Gkikas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Kai-Chen Wu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Huy N Hoang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ierasia Triandafillidi
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Ilianna Barbayianni
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Athens 16672, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Athens 16672, Greece
| | - Alexandros C Kokotos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Panagiota Moutevelis-Minakakis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Athens 16672, Greece
| | - Panagiotis K Politis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- School of Medicine, European University Cyprus, Nicosia 1516, Cyprus
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
18
|
Pokhreal D, Crestani B, Helou DG. Macrophage Implication in IPF: Updates on Immune, Epigenetic, and Metabolic Pathways. Cells 2023; 12:2193. [PMID: 37681924 PMCID: PMC10486697 DOI: 10.3390/cells12172193] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease of unknown etiology with a poor prognosis. It is a chronic and progressive disease that has a distinct radiological and pathological pattern from common interstitial pneumonia. The use of immunosuppressive medication was shown to be completely ineffective in clinical trials, resulting in years of neglect of the immune component. However, recent developments in fundamental and translational science demonstrate that immune cells play a significant regulatory role in IPF, and macrophages appear to be among the most crucial. These highly plastic cells generate multiple growth factors and mediators that highly affect the initiation and progression of IPF. In this review, we will provide an update on the role of macrophages in IPF through a systemic discussion of various regulatory mechanisms involving immune receptors, cytokines, metabolism, and epigenetics.
Collapse
Affiliation(s)
- Deepak Pokhreal
- Physiopathologie et Epidémiologie des Maladies Respiratoires, Inserm U1152, UFR de Médecine, Université Paris Cité, 75018 Paris, France
| | - Bruno Crestani
- Physiopathologie et Epidémiologie des Maladies Respiratoires, Inserm U1152, UFR de Médecine, Université Paris Cité, 75018 Paris, France
- FHU APOLLO, Service de Pneumologie A, Hôpital Bichat, Assistance Publique des Hôpitaux de Paris, 75877 Paris, France
| | - Doumet Georges Helou
- Physiopathologie et Epidémiologie des Maladies Respiratoires, Inserm U1152, UFR de Médecine, Université Paris Cité, 75018 Paris, France
| |
Collapse
|
19
|
Dsouza NN, Alampady V, Baby K, Maity S, Byregowda BH, Nayak Y. Thalidomide interaction with inflammation in idiopathic pulmonary fibrosis. Inflammopharmacology 2023; 31:1167-1182. [PMID: 36966238 PMCID: PMC10039777 DOI: 10.1007/s10787-023-01193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/04/2023] [Indexed: 03/27/2023]
Abstract
The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-β (TGF-β) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-β, interleukins (IL-6 and IL-1β), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-β/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.
Collapse
Affiliation(s)
- Nikitha Naomi Dsouza
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varun Alampady
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bharath Harohalli Byregowda
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
20
|
Liu Y, Sun W, Shen N, Hao W, Xin H, Che F, Cui Y. Network pharmacology and molecular docking combined with widely targeted metabolomics to elucidate the potential compounds and targets of Euphorbia helioscopia seeds for the treatment of pulmonary fibrosis. Comput Biol Med 2023; 160:107007. [PMID: 37150086 DOI: 10.1016/j.compbiomed.2023.107007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The whole herb of Euphorbia helioscopia has been traditionally used for treating pulmonary tuberculosis, malaria, warts, lung cancer and bacillary dysentery for a long time in China. However, E. helioscopia seeds are often discarded and its medicinal value is often ignored, resulting in a waste of resources. METHOD In this work, widely targeted metabolomics based on UPLC-ESI-QTRAP-MS/MS methods and metware database (MWDB) were firstly used to identify the chemical compositions of EHS. Besides, network pharmacology, molecular docking and molecular dynamics simulation were performed for elucidating the potential compounds and targets of E. helioscopia seeds for the treatment of pulmonary fibrosis via common database (like TCMSP, Genecards, DAVID, STRING) and common software (like Sybyl, Cytoscape, Pymol and Schrödinger). RESULT The results of widely targeted metabolomics showed 231 compounds including 12 categories were identified. The highest content compositions are lipids (33.89%) followed by amino acids and derivatives (21.78%), nucleotides and derivatives (15.73%), as well as the content of functional ingredients like phenolic acids (7.33%), alkaloids (7.03%) and flavonoids (4.51%) are relatively high. Besides, the results of network pharmacology and molecular docking showed that EHS presented anti-pulmonary fibrosis medicinal value through multi-ingredients, multi-targets and multi-pathways approach. Key ingredients including 9-Hydroxy-12-oxo-15(Z)-octadecenoic acid, Nordihydrocapsiate, 1-O-Salicyl-d-glucose, 9-(Arabinosyl)hypoxanthine, Xanthosine and Galangin-7-O-glucoside. Key targets including SRC, HSP90AA1, AKT1, EGFR, JUN, EP300 and VEGFA, and key signaling pathways mainly related to AGE-RAGE, EGFR tyrosine kinase inhibitor resistance, VEGF and HIF-1 signaling pathway. Molecular dynamics simulation showed that HSP90AA1 and 9-Hydroxy-12-oxo-15(Z)-octadecenoic complex (with the highest docking score) have a stable combination effect. CONCLUSION In conclusion, this study revealed the chemical compositions of EHS and its anti-pulmonary fibrosis medicinal effect for the first time, it will provide scientific insight for the development of EHS as medicinal resource.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Wanqing Sun
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Wenhua Hao
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Fengyuan Che
- Central Lab and Neurology Department of Linyi People's Hospital, Linyi, 276000, China.
| | - Yulei Cui
- Central Lab and Neurology Department of Linyi People's Hospital, Linyi, 276000, China; School of Medicine, Linyi University, Linyi, 276000, Shandong, China.
| |
Collapse
|
21
|
Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics (Basel) 2022; 12:diagnostics12123107. [PMID: 36553114 PMCID: PMC9777399 DOI: 10.3390/diagnostics12123107] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare disease of the lung with a largely unknown etiology and a poor prognosis. Intriguingly, forms of familial pulmonary fibrosis (FPF) have long been known and linked to specific genetic mutations. There is little evidence of the possible role of genetics in the etiology of sporadic IPF. We carried out a non-systematic, narrative literature review aimed at describing the main known genetic and epigenetic mechanisms that are involved in the pathogenesis and prognosis of IPF and FPF. In this review, we highlighted the mutations in classical genes associated with FPF, including those encoding for telomerases (TERT, TERC, PARN, RTEL1), which are also found in about 10-20% of cases of sporadic IPF. In addition to the Mendelian forms, mutations in the genes encoding for the surfactant proteins (SFTPC, SFTPA1, SFTPA2, ABCA3) and polymorphisms of genes for the mucin MUC5B and the Toll-interacting protein TOLLIP are other pathways favoring the fibrogenesis that have been thoroughly explored. Moreover, great attention has been paid to the main epigenetic alterations (DNA methylation, histone modification and non-coding RNA gene silencing) that are emerging to play a role in fibrogenesis. Finally, a gaze on the shared mechanisms between cancer and fibrogenesis, and future perspectives on the genetics of pulmonary fibrosis have been analyzed.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Chiara Pesenti
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Laura Fontana
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
22
|
Evaluation of Proteasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091543. [PMID: 35563849 PMCID: PMC9099509 DOI: 10.3390/cells11091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, and it has a worse prognosis than non-small cell lung cancer. The pathomechanism of IPF is not fully understood, but it has been suggested that repeated microinjuries of epithelial cells induce a wound healing response, during which fibroblasts differentiate into myofibroblasts. These activated myofibroblasts express α smooth muscle actin and release extracellular matrix to promote matrix deposition and tissue remodeling. Under physiological conditions, the remodeling process stops once wound healing is complete. However, in the lungs of IPF patients, myofibroblasts re-main active and deposit excess extracellular matrix. This leads to the destruction of alveolar tissue, the loss of lung elastic recoil, and a rapid decrease in lung function. Some evidence has indicated that proteasomal inhibition combats fibrosis by inhibiting the expressions of extracellular matrix proteins and metalloproteinases. However, the mechanisms by which proteasome inhibitors may protect against fibrosis are not known. This review summarizes the current research on proteasome inhibitors for pulmonary fibrosis, and provides a reference for whether proteasome inhibitors have the potential to become new drugs for the treatment of pulmonary fibrosis.
Collapse
|
23
|
Bolourani S, Sari E, Brenner M, Wang P. The role of eCIRP in bleomycin-induced pulmonary fibrosis in mice. PLoS One 2022; 17:e0266163. [PMID: 35377906 PMCID: PMC8979429 DOI: 10.1371/journal.pone.0266163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE AND DESIGN We examined the role of eCIRP in the pathogenesis of bleomycin-induced pulmonary fibrosis (PF). MATERIAL AND METHODS Publicly available gene expression omnibus datasets were analyzed for the expression of CIRP in lung samples from patients with PF. Wild type (WT) or CIRP-/- mice received daily injections of 10 μg/g bleomycin for 10 days. A subset of bleomycin-injected WT mice was treated with the eCIRP antagonist C23 (8 μg/g/day) from day 10 to day 19. At three weeks, transthoracic echocardiography was performed to measure the degree of pulmonary hypertension, and lung tissues were collected and analyzed for markers of fibrosis. RESULTS Analysis of the mRNA data of human lung samples showed a significant positive correlation between CIRP and α-smooth muscle actin (α-SMA), an important marker of fibrosis. Moreover, the expression of CIRP was higher in patients with acute exacerbation of PF than in patients with stable PF. CIRP-/- mice showed attenuated induction of α-SMA and collagens (Col1a1, Col3a1), reduced hydroxyproline content, decreased histological fibrosis scores, and improved pulmonary hypertension as compared to WT mice. WT mice treated with C23 also had significant attenuation of the above endpoint measure. CONCLUSIONS Our study demonstrates that eCIRP plays a key role in promoting the development of PF, and blocking eCIRP with C23 can significantly attenuate this process.
Collapse
Affiliation(s)
- Siavash Bolourani
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| | - Ezgi Sari
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| |
Collapse
|