1
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Abolfazli S, Ebrahimi N, Morabi E, Asgari Yazdi MA, Zengin G, Sathyapalan T, Jamialahmadi T, Sahebkar A. Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19. Curr Med Chem 2024; 31:3132-3148. [PMID: 37138436 DOI: 10.2174/0929867330666230502111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Nima Ebrahimi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Etekhar Morabi
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Gonçalves‐Pereira MH, Santiago L, Ravetti CG, Vassallo PF, de Andrade MVM, Vieira MS, de Fátima Souza de Oliveira F, Carobin NV, Li G, de Paula Sabino A, Nobre V, da Costa Santiago H. Dysfunctional phenotype of systemic and pulmonary regulatory T cells associate with lethal COVID-19 cases. Immunology 2023; 168:684-696. [PMID: 36349514 PMCID: PMC9877711 DOI: 10.1111/imm.13603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Severe cases of COVID-19 present hyperinflammatory condition that can be fatal. Little is known about the role of regulatory responses in SARS-CoV-2 infection. In this study, we evaluated the phenotype of regulatory T cells in the blood (peripheral blood mononuclear cell) and the lungs (broncho-alveolar) of adult patients with severe COVID-19 under invasive mechanical ventilation. Our results show important dynamic variation on Treg cells phenotype during COVID-19 with changes in number and functional parameters from the day of intubation (Day 1 of intensive care unit admission) to Day 7. We observed that compared with surviving patients, non-survivors presented lower numbers of Treg cells in the blood. In addition, lung Tregs of non-survivors also displayed higher PD1 and lower FOXP3 expressions suggesting dysfunctional phenotype. Further signs of Treg dysregulation were observed in non-survivors such as limited production of IL-10 in the lungs and higher production of IL-17A in the blood and in the lungs, which were associated with increased PD1 expression. These findings were also associated with lower pulmonary levels of Treg-stimulating factors like TNF and IL-2. Tregs in the blood and lungs are profoundly dysfunctional in non-surviving COVID-19 patients.
Collapse
Affiliation(s)
- Marcela Helena Gonçalves‐Pereira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Luciana Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Hospital das ClínicasUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Cecilia Gómez Ravetti
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Paula Frizera Vassallo
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Marcus Vinicius Melo de Andrade
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Mariana Sousa Vieira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | | | - Natália Virtude Carobin
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Guangzhao Li
- Department of MicrobiologyImmunology and Tropical Medicine, The George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Vandack Nobre
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
4
|
Miryan M, Moradi S, Soleimani D, Pasdar Y, Jangjoo A, Bagherniya M, Guest PC, Ashari S, Sahebkar A. The Potential Effect of Royal Jelly on Biomarkers Related to COVID-19 Infection and Severe Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:443-455. [PMID: 37378782 DOI: 10.1007/978-3-031-28012-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Royal jelly is a yellowish to white gel-like substance that is known as a "superfood" and consumed by queen bees. There are certain compounds in royal jelly considered to have health-promoting properties, including 10-hydroxy-2-decenoic acid and major royal jelly proteins. Royal jelly has beneficial effects on some disorders such as cardiovascular disease, dyslipidemia, multiple sclerosis, and diabetes. Antiviral, anti-inflammatory, antibacterial, antitumor, and immunomodulatory properties have been ascribed to this substance. This chapter describes the effects of royal jelly on COVID-19 disease.
Collapse
Affiliation(s)
- Mahsa Miryan
- Student Research Committee, Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Moradi
- Student Research Committee, Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Pasdar
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Jangjoo
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sorour Ashari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Guest PC, Kesharwani P, Butler AE, Sahebkar A. The COVID-19 Pandemic: SARS-CoV-2 Structure, Infection, Transmission, Symptomology, and Variants of Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:3-26. [PMID: 37378759 DOI: 10.1007/978-3-031-28012-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since it was first detected in December 2019, the COVID-19 pandemic has spread across the world and affected virtually every country and territory. The pathogen driving this pandemic is SARS-CoV-2, a positive-sense single-stranded RNA virus which is primarily transmissible though the air and can cause mild to severe respiratory infections in humans. Within the first year of the pandemic, the situation worsened with the emergence of several SARS-CoV-2 variants. Some of these were observed to be more virulent with varying capacities to escape the existing vaccines and were, therefore, denoted as variants of concern. This chapter provides a general overview of the course of the COVID-19 pandemic up to April 2022 with a focus on the structure, infection, transmission, and symptomology of the SARS-CoV-2 virus. The main objectives were to investigate the effects of the variants of concern on the trajectory of the virus and to highlight a potential pathway for coping with the current and future pandemics.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, WA, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|