1
|
El Henafy HMA, Alghamdi MA, Zafrah H, Al-Zahrani NS, El Nasha EM. Impact of gold nanoparticle exposure on the development pancreas and kidney: Dose-dependent;oxidative stress; miRNA expression and Nrf2/ARE Signalling. Int Immunopharmacol 2025; 152:114409. [PMID: 40073816 DOI: 10.1016/j.intimp.2025.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND The widespread use of gold nanoparticles (AuNPs) in consumer and medical products necessitates investigation into their potential developmental toxicity. AIM OF THE WORK This study investigated the systemic effects of in-utero AuNP exposure on developing male rat offspring, focusing on metabolic, organ-specific, and cellular pathways. MATERIALS AND METHODS Pregnant rats were intravenously administered AuNPs (5, 10, 15, or 20 mg/kg) or saline from gestational day 1 to birth. Male offspring were assessed at postnatal day 60 through biochemical and genetic analyses in the pancreas, kidney tissues, plasma analysis, and pancreatic histology. RESULTS No mortality or clinical abnormalities occurred. However, in-utero AuNP high-dose exposure induced pancreatic abnormalities, including reduced endocrine function and morphological damage. Higher doses disrupt body and organ growth, leading to metabolic dysregulation (elevated glucose, amylase, lipase, reduced insulin), impairing glucose homeostasis, and pancreatic dysfunction. Compromised kidney function (elevated urea, creatinine, BUN, electrolyte imbalances), increased oxidative stress, and dysregulated inflammatory responses (altered TNF-α, IL-6, IL-10, Nrf2, NF-κB) were also observed. AuNPs induced apoptosis (increased caspase-3, decreased Bcl-2, and altered COX-2), as well as dysregulation of mRNA and miRNA expression. Affected genes included those related to stress and inflammation (p-p38, NOX4, iNOS, NF-κB, Akt, mTOR, Anxa3) and cellular survival signalling (miR-21, miR-382, miR-34a, miR-223). Pancreatic histopathology revealed dose-dependent tissue damage. CONCLUSION These results indicate that AuNPs, especially at higher doses, disrupt multiple biological processes, inducing metabolic, renal, and pancreatic dysfunction via oxidative stress, inflammation, and cellular dysregulation. Further mechanistic research is crucial to establish safe applications, highlighting the need for biosafety assessments guided by green toxicology principles.
Collapse
Affiliation(s)
- Hanan M A El Henafy
- Technology of Medical Laboratory Department, Faculty of Technology of Applied Health Sciences, October 6 University, Giza 3230911, Egypt.
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia.
| | - Hind Zafrah
- Department of Physiology, College of Medicine, King Khalid University, Abha (62529), Saudi Arabia.
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha (62529), Saudi Arabia.
| | - Eman Mohamad El Nasha
- Department of Anatomy, College Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
2
|
Barreto Fernandes TF, Pilotto JH, Cezar PA, Côrtes FH, Morgado MG, Giacoia-Gripp CBW, De Sá NBR, Da Silva Cazote A, Neves AF, Quintana MDSB, Diniz Ribeiro MP, Cardoso SW, Veloso VG, Grinsztejn B, De Almeida DV. Modulation of RAAS receptors and miRNAs in COVID-19: implications for disease severity, immune response, and potential therapeutic targets. BMC Infect Dis 2025; 25:399. [PMID: 40128651 PMCID: PMC11934810 DOI: 10.1186/s12879-025-10803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
The SARS-CoV-2 spike protein interacts with ACE2, a key receptor within the renin-angiotensin-aldosterone system (RAAS), which plays a critical role in maintaining vascular homeostasis, regulating blood pressure, and modulating inflammation. An observational study analyzed the gene expression profiles of RAAS receptors and associated miRNAs in 88 hospitalized COVID-19 patients and 20 healthy controls, comparing the acute and post-acute phases to assess their impact on disease severity and recovery. Our findings revealed an association between reduced MAS1 expression in both advanced age (P = 0.03) and the need for oxygen supplementation (P = 0.04). Additionally, reduced ACE expression was associated with worse mortality outcomes (P = 0.01). Notably, ACE2 and TMPRSS2 expression was significantly decreased (P < 0.0001) in individuals requiring oxygen supplementation and in those with diabetes mellitus during both the acute and post-COVID-19 phases, further highlighting the impact of these conditions on RAAS. The miRNA analysis revealed significant downregulation of miR-200c (P = 0.005), miR-let-7 (P = 0.01), and miR-122 (P = 0.03) in acute-phase COVID-19 patients. This dysregulation contributes to the inflammatory response and highlights the interaction between viral entry and immune regulation. These results underscore the significance of the ACE2/Ang-(1-7)/MAS1 axis in inflammation regulation and suggest that targeting this pathway may have therapeutic potential. Our study provides valuable insights into the molecular mechanisms of COVID-19 pathogenesis and identifies the modulation of RAAS receptors and miRNAs as promising biomarkers for disease severity and potential therapeutic interventions. CLINICAL TRIAL: Not applicable.
Collapse
Affiliation(s)
| | - Jose Henrique Pilotto
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Priscila Alves Cezar
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Fernanda Heloise Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Mariza G Morgado
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | | | | | - Andressa Da Silva Cazote
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | - Agatha Freixinho Neves
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil
| | | | | | | | - Valdiléa G Veloso
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brasil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brasil
| | | |
Collapse
|
3
|
Nedaeinia R, Ranjbar M, Goli M, Etebari M, Safabakhsh S, Bayram H, Ferns GA, Tehrani HM, Salehi R. Medicinal Chemistry of Antisense Oligonucleotides for Therapeutic Use in SARS-CoV-2: Design Strategies and Challenges for Targeted Delivery. Curr Med Chem 2025; 32:1144-1167. [PMID: 38860908 DOI: 10.2174/0109298673300236240529195835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The evolution of novel Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) strains with greater degrees of infectivity, resistance to vaccine-induced acquired immunity, and more severe morbidity have contributed to the recent spread of COVID-19. In light of this, novel therapeutic alternatives with improved effectiveness and fewer side effects have become a necessity. Despite many new or repurposed antiviral agents recommended for Coronavirus disease (COVID-19) therapy, this objective remains unfulfilled. Under these circumstances, the scientific community holds the significant responsibility to develop classes of novel therapeutic modalities to combat SARS-CoV-2 with the least harmful side effects. OBJECTIVE Antisense Oligonucleotides (ASOs) are short single-stranded oligonucleotides that allow the specific targeting of RNA, leading to its degradation. They may also prevent cellular factors or machinery from binding to the target RNA. It is possible to improve the pharmacokinetics and pharmacodynamics of ASOs by chemical modification or bioconjugation, which may provide conditions for customization of a particular clinical target. This study aimed to outline the potential use of ASOs in the treatment of COVID-19 disease, along with the use of antisense stabilization and transfer methods, as well as future challenges and limitations. METHODS We have reviewed the structure and properties of ASOs containing nucleobase, sugar, or backbone modifications, and provided an overview of the therapeutic potential, delivery challenges, and strategies of ASOs in the treatment of COVID-19. RESULTS The first-line therapy for COVID-19-infected individuals, as well as the development of oligonucleotide- based drugs, warrants further investigation. Chemical changes in the oligonucleotide structure can affect the biological processes. These chemical alterations may lead to enhanced potency, while changing the pharmacokinetics and pharmacodynamics. CONCLUSION ASOs can be designed to target both coding and non-coding regions of the viral genome to disrupt or completely degrade the genomic RNA and thereby eliminate SARS-CoV-2. They may be very effective in areas, where vaccine distribution is challenging, and they may be helpful for future coronavirus pandemics.
Collapse
Affiliation(s)
- Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Ranjbar
- Department of Materials Engineering, Advanced Materials Research Center, Islamic Azad University, Najafabad Branch, Najafabad, Iran
- Vice Chancellery for Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Mahmoud Etebari
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, Guam, 96910, USA
| | - Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), School of Medicine, Koç University, Istanbul, Turkey
- Department of Pulmonary Medicine, School of Medicine, Koç University, Istanbul, Turkey
| | - Gordon A Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Helena Moradiyan Tehrani
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Semnan, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Al Saihati HA, Dessouky AA, Salim RF, Elgohary I, El-Sherbiny M, Ali FEM, Moustafa MMA, Shaheen D, Forsyth NR, Badr OA, Ebrahim N. MSC-extracellular vesicle microRNAs target host cell-entry receptors in COVID-19: in silico modeling for in vivo validation. Stem Cell Res Ther 2024; 15:316. [PMID: 39304926 PMCID: PMC11416018 DOI: 10.1186/s13287-024-03889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has created a global pandemic with significant morbidity and mortality. SARS-CoV-2 primarily infects the lungs and is associated with various organ complications. Therapeutic approaches to combat COVID-19, including convalescent plasma and vaccination, have been developed. However, the high mutation rate of SARS-CoV-2 and its ability to inhibit host T-cell activity pose challenges for effective treatment. Mesenchymal stem cells (MSCs) and their extracellular vesicles (MSCs-EVs) have shown promise in COVID-19 therapy because of their immunomodulatory and regenerative properties. MicroRNAs (miRNAs) play crucial regulatory roles in various biological processes and can be manipulated for therapeutic purposes. OBJECTIVE We aimed to investigate the role of lyophilized MSC-EVs and their microRNAs in targeting the receptors involved in SARS-CoV-2 entry into host cells as a strategy to limit infection. In silico microRNA prediction, structural predictions of the microRNA-mRNA duplex, and molecular docking with the Argonaut protein were performed. METHODS Male Syrian hamsters infected with SARS-CoV-2 were treated with human Wharton's jelly-derived Mesenchymal Stem cell-derived lyophilized exosomes (Bioluga Company)via intraperitoneal injection, and viral shedding was assessed. The potential therapeutic effects of MSCs-EVs were measured via histopathology of lung tissues and PCR for microRNAs. RESULTS The results revealed strong binding potential between miRNA‒mRNA duplexes and the AGO protein via molecular docking. MSCs-EVs reduced inflammation markers and normalized blood indices via the suppression of viral entry by regulating ACE2 and TMPRSS2 expression. MSCs-EVs alleviated histopathological aberrations. They improved lung histology and reduced collagen fiber deposition in infected lungs. CONCLUSION We demonstrated that MSCs-EVs are a potential therapeutic option for treating COVID-19 by preventing viral entry into host cells.
Collapse
Affiliation(s)
- Hajer A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Hafar Al-Batin, Saudi Arabia.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Islam Elgohary
- Researcher of Pathology, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nicholas Robert Forsyth
- PhD Molecular Genetics, Vice Principals' Office, Kings College, University of Aberdeen, Aberdeen, AB24 3FX, UK
- Cell and Tissue Engineering, School of pharmacy and bioengineering, Keele University, Keele, UK
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt.
| | - Nesrine Ebrahim
- Department of Medical Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt.
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt.
- Faculty of Medicine, Benha National University, Al Obour City, Egypt.
- Cell and Tissue Engineering, School of pharmacy and bioengineering, Keele University, Keele, UK.
| |
Collapse
|
5
|
Sabbaghian M, Gheitasi H, Fadaee M, Javadi Henafard H, Tavakoli A, Shekarchi AA, Poortahmasebi V. Human cytomegalovirus microRNAs: strategies for immune evasion and viral latency. Arch Virol 2024; 169:157. [PMID: 38969819 DOI: 10.1007/s00705-024-06080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/17/2024] [Indexed: 07/07/2024]
Abstract
Viruses use various strategies and mechanisms to deal with cells and proteins of the immune system that form a barrier against infection. One of these mechanisms is the encoding and production of viral microRNAs (miRNAs), whose function is to regulate the gene expression of the host cell and the virus, thus creating a suitable environment for survival and spreading viral infection. miRNAs are short, single-stranded, non-coding RNA molecules that can regulate the expression of host and viral proteins, and due to their non-immunogenic nature, they are not eliminated by the cells of the immune system. More than half of the viral miRNAs are encoded and produced by Orthoherpesviridae family members. Human cytomegalovirus (HCMV) produces miRNAs that mediate various processes in infected cells to contribute to HCMV pathogenicity, including immune escape, viral latency, and cell apoptosis. Here, we discuss which cellular and viral proteins or cellular pathways and processes these mysterious molecules target to evade immunity and support viral latency in infected cells. We also discuss current evidence that their function of bypassing the host's innate and adaptive immune system is essential for the survival and multiplication of the virus and the spread of HCMV infection.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ahmad S, Singh AP, Bano N, Raza K, Singh J, Medigeshi GR, Pandey R, Gautam HK. Integrative analysis discovers Imidurea as dual multitargeted inhibitor of CD69, CD40, SHP2, lysozyme, GATA3, cCBL, and S-cysteinase from SARS-CoV-2 and M. tuberculosis. Int J Biol Macromol 2024; 270:132332. [PMID: 38768914 DOI: 10.1016/j.ijbiomac.2024.132332] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Two of the deadliest infectious diseases, COVID-19 and tuberculosis (TB), have combined to establish a worldwide pandemic, wreaking havoc on economies and claiming countless lives. The optimised, multitargeted medications may diminish resistance and counter them together. Based on computational expression studies, 183 genes were co-expressed in COVID-19 and TB blood samples. We used the multisampling screening algorithms on the top ten co-expressed genes (CD40, SHP2, Lysozyme, GATA3, cCBL, SIVmac239 Nef, CD69, S-adenosylhomocysteinase, Chemokine Receptor-7, and Membrane Protein). Imidurea is a multitargeted inhibitor for COVID-19 and TB, as confirmed by extensive screening and post-filtering utilising MM\GBSA algorithms. Imidurea has shown docking and MM\GBSA scores of -8.21 to -4.75 Kcal/mol and -64.16 to -29.38 Kcal/mol, respectively. The DFT, pharmacokinetics, and interaction patterns suggest that Imidurea may be a drug candidate, and all ten complexes were tested for stability and bond strength using 100 ns for all MD atoms. The modelling findings showed the complex's repurposing potential, with a cumulative deviation and fluctuation of <2 Å and significant intermolecular interaction, which validated the possibilities. Finally, an inhibition test was performed to confirm our in-silico findings on SARS-CoV-2 Delta variant infection, which was suppressed by adding imidurea to Vero E6 cells after infection.
Collapse
Affiliation(s)
- Shaban Ahmad
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.
| | - Akash Pratap Singh
- Division of Immunology and Infectious Disease Biology, Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India; Academy of Innovative and Scientific Research (AcSIR), Ghaziabad 201002, India; Department of Botany, Maitreyi College, University of Delhi, New Delhi 110021, India.
| | - Nagmi Bano
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.
| | - Khalid Raza
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India.
| | - Janmejay Singh
- Bioassay Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| | - Guruprasad R Medigeshi
- Bioassay Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.
| | - Rajesh Pandey
- Academy of Innovative and Scientific Research (AcSIR), Ghaziabad 201002, India; Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE), Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi 110007, India.
| | - Hemant K Gautam
- Division of Immunology and Infectious Disease Biology, Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India; Academy of Innovative and Scientific Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Macha NO, Komarasamy TV, Harun S, Adnan NAA, Hassan SS, Balasubramaniam VRMT. Cross Talk between MicroRNAs and Dengue Virus. Am J Trop Med Hyg 2024; 110:856-867. [PMID: 38579704 PMCID: PMC11066346 DOI: 10.4269/ajtmh.23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 04/07/2024] Open
Abstract
Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.
Collapse
Affiliation(s)
- Nur Omar Macha
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
8
|
Awoyemi T, Jiang S, Rahbar M, Logentherian P, Collett G, Zhang W, Cribbs A, Cerdeira S, Vatish M. MicroRNA analysis of medium/large placenta extracellular vesicles in normal and preeclampsia pregnancies. Front Cardiovasc Med 2024; 11:1371168. [PMID: 38628314 PMCID: PMC11018924 DOI: 10.3389/fcvm.2024.1371168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Background Preeclampsia (PE) is a hypertensive disorder of pregnancy, affecting 2%-8% of pregnancies worldwide, and is the leading cause of adverse maternal and fetal outcomes. The disease is characterized by oxidative and cellular stress and widespread endothelial dysfunction. While the precise mechanisms are not entirely understood, the pathogenesis of PE is closely linked to placental dysfunction and, to some extent, syncytiotrophoblast extracellular vesicle release (STB-EVs). These vesicles can be divided into the less well-studied medium/large EVs (220-1,000 nm) released in response to stress and small EVs (<220 nm) released as a component of intercellular communication. The previously described production of m/lSTB-EVs in response to cellular stress combined with the overwhelming occurrence of cellular and oxidative stress in PE prompted us to evaluate the microRNAome of PE m/lSTB-EVs. We hypothesized that the microRNAome profile of m/lSTB-EVs is different in PE compared to normal pregnancy (NP), which might permit the identification of potential circulating biomarkers not previously described in PE. Methods/study design We performed small RNA sequencing on medium/large STB-EVs isolated from PE and NP placentae using dual-lobe ex vivo perfusion. The sequencing data was bioinformatically analyzed to identify differentially regulated microRNAs. Identified microRNAs were validated with quantitative PCR analysis. We completed our analysis by performing an in-silico prediction of STB-EV mechanistic pathways. Results We identified significant differences between PE and NP in the STB-EVs micro ribonucleic acid (microRNA) profiles. We verified the differential expression of hsa-miR-193b-5p, hsa-miR-324-5p, hsa-miR-652-3p, hsa-miR-3196, hsa-miR-9-5p, hsa-miR-421, and hsa-miR-210-3p in the medium/large STB-EVs. We also confirmed the differential abundance of hsa-miR-9-5p in maternal serum extracellular vesicles (S EVs). In addition, we integrated the results of these microRNAs into the previously published messenger RNA (mRNA) data to better understand the relationship between these biomolecules. Conclusions We identified a differentially regulated micro-RNA, hsa-miR-9-5p, that may have biomarker potential and uncovered mechanistic pathways that may be important in the pathophysiology of PE.
Collapse
Affiliation(s)
- Toluwalase Awoyemi
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Shuhan Jiang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maryam Rahbar
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Prasanna Logentherian
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Gavin Collett
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Wei Zhang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Adam Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sofia Cerdeira
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Manu Vatish
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Narayanan SA, Jamison DA, Guarnieri JW, Zaksas V, Topper M, Koutnik AP, Park J, Clark KB, Enguita FJ, Leitão AL, Das S, Moraes-Vieira PM, Galeano D, Mason CE, Trovão NS, Schwartz RE, Schisler JC, Coelho-Dos-Reis JGA, Wurtele ES, Beheshti A. A comprehensive SARS-CoV-2 and COVID-19 review, Part 2: host extracellular to systemic effects of SARS-CoV-2 infection. Eur J Hum Genet 2024; 32:10-20. [PMID: 37938797 PMCID: PMC10772081 DOI: 10.1038/s41431-023-01462-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
COVID-19, the disease caused by SARS-CoV-2, has caused significant morbidity and mortality worldwide. The betacoronavirus continues to evolve with global health implications as we race to learn more to curb its transmission, evolution, and sequelae. The focus of this review, the second of a three-part series, is on the biological effects of the SARS-CoV-2 virus on post-acute disease in the context of tissue and organ adaptations and damage. We highlight the current knowledge and describe how virological, animal, and clinical studies have shed light on the mechanisms driving the varied clinical diagnoses and observations of COVID-19 patients. Moreover, we describe how investigations into SARS-CoV-2 effects have informed the understanding of viral pathogenesis and provide innovative pathways for future research on the mechanisms of viral diseases.
Collapse
Affiliation(s)
- S Anand Narayanan
- COVID-19 International Research Team, Medford, MA, 02155, USA.
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, 32301, USA.
| | - David A Jamison
- COVID-19 International Research Team, Medford, MA, 02155, USA
| | - Joseph W Guarnieri
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Michael Topper
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Departments of Oncology and Medicine and the Sidney Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrew P Koutnik
- Human Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, FL, 32502, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, 93015, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Kevin B Clark
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Cures Within Reach, Chicago, IL, 60602, USA
- Campus and Domain Champions Program, Multi-Tier Assistance, Training, and Computational Help (MATCH) Track, National Science Foundation's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS), Philadelphia, PA, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers, New York, NY, 10016, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, 94305, CA, USA
| | - Francisco J Enguita
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Ana Lúcia Leitão
- MEtRICs, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Saswati Das
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Mannohar Lohia Hospital, New Delhi, 110001, India
| | - Pedro M Moraes-Vieira
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC) and Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Diego Galeano
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nídia S Trovão
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert E Schwartz
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan C Schisler
- COVID-19 International Research Team, Medford, MA, 02155, USA
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jordana G A Coelho-Dos-Reis
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Basic and Applied Virology Lab, Department of Microbiology, Institute for Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Bioinformatics and Computational Biology Program, Center for Metabolomics, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, 02155, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Santa Clara, CA, 94035, USA.
| |
Collapse
|
10
|
Panda M, Kalita E, Singh S, Kumar K, Prajapati VK. Nanobody-peptide-conjugate (NPC) for passive immunotherapy against SARS-CoV-2 variants of concern (VoC): a prospective pan-coronavirus therapeutics. Mol Divers 2023; 27:2577-2603. [PMID: 36400898 PMCID: PMC9676808 DOI: 10.1007/s11030-022-10570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
The COVID-19 crisis, incited by the zoonotic SARS-CoV-2 virus, has quickly escalated into a catastrophic public health issue and a grave threat to humankind owing to the advent of mutant viruses. Multiple pharmaceutical therapies or biologics envision stopping the virus from spreading further; however, WHO has voiced concerns about the variants of concern (VoCs) inability to respond. Nanobodies are a new class of antibody mimics with binding affinity and specificity similar to classical mAbs, as well as the privileges of a small molecular weight, ease of entry into solid tissues, and binding cryptic epitopes of the antigen. Herein, we investigated multiple putative anti-SARS-CoV-2 nanobodies targeting the Receptor binding domain of the WHO-listed SARS-CoV-2 variants of concern using a comprehensive computational immunoinformatics methodology. With affinity maturation via alanine scanning mutagenesis, we remodeled an ultrapotent nanobody with substantial breadth and potency, exhibiting pico-molar binding affinities against all the VoCs. An antiviral peptide with specificity for ACE-2 receptors was affixed to make it multispecific and discourage viral entry. Collectively, we constructed a broad-spectrum therapeutic biparatopic nanobody-peptide conjugate (NPC) extending coverage to SARS-CoV-2 VoCs RBDs. We PEGylated the biparatopic construct with 20kD maleimide-terminated PEG (MAL-(PEG)n-OMe) to improve its clinical efficacy limiting rapid renal clearance, and performed in silico cloning to facilitate future experimental studies. Our findings suggest that combining biparatopic nanobody conjugate with standard treatment may be a promising bivariate tool for combating viral entry during COVID-19 illness.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ketan Kumar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
11
|
Cunningham CL, Frye CJ, Makowski JA, Kensinger AH, Shine M, Milback EJ, Lackey PE, Evanseck JD, Mihailescu MR. Effect of the SARS-CoV-2 Delta-associated G15U mutation on the s2m element dimerization and its interactions with miR-1307-3p. RNA (NEW YORK, N.Y.) 2023; 29:1754-1771. [PMID: 37604684 PMCID: PMC10578481 DOI: 10.1261/rna.079627.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023]
Abstract
The s2m, a highly conserved 41-nt hairpin structure in the SARS-CoV-2 genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and the subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p. Bioinformatics analysis of the GISAID database targeting the s2m element reveals a >99% correlation of a single nucleotide mutation at the 15th position (G15U) in Delta SARS-CoV-2. Based on 1H NMR spectroscopy assignments comparing the imino proton resonance region of s2m and the s2m G15U at 19°C, we show that the U15-A29 base pair closes, resulting in a stabilization of the upper stem without overall secondary structure deviation. Increased stability of the upper stem did not affect the chaperone activity of the viral N protein, as it was still able to convert the kissing dimers formed by s2m G15U into a stable duplex conformation, consistent with the s2m reference. However, we show that the s2m G15U mutation drastically impacts the binding of host miR-1307-3p. These findings demonstrate that the observed G15U mutation alters the secondary structure of s2m with subsequent impact on viral binding of host miR-1307-3p, with potential consequences on immune responses.
Collapse
Affiliation(s)
- Caylee L Cunningham
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Caleb J Frye
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Joseph A Makowski
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Adam H Kensinger
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Morgan Shine
- Department of Biochemistry and Chemistry, Westminster College, New Wilmington, Pennsylvania 16172, USA
| | - Ella J Milback
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Patrick E Lackey
- Department of Biochemistry and Chemistry, Westminster College, New Wilmington, Pennsylvania 16172, USA
| | - Jeffrey D Evanseck
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - Mihaela-Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| |
Collapse
|
12
|
Bauer AN, Majumdar N, Williams F, Rajput S, Pokhrel LR, Cook PP, Akula SM. MicroRNAs: Small but Key Players in Viral Infections and Immune Responses to Viral Pathogens. BIOLOGY 2023; 12:1334. [PMID: 37887044 PMCID: PMC10604607 DOI: 10.3390/biology12101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Since the discovery of microRNAs (miRNAs) in C. elegans in 1993, the field of miRNA research has grown steeply. These single-stranded non-coding RNA molecules canonically work at the post-transcriptional phase to regulate protein expression. miRNAs are known to regulate viral infection and the ensuing host immune response. Evolving research suggests miRNAs are assets in the discovery and investigation of therapeutics and diagnostics. In this review, we succinctly summarize the latest findings in (i) mechanisms underpinning miRNA regulation of viral infection, (ii) miRNA regulation of host immune response to viral pathogens, (iii) miRNA-based diagnostics and therapeutics targeting viral pathogens and challenges, and (iv) miRNA patents and the market landscape. Our findings show the differential expression of miRNA may serve as a prognostic biomarker for viral infections in regard to predicting the severity or adverse health effects associated with viral diseases. While there is huge market potential for miRNA technology, the novel approach of using miRNA mimics to enhance antiviral activity or antagonists to inhibit pro-viral miRNAs has been an ongoing research endeavor. Significant hurdles remain in terms of miRNA delivery, stability, efficacy, safety/tolerability, and specificity. Addressing these challenges may pave a path for harnessing the full potential of miRNAs in modern medicine.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Niska Majumdar
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Frank Williams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Smit Rajput
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
13
|
Hejenkowska ED, Mitash N, Donovan JE, Chandra A, Bertrand C, De Santi C, Greene CM, Mu F, Swiatecka-Urban A. TGF-β1 Inhibition of ACE2 Mediated by miRNA Uncovers Novel Mechanism of SARS-CoV-2 Pathogenesis. J Innate Immun 2023; 15:629-646. [PMID: 37579743 PMCID: PMC10601633 DOI: 10.1159/000533606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, utilizes receptor binding domain (RBD) of spike glycoprotein to interact with angiotensin (Ang)-converting enzyme 2 (ACE2). Altering ACE2 levels may affect entry of SARS-CoV-2 and recovery from COVID-19. Decreased cell surface density of ACE2 leads to increased local levels of Ang II and may contribute to mortality resulting from acute lung injury and fibrosis during COVID-19. Studies published early during the COVID-19 pandemic reported that people with cystic fibrosis (PwCF) had milder symptoms, compared to people without CF. This finding was attributed to elevated ACE2 levels and/or treatment with the high efficiency CFTR modulators. Subsequent studies did not confirm these findings reporting variable effects of CFTR gene mutations on ACE2 levels. Transforming growth factor (TGF)-β signaling is essential during SARS-CoV-2 infection and dominates the chronic immune response in severe COVID-19, leading to pulmonary fibrosis. TGF-β1 is a gene modifier associated with more severe lung disease in PwCF but its effects on the COVID-19 course in PwCF is unknown. To understand whether TGF-β1 affects ACE2 levels in the airway, we examined miRNAs and their gene targets affecting SARS-CoV-2 pathogenesis in response to TGF-β1. Small RNAseq and micro(mi)RNA profiling identified pathways uniquely affected by TGF-β1, including those associated with SARS-CoV-2 invasion, replication, and the host immune responses. TGF-β1 inhibited ACE2 expression by miR-136-3p and miR-369-5p mediated mechanism in CF and non-CF bronchial epithelial cells. ACE2 levels were higher in two bronchial epithelial cell models expressing the most common CF-causing mutation in CFTR gene F508del, compared to controls without the mutation. After TGF-β1 treatment, ACE2 protein levels were still higher in CF, compared to non-CF cells. TGF-β1 prevented the modulator-mediated rescue of F508del-CFTR function while the modulators did not prevent the TGF-β1 inhibition of ACE2 levels. Finally, TGF-β1 reduced the interaction between ACE2 and the recombinant spike RBD by lowering ACE2 levels and its binding to RBD. Our data demonstrate novel mechanism whereby TGF-β1 inhibition of ACE2 in CF and non-CF bronchial epithelial cells may modulate SARS-CoV-2 pathogenicity and COVID-19 severity. By reducing ACE2 levels, TGF-β1 may decrease entry of SARS-CoV-2 into the host cells while hindering the recovery from COVID-19 due to loss of the anti-inflammatory and regenerative effects of ACE2. The above outcomes may be modulated by other, miRNA-mediated effects exerted by TGF-β1 on the host immune responses, leading to a complex and yet incompletely understood circuitry.
Collapse
Affiliation(s)
| | - Nilay Mitash
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua E. Donovan
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Anvita Chandra
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Carol Bertrand
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine M. Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
14
|
Saulle I, Garziano M, Cappelletti G, Limanaqi F, Strizzi S, Vanetti C, Lo Caputo S, Poliseno M, Santantonio TA, Clerici M, Biasin M. Salivary miRNA Profiles in COVID-19 Patients with Different Disease Severities. Int J Mol Sci 2023; 24:10992. [PMID: 37446170 DOI: 10.3390/ijms241310992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central role in the early defense against infection. Thus, the SARS-CoV-2 viral load, miRNAs, cytokines, and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD) COVID-19 patients. Here we showed that of the 84 miRNAs analyzed, 8 were differently expressed in the plasma and saliva of SD patients. In particular: (1) miRNAs let-7a-5p, let-7b-5p, and let-7c-5p were significantly downregulated; and (2) miR-23a and b and miR-29c, as well as three immunomodulatory miRNAs (miR-34a-5p, miR-181d-5p, and miR-146) were significantly upregulated. The production of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9, and TNFα) and chemokines (CCL2 and RANTES) increased in both the saliva and plasma of SD and MD patients. Notably, disease severity correlated with NA and immune activation. Monitoring these parameters could help predict disease outcomes and identify new markers of disease progression.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Micaela Garziano
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Fiona Limanaqi
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Sergio Lo Caputo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mariacristina Poliseno
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Teresa Antonia Santantonio
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
- Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| |
Collapse
|
15
|
Fayyad-Kazan M, Makki R, Homsi ME, Samadi A, Chaaban H, Majzoub RE, Hamade E, Fayyad-Kazan H, Badran B. Circulating microRNA profile in response to remdesivir treatment in coronavirus disease 2019 (COVID-19) patients. Arch Virol 2023; 168:194. [PMID: 37380930 DOI: 10.1007/s00705-023-05825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19), a serious infectious disease caused by the recently discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a major global health crisis. Although no specific antiviral drugs have been proven to be fully effective against COVID-19, remdesivir (GS-5734), a nucleoside analogue prodrug, has shown beneficial effects when used to treat severe hospitalized COVID-19 cases. The molecular mechanism underlying this beneficial therapeutic effect is still vaguely understood. In this study, we assessed the effect of remdesivir treatment on the pattern of circulating miRNAs in the plasma of COVID-19 patients, which was analyzed using MiRCURY LNA miRNA miRNome qPCR Panels and confirmed by quantitative real-time RT-PCR (qRT-PCR). The results revealed that remdesivir treatment can restore the levels of miRNAs that are upregulated in COVID-19 patients to the range observed in healthy subjects. Bioinformatics analysis revealed that these miRNAs are involved in diverse biological processes, including the transforming growth factor beta (TGF-β), hippo, P53, mucin-type O-glycan biosynthesis, and glycosaminoglycan biosynthesis signaling pathways. On the other hand, three miRNAs (hsa-miR-7-5p, hsa-miR-10b-5p, and hsa-miR-130b-3p) were found to be upregulated in patients receiving remdesivir treatment and in patients who experienced natural remission. These upregulated miRNAs could serve as biomarkers of COVID-19 remission. This study highlights that the therapeutic potential of remdesivir involves alteration of certain miRNA-regulated biological processes. Targeting of these miRNAs should therefore be considered for future COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Mohammad Fayyad-Kazan
- Department of Natural and Applied Sciences, School of Arts and Sciences, The American University of Iraq-Baghdad, Baghdad, Iraq.
| | - Rawan Makki
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Mahmoud El Homsi
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Ahmad Samadi
- Molecular diagnostics Laboratory, Saida Governmental Hospital, Saida, Lebanon
| | - Hilal Chaaban
- Molecular diagnostics Laboratory, Saida Governmental Hospital, Saida, Lebanon
| | - Rania El Majzoub
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Eva Hamade
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon.
| |
Collapse
|
16
|
Hassan NE, Moselhy WA, Eldomany EB, Kholef EFM. Evaluation of miRNA-16-2-3P, miRNA-618 levels and their diagnostic and prognostic value in the regulation of immune response during SARS Cov-2 infection. Immunogenetics 2023:10.1007/s00251-023-01308-6. [PMID: 37222789 DOI: 10.1007/s00251-023-01308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Following the announcement of the pandemic of COVID-19 in December 2019, several studies focused on how to early predict the severity of the disease in symptomatic and asymptomatic patients. Many cytokines including interleukin-6, interleukin-8, and tumor necrotic factors have been concluded as strong indicators for COVID-19 infection. Additionally, miRNAs have been associated with dysregulation in the immune system. The aim of this study are the following: (1) to estimate the level of miRNA-16-2-3P, miRNA-618, IL-8, IL-1β as predictors for SARS-CoV-2 complications in PCR negative and positive patients; (2) to assess the biological role and effect of these miRNAs on SARS-CoV-2 pathogenicity. Our study showed that the level of IL-1β had been significantly associated with patient who need hospitalization, also the alteration of the level of miRNA-16-2-3P, miRNA-618 is positively correlated with the admission of these patients and influence the outcomes of SARS-cov-2 infection. Measurement of miRNA-16-2-3P, miRNA-618, IL-1β could be a good predictor of COVID-19 patient outcome. However the measurement of IL-8 levels during immune responses in the admitted and in ICU patients could have a prognostic value.
Collapse
Affiliation(s)
| | - Walaa A Moselhy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ehab B Eldomany
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
17
|
Ahmad W, Gull B, Baby J, Panicker NG, Khader TA, Akhlaq S, Rizvi TA, Mustafa F. Differentially-regulated miRNAs in COVID-19: A systematic review. Rev Med Virol 2023:e2449. [PMID: 37145095 DOI: 10.1002/rmv.2449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for coronavirus disease of 2019 (COVID-19) that infected more than 760 million people worldwide with over 6.8 million deaths to date. COVID-19 is one of the most challenging diseases of our times due to the nature of its spread, its effect on multiple organs, and an inability to predict disease prognosis, ranging from being completely asymptomatic to death. Upon infection, SARS-CoV-2 alters the host immune response by changing host-transcriptional machinery. MicroRNAs (miRNAs) are regarded as post-transcriptional regulators of gene expression that can be perturbed by invading viruses. Several in vitro and in vivo studies have reported such dysregulation of host miRNA expression upon SARS-CoV-2 infection. Some of this could occur as an anti-viral response of the host to the viral infection. Viruses themselves can counteract that response by mounting their own pro-viral response that facilitates virus infection, an aspect which may cause pathogenesis. Thus, miRNAs could serve as possible disease biomarkers in infected people. In the current review, we have summarised and analysed the existing data about miRNA dysregulation in patients infected with SARS-CoV-2 to determine their concordance between studies, and identified those that could serve as potential biomarkers during infection, disease progression, and death, even in people with other co-morbidities. Having such biomarkers can be vital in not only predicting COVID-19 prognosis, but also the development of novel miRNA-based anti-virals and therapeutics which can become invaluable in case of the emergence of new viral variants with pandemic potential in the future.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
19
|
Redenšek Trampuž S, Vogrinc D, Goričar K, Dolžan V. Shared miRNA landscapes of COVID-19 and neurodegeneration confirm neuroinflammation as an important overlapping feature. Front Mol Neurosci 2023; 16:1123955. [PMID: 37008787 PMCID: PMC10064073 DOI: 10.3389/fnmol.2023.1123955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Development and worsening of most common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been associated with COVID-19 However, the mechanisms associated with neurological symptoms in COVID-19 patients and neurodegenerative sequelae are not clear. The interplay between gene expression and metabolite production in CNS is driven by miRNAs. These small non-coding molecules are dysregulated in most common neurodegenerative diseases and COVID-19. Methods We have performed a thorough literature screening and database mining to search for shared miRNA landscapes of SARS-CoV-2 infection and neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were searched using PubMed, while differentially expressed miRNAs in patients with five most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis) were searched using the Human microRNA Disease Database. Target genes of the overlapping miRNAs, identified with the miRTarBase, were used for the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes and Genomes and Reactome. Results In total, 98 common miRNAs were found. Additionally, two of them (hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers of neurodegeneration, as they are dysregulated in all five most common neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was upregulated in four COVID-19 studies and found to be dysregulated in neurodegeneration processes as well. Screening for miRNA targets identified 746 unique genes with strong evidence for interaction. Target enrichment analysis highlighted most significant KEGG and Reactome pathways being involved in signaling, cancer, transcription and infection. However, the more specific identified pathways confirmed neuroinflammation as being the most important shared feature. Discussion Our pathway based approach has identified overlapping miRNAs in COVID-19 and neurodegenerative diseases that may have a valuable potential for neurodegeneration prediction in COVID-19 patients. Additionally, identified miRNAs can be further explored as potential drug targets or agents to modify signaling in shared pathways. Graphical AbstractShared miRNA molecules among the five investigated neurodegenerative diseases and COVID-19 were identified. The two overlapping miRNAs, hsa-miR-34a and has-miR-132, present potential biomarkers of neurodegenerative sequelae after COVID-19. Furthermore, 98 common miRNAs between all five neurodegenerative diseases together and COVID-19 were identified. A KEGG and Reactome pathway enrichment analyses was performed on the list of shared miRNA target genes and finally top 20 pathways were evaluated for their potential for identification of new drug targets. A common feature of identified overlapping miRNAs and pathways is neuroinflammation. AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington's disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; MS, multiple sclerosis; PD, Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Jankovic M, Nikolic D, Novakovic I, Petrovic B, Lackovic M, Santric-Milicevic M. miRNAs as a Potential Biomarker in the COVID-19 Infection and Complications Course, Severity, and Outcome. Diagnostics (Basel) 2023; 13:1091. [PMID: 36980399 PMCID: PMC10047241 DOI: 10.3390/diagnostics13061091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
During the last three years, since the emergence of the COVID-19 pandemic, a significant number of scientific publications have focused on resolving susceptibility to the infection, as well as the course of the disease and potential long-term complications. COVID-19 is widely considered as a multisystem disease and a variety of socioeconomic, medical, and genetic/epigenetic factors may contribute to the disease severity and outcome. Furthermore, the SARS-COV-2 infection may trigger pathological processes and accelerate underlying conditions to clinical entities. The development of specific and sensitive biomarkers that are easy to obtain will allow for patient stratification, prevention, prognosis, and more individualized treatments for COVID-19. miRNAs are proposed as promising biomarkers for different aspects of COVID-19 disease (susceptibility, severity, complication course, outcome, and therapeutic possibilities). This review summarizes the most relevant findings concerning miRNA involvement in COVID-19 pathology. Additionally, the role of miRNAs in wide range of complications due to accompanied and/or underlying health conditions is discussed. The importance of understanding the functional relationships between different conditions, such as pregnancy, obesity, or neurological diseases, with COVID-19 is also highlighted.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Physical Medicine and Rehabilitation, University Children's Hospital, 11000 Belgrade, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milan Lackovic
- Department of Obstetrics and Gynecology, University Hospital "Dragisa Misovic", 11000 Belgrade, Serbia
| | - Milena Santric-Milicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, School of Public Health and Health Management, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
21
|
Isothermal exponential amplification reactions triggered by circular templates (cEXPAR) targeting miRNA. Mol Biol Rep 2023; 50:3653-3659. [PMID: 36807240 DOI: 10.1007/s11033-023-08291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/17/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Isothermal exponential amplification reaction (EXPAR) is an emerging amplification technique that is most frequently used to amplify microRNA (miRNA). However, EXPAR also exhibits non-specific background amplification in the absence of the targeted sequence, which limits the attainable assay sensitivity of EXPAR. METHODS AND RESULTS A novel modified isothermal EXPAR based on circular amplification templates (cEXPAR) was developed in this study. The circular template consists of two same linear fragments that complement the target sequence, and these two linear fragments are separated by two nicking agent recognition sequences (NARS). Compared with the linear structure template, this circular template allows DNA or RNA fragments to be randomly paired with two repeated sequences and can be successfully amplified. This reaction system developed in this study could rapidly synthesize short oligonucleotide fragments (12-22 bp) through simultaneous nicking and displacement reactions. Highly sensitive chain reactions can be specifically triggered by as low as a single copy of target molecule, and non-specific amplification can be effectively eliminated in this optimized system. Moreover, the proposed approach applied to miRNA test can discriminate single-nucleotide variations between miRNAs. CONCLUSION The newly developed cEXPAR assay provides a useful alternative tool for rapid, sensitive, and highly specific detection of miRNAs.
Collapse
|
22
|
Cunningham CL, Frye CJ, Makowski JA, Kensinger AH, Shine M, Milback EJ, Lackey PE, Evanseck JD, Mihailescu MR. Effect of the SARS-CoV-2 Delta-associated G15U mutation on the s2m element dimerization and its interactions with miR-1307-3p. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528014. [PMID: 36798421 PMCID: PMC9934655 DOI: 10.1101/2023.02.10.528014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The stem loop 2 motif (s2m), a highly conserved 41-nucleotide hairpin structure in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p. Bioinformatics analysis of the GISAID database targeting the s2m element reveals a greater than 99% correlation of a single nucleotide mutation at the 15 th position (G15U) in Delta SARS-CoV-2. Based on 1 H NMR assignments comparing the imino proton resonance region of s2m and the G15U at 19°C, we find that the U15-A29 base pair closes resulting in a stabilization of the upper stem without overall secondary structure deviation. Increased stability of the upper stem did not affect the chaperone activity of the viral N protein, as it was still able to convert the kissing dimers formed by s2m G15U into a stable duplex conformation, consistent with the s2m reference. However, we find that the s2m G15U mutation drastically reduces the binding affinity of the host miR-1307-3p. These findings demonstrate that the observed G15U mutation alters the secondary structure of s2m with subsequent impact on viral binding of host miR-1307-3p, with potential consequences on the immune response.
Collapse
|
23
|
Singh S, Chauhan P, Sharma V, Rao A, Kumbhar BV, Prajapati VK. Identification of multi-targeting natural antiviral peptides to impede SARS-CoV-2 infection. Struct Chem 2022; 34:1-16. [PMID: 36570051 PMCID: PMC9759041 DOI: 10.1007/s11224-022-02113-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 and its variants cause serious health concerns throughout the world. The alarming increase in the daily number of cases has become a nightmare in many low-income countries; although some vaccines are available, their high cost and low vaccine production make them unreachable to ordinary people in developing countries. Other treatment strategies are required for novel therapeutic options. The peptide-based drug is one of the alternatives with low toxicity, more specificity, and ease of synthesis. Herein, we have applied structure-based virtual screening to identify potential peptides targeting the critical proteins of SARS-CoV-2. Non-toxic natural antiviral peptides were selected from the enormous number of peptides. Comparative modeling was applied to prepare a 3D structure of selected peptides. 3D models of the peptides were docked using the ClusPro docking server to determine their binding affinity and peptide-protein interaction. The high-scoring peptides were docked with other crucial proteins to analyze multiple targeting peptides. The two best peptides were subjected to MD simulations to validate the structure stability and evaluated RMSD, RMSF, Rg, SASA, and H-bonding from the trajectory analysis of 100 ns. The proposed lead peptides can be used as a broad-spectrum drug and potentially develop as a therapeutic to combat SARS-CoV-2, positively impacting the current pandemic. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02113-9.
Collapse
Affiliation(s)
- Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
| | - Priya Chauhan
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
| | - Vinita Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University (Deemed), Vile Parle, Mumbai, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
- Department of Biochemistry, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab India
| |
Collapse
|
24
|
Xu Z, Yang D, Wang L, Demongeot J. Statistical analysis supports UTR (untranslated region) deletion theory in SARS-CoV-2. Virulence 2022; 13:1772-1789. [PMID: 36217240 PMCID: PMC9553139 DOI: 10.1080/21505594.2022.2132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022] Open
Abstract
It was noticed that the mortality rate of SARS-CoV-2 infection experienced a significant declination in the early stage of the epidemic. We suspect that the sharp deterioration of virus toxicity is related to the deletion of the untranslated region (UTR) of the virus genome. It was found that the genome length of SARS-CoV-2 engaged a significant truncation due to UTR deletion after a mega-sequence analysis. Sequence similarity analysis further indicated that short UTR strains originated from its long UTR ancestors after an irreversible deletion. A good correlation was discovered between genome length and mortality, which demonstrated that the deletion of the virus UTR significantly affected the toxicity of the virus. This correlation was further confirmed in a significance analysis of the genetic influence on the clinical outcomes. The viral genome length of hospitalized patients was significantly more extensive than that of asymptomatic patients. In contrast, the viral genome length of asymptomatic was considerably longer than that of ordinary patients with symptoms. A genome-level mutation scanning was performed to systematically evaluate the influence of mutations at each position on virulence. The results indicated that UTR deletion was the primary driving force in alternating virus virulence in the early evolution. In the end, we proposed a mathematical model to explain why this UTR deletion was not continuous.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, China
| | - Dongying Yang
- Department of Medicine, Dezhou University, Dezhou, China
| | - Liyan Wang
- Department of Life Science, Dezhou University, Dezhou, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), La Tronche, France
| |
Collapse
|
25
|
Periwal N, Bhardwaj U, Sarma S, Arora P, Sood V. In silico analysis of SARS-CoV-2 genomes: Insights from SARS encoded non-coding RNAs. Front Cell Infect Microbiol 2022; 12:966870. [PMID: 36519126 PMCID: PMC9742375 DOI: 10.3389/fcimb.2022.966870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 has resulted in enormous deaths around the world. Clues from genomic sequences of parent and their mutants can be obtained to understand the evolving pathogenesis of this virus. Apart from the viral proteins, virus-encoded microRNAs (miRNAs) have been shown to play a vital role in regulating viral pathogenesis. Thus we sought to investigate the miRNAs encoded by SARS-CoV-2, its mutants, and the host. Here, we present the results obtained using a dual approach i.e (i) identifying host-encoded miRNAs that might regulate viral pathogenesis and (ii) identifying viral-encoded miRNAs that might regulate host cell signaling pathways and aid in viral pathogenesis. Analysis utilizing the first approach resulted in the identification of ten host-encoded miRNAs that could target the SARS, SARS-CoV-2, and its mutants. Interestingly our analysis revealed that there is a significantly higher number of host miRNAs that could target the SARS-CoV-2 genome as compared to the SARS reference genome. Results from the second approach resulted in the identification of a set of virus-encoded miRNAs which might regulate host signaling pathways. Our analysis further identified a similar "GA" rich motif in the SARS-CoV-2 and its mutant genomes that was shown to play a vital role in lung pathogenesis during severe SARS infections. In summary, we have identified human and virus-encoded miRNAs that might regulate the pathogenesis of SARS coronaviruses and describe similar non-coding RNA sequences in SARS-CoV-2 that were shown to regulate SARS-induced lung pathology in mice.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | | | - Sankritya Sarma
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India,*Correspondence: Vikas Sood,
| |
Collapse
|
26
|
Hardin LT, Xiao N. miRNAs: The Key Regulator of COVID-19 Disease. Int J Cell Biol 2022; 2022:1645366. [PMID: 36345541 PMCID: PMC9637033 DOI: 10.1155/2022/1645366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2024] Open
Abstract
As many parts of the world continue to fight the innumerable waves of COVID-19 infection, SARS-CoV-2 continues to sculpt its antigenic determinants to enhance its virulence and evolvability. Several vaccines were developed and used around the world, and oral antiviral medications are being developed against SARS-CoV-2. However, studies showed that the virus is mutating in line with the antibody's neutralization escape; thus, new therapeutic alternatives are solicited. We hereby review the key role that miRNAs can play as epigenetic mediators of the cross-talk between SARS-CoV-2 and the host cells. The limitations resulting from the "virus intelligence" to escape and antagonize the host miRNAs as well as the possible mechanisms that could be used in the viral evasion strategies are discussed. Lastly, we suggest new therapeutic approaches based on viral miRNAs.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| | - Nan Xiao
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| |
Collapse
|
27
|
Arriaga-Canon C, Contreras-Espinosa L, Rebollar-Vega R, Montiel-Manríquez R, Cedro-Tanda A, García-Gordillo JA, Álvarez-Gómez RM, Jiménez-Trejo F, Castro-Hernández C, Herrera LA. Transcriptomics and RNA-Based Therapeutics as Potential Approaches to Manage SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:11058. [PMID: 36232363 PMCID: PMC9570475 DOI: 10.3390/ijms231911058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 is a coronavirus family member that appeared in China in December 2019 and caused the disease called COVID-19, which was declared a pandemic in 2020 by the World Health Organization. In recent months, great efforts have been made in the field of basic and clinical research to understand the biology and infection processes of SARS-CoV-2. In particular, transcriptome analysis has contributed to generating new knowledge of the viral sequences and intracellular signaling pathways that regulate the infection and pathogenesis of SARS-CoV-2, generating new information about its biology. Furthermore, transcriptomics approaches including spatial transcriptomics, single-cell transcriptomics and direct RNA sequencing have been used for clinical applications in monitoring, detection, diagnosis, and treatment to generate new clinical predictive models for SARS-CoV-2. Consequently, RNA-based therapeutics and their relationship with SARS-CoV-2 have emerged as promising strategies to battle the SARS-CoV-2 pandemic with the assistance of novel approaches such as CRISPR-CAS, ASOs, and siRNA systems. Lastly, we discuss the importance of precision public health in the management of patients infected with SARS-CoV-2 and establish that the fusion of transcriptomics, RNA-based therapeutics, and precision public health will allow a linkage for developing health systems that facilitate the acquisition of relevant clinical strategies for rapid decision making to assist in the management and treatment of the SARS-CoV-2-infected population to combat this global public health problem.
Collapse
Affiliation(s)
- Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Rosa Rebollar-Vega
- Genomics Laboratory, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Alberto Cedro-Tanda
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan. C.P., Mexico City 14610, Mexico
| | - José Antonio García-Gordillo
- Oncología Médica, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Francisco Jiménez-Trejo
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C, Coyoacán. C.P., Mexico City 04530, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Avenida San Fernando No. 22 ColC. Sección XVI, Tlalpan. C.P., Mexico City 14080, Mexico
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan. C.P., Mexico City 14610, Mexico
| |
Collapse
|