1
|
Vanan AG, Vesal S, Seraj P, Ghezel MA, Eini P, Talebileili M, Asgari Z, Tahmasebi S, Hashemi M, Taheriazam A. DCLK1 in gastrointestinal cancer: A driver of tumor progression and a promising therapeutic target. Int J Cancer 2025; 156:2068-2086. [PMID: 40056091 DOI: 10.1002/ijc.35365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/12/2025] [Accepted: 01/29/2025] [Indexed: 04/05/2025]
Abstract
Cancers of the gastrointestinal (GI) tract, including colorectal, pancreatic, and hepatocellular carcinomas, represent a significant global health burden due to their high incidence and mortality rates. Doublecortin-like kinase 1 (DCLK1), initially identified for its role in neurogenesis, has emerged as a crucial player in GI cancer progression. This review comprehensively examines the multifaceted roles of DCLK1 in GI cancers, focusing on its structural isoforms, functions in normal and inflammatory states, and contributions to cancer progression and metastasis. DCLK1 is overexpressed in various GI cancers and is associated with poor prognosis, enhanced tumorigenic potential, and increased metastatic capacity. The review discusses the molecular mechanisms through which DCLK1 influences cancer stem cell maintenance, epithelial-mesenchymal transition (EMT), and cell survival pathways, as well as its interactions with key signaling pathways such as Notch, WNT/β-catenin, and NF-κB. The potential of DCLK1 as a therapeutic target is also explored, highlighting preclinical and early clinical efforts to inhibit its function using small molecule inhibitors or monoclonal antibodies. Despite significant advancements, further research is needed to fully elucidate DCLK1's role in GI cancers and to develop effective therapeutic strategies targeting this protein.
Collapse
Affiliation(s)
- Ahmad Ghorbani Vanan
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Parmida Seraj
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Pooya Eini
- Toxicological Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Talebileili
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeynab Asgari
- Department of Immunology, School of Medicine Kerman University of Medical Sciences, Kerman, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Advanced Science and Technology, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Department of Orthopedics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Wang R, Fu J, He J, Wang X, Xing W, Liu X, Yao J, Ye Q, He Y. Apoptotic mesenchymal stem cells and their secreted apoptotic extracellular vesicles: therapeutic applications and mechanisms. Stem Cell Res Ther 2025; 16:78. [PMID: 39985021 PMCID: PMC11846181 DOI: 10.1186/s13287-025-04211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs), an accessible and less ethically controversial class of adult stem cells, have demonstrated significant efficacy in treating a wide range of diseases in both the preclinical and clinical phases. However, we do not yet have a clear understanding of the mechanisms by which MSCs exert their therapeutic effects in vivo. We found that the transplanted MSCs go an apoptotic fate within 24 h in vivo irrespective of the route of administration. Still, the short-term survival of MSCs do not affect their long-term therapeutic efficacy. An increasing number of studies have demonstrated that transplantation of apoptotic MSCs (ApoMSCs) show similar or even better efficacy than viable MSCs, including a variety of preclinical disease models such as inflammatory diseases, skin damage, bone damage, organ damage, etc. Although the exact mechanism has yet to be explored, recent studies have shown that transplanted MSCs undergo apoptosis in vivo and are phagocytosed by phagocytes, thereby exerting immunomodulatory effects. The apoptotic extracellular vesicles secreted by ApoMSCs (MSC-ApoEVs) play a significant role in promoting immunomodulation, endogenous stem cell regeneration, and angiogenesis due to their apoptotic properties and inheritance of molecular characteristics from their parental MSCs. On this basis, this review aims to deeply explore the therapeutic applications and mechanisms of ApoMSCs and their secretion of MSC-ApoEVs, as well as the challenges they face.
Collapse
Affiliation(s)
- Ruoxuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jihui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Wenbo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Juming Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China.
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Gao R, Xia D, Zhang X, Xiao Y, Zhou H, Chen G, Wang H. Synergistic Enhancement of Therapeutic Efficacy in Acute Myocardial Infarction via Nanoflower-Like Mn 3O 4 Nanozymes in Coordination with Adipose-Derived Stem Cell Transplantation. Int J Nanomedicine 2025; 20:2073-2086. [PMID: 39990284 PMCID: PMC11844313 DOI: 10.2147/ijn.s483980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
Background Acute myocardial infarction (AMI) is a leading cause of mortality worldwide. Adipose-derived stem cell (ADSC) transplantation presents a promising therapeutic approach for AMI; however, the harsh microenvironment of the infarcted myocardium, characterized by hypoxia and oxidative stress, limits the survival and efficacy of ADSCs. Nanozymes (NZs), which have robust anti-oxidative enzyme-mimicking activities, have demonstrated potential in combating oxidative stress and improving cell viability. Methods Mn3O4 NZs (Mn-Nzs), which have nanoflower-like structures were synthesized and their structure and multi-enzyme mimetic activities (superoxide dismutase, catalase, and glutathione peroxidase) were characterized. Blood biochemical parameters were measured in the heart, liver, spleen, lungs and kidneys of the rats, followed by hematoxylin and eosin (HE) staining. The impact of Mn3O4 NZs on reactive oxygen species (ROS) levels, and viability of ADSCs under oxidative stress was assessed in vitro. In vivo studies were conducted using a rat AMI model to evaluate the therapeutic efficacy of ADSC transplantation, in conjunction with Mn3O4 treatment. In addition, proteomic analysis was performed to elucidate the mechanisms of action underlying the therapeutic effects. Results Mn3O4 NZs exhibited multi-enzyme mimetic activities, including superoxide dismutase, catalase, and glutathione peroxidase, reducing reactive oxygen species levels and apoptosis in ADSCs under oxidative stress. In the AMI rat model, Mn-NZs had good biocompatibility and ADSC transplantation or Mn3O4 NZs treatment alone significantly reduced infarct size, fibrosis levels, and improved microvascular density and heart function. Notably, the combination of Mn3O4 NZs with ADSC transplantation enhanced ADSC survival and differentiation, amplifying therapeutic efficacy. Proteomic analysis revealed that Mn3O44 NZs upregulated proteins associated with anti-oxidative damage, anti-inflammation, and anti-fibrosis pathways. In addition, Mn-NZs upregulated MMP8 via AKT pathway phosphorylation. Conclusion The findings highlight a novel strategy integrating NZ anti-oxidant properties with stem cell transplantation to improve AMI treatment outcomes.
Collapse
Affiliation(s)
- Rui Gao
- College of Life Science and Bioengineering, College of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People’s Republic of China
| | - Demeng Xia
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, People’s Republic of China
| | - Xiaoyong Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Yao Xiao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Gan Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, People’s Republic of China
| | - Haibin Wang
- College of Life Science and Bioengineering, College of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People’s Republic of China
| |
Collapse
|
4
|
Mohseni A, Salehi F, Rostami S, Hadiloo K, Hashemi M, Baridjavadi Z, Ahangari F, Karami N, Samani F, Tahmasebi S, Farahani N, Taheriazam A. Harnessing the power of exosomes for diagnosis, prognosis, and treatment of hematological malignancies. Stem Cell Res Ther 2025; 16:6. [PMID: 39773361 PMCID: PMC11708188 DOI: 10.1186/s13287-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are small extracellular vesicles of endocytic origin released by various cell types. They consist of lipid bilayers containing macromolecules such as lipids, proteins, microRNAs, growth factors, cytokines, and carbohydrates. Exosomes play a critical role in the diagnosis and treatment of various diseases. For instance, exosome contents have been utilized as biomarkers in body fluids (urine, saliva, serum) to identify cancers, autoimmune diseases, and inflammatory conditions such as sepsis. Due to their small size and ability to reach tumor microenvironments, exosomes are also used as carriers for chemotherapeutic drugs in drug delivery systems. Furthermore, evidence indicates that malignant cells release exosomes into the tumor microenvironment, influencing immune cells in a paracrine manner. Additionally, immune cell-derived exosomes, such as those from Natural Killer (NK) cells or cytotoxic T lymphocytes (CTLs), show potential as therapeutic agents in treating malignancies like leukemia. This review discusses the diagnostic role of exosomes in various hematological malignancies and explores the therapeutic potential of immune cell-derived exosomes in these diseases.
Collapse
Affiliation(s)
- Amirata Mohseni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fatemeh Salehi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kaveh Hadiloo
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Baridjavadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institue of Iran, Tehran, Iran
| | - Najibeh Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samani
- Blood Transfusion Research Center, High Institute for Research and Education in transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Cheng X, Li YL, Wang H, Zhang RJ, Fan KY, Qi XT, Zheng GP, Dong HL. Mesenchymal stem cell therapy in atherosclerosis: A bibliometric and visual analysis. World J Stem Cells 2024; 16:1062-1085. [PMID: 39734478 PMCID: PMC11669984 DOI: 10.4252/wjsc.v16.i12.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation, and extensive studies have demonstrated their therapeutic potential in atherosclerosis (AS). AIM To conduct a bibliometric analysis of studies on the use of MSC therapy for AS over the past two decades, assess key trends and provide insights for future research directions. METHODS We systematically searched the Web of Science Core Collection database for articles published between 1999 and 2023, yielding a total of 556 articles. Visual representation and bibliometric analysis of information and trends were facilitated using CiteSpace, the R package 'bibliometrix' and VOSviewer. RESULTS The analyzed articles were predominantly from 52 countries/regions, with prominent contributions from China and the United States. A cohort of 3057 authors contributed to these publications, with the works of Libby P distinguished by their influence and citation count. Int J Mol Sci has emerged as the journal with the highest publication volume, prominently disseminating influential papers and identifying citation outbreaks. Furthermore, our analysis identified current research hotspots within the field, focusing on vascular progenitor cells, inflammatory mechanisms, and extracellular vesicles. Emerging research frontiers, such as extracellular vesicles and oxidative stress, have been highlighted as areas of burgeoning interest. Finally, we offer perspectives on the status of research and future directions of MSC therapy in AS. CONCLUSION This comprehensive analysis provides valuable insights for advancing scientific research on MSC therapy for AS. By elucidating pivotal trends and research directions, this study aimed to foster innovation and promote the progress of disciplines in this field, thereby contributing to advancing scientific knowledge and clinical practice.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ya-Ling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, New South Wales, Australia
| | - Rui-Jing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ke-Yi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Xiao-Tong Qi
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Guo-Ping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, New South Wales, Australia
| | - Hong-Lin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China.
| |
Collapse
|
6
|
Jiang Y, Song Y, Zeng Q, Jiang B. Mesenchymal Stem Cells and Their Extracellular Vesicles Are a Promising Alternative to Antibiotics for Treating Sepsis. Bioengineering (Basel) 2024; 11:1160. [PMID: 39593820 PMCID: PMC11591657 DOI: 10.3390/bioengineering11111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Sepsis is a life-threatening disease caused by the overwhelming response to pathogen infections. Currently, treatment options for sepsis are limited to broad-spectrum antibiotics and supportive care. However, the growing resistance of pathogens to common antibiotics complicates treatment efforts. Excessive immune response (i.e., cytokine storm) can persist even after the infection is cleared. This overactive inflammatory response can severely damage multiple organ systems. Given these challenges, managing the excessive immune response is critical in controlling sepsis progression. Therefore, Mesenchymal stem cells (MSCs), with their immunomodulatory and antibacterial properties, have emerged as a promising option for adjunctive therapy in treating sepsis. Moreover, MSCs exhibit a favorable safety profile, as they are eventually eliminated by the host's immune system within several months post-administration, resulting in minimal side effects and have not been linked to common antibiotic therapy drawbacks (i.e., antibiotic resistance). This review explores the potential of MSCs as a personalized therapy for sepsis treatment, clarifying their mechanisms of action and providing up-to-date technological advancements to enhance their protective efficacy for patients suffering from sepsis and its consequences.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu 610041, China
| | - Yunjuan Song
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Bin Jiang
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Sun X, Bi H, Gao F, Zhao X, Feng X, Bo Q, Liu J, Wang W. The inhibitory efficacy of Ginsenoside Rg3 on proliferation and migration of colonic carcinoma cells through the JAK3/STAT5 signaling pathway. Discov Oncol 2024; 15:608. [PMID: 39485563 PMCID: PMC11530417 DOI: 10.1007/s12672-024-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE To elucidate the efficacy of Ginsenoside Rg3 on the reproduction and immigration of HCT-116 cells and its molecular mechanism. METHODS Analysis of the cell cycle along with the colony formation assay, and MTT test were performed to detect the effect of Ginsenoside Rg3 (GRg3) on proliferation of HCT-116 cells. Transwell assay and Cell scratch wound method were carried out to determine the impact on the immigration. The differential expressed genes obtained by RNA-sequencing were intersected with the predicted target genes of GRg3, and PPI was constructed to analyze hub genes. The key target gene expression and its downstream genes were evaluated by western blot assay. RESULTS The GRg3 can inhibit the reproduction and immigrating ability of colonic carcinoma cells, decrease the ability of colony formation in HCT-116 cells, and arrest the G2 phase. JAK3 was identified as a key target gene. Western blot assay revealed decreased levels of p-STAT5 and JAK3 post-treatment with RG3, while STAT5a and STAT5b did not change significantly. CONCLUSION The GRg3 inhibits the phosphorylation of STAT5 but not the expression of total protein by inhibiting the expression of JAK3, and then inhibits the proliferation and migration of HCT-116 cells.
Collapse
Affiliation(s)
- Xiumei Sun
- Department of Comprehensive Oncology, Affiliated Hospital of Shandong Second Medical University, Kuiwen District, No.2428, Yuhe Road, Weifang, 261041, China
| | - Han Bi
- Department of Oncology, Heze Municipal Hospital, No.2888, Caozhouxi Road, Heze, 274031, China
| | - Feng Gao
- Department of Colorectal and anal Surgery, Weifang People's Hospital, Kuiwen District, No.151, Guangwen Street, Weifang, 261000, China
| | - Xiaoyu Zhao
- Department of Comprehensive Oncology, Affiliated Hospital of Shandong Second Medical University, Kuiwen District, No.2428, Yuhe Road, Weifang, 261041, China
| | - Xinyu Feng
- Department of Comprehensive Oncology, Affiliated Hospital of Shandong Second Medical University, Kuiwen District, No.2428, Yuhe Road, Weifang, 261041, China
| | - Qifu Bo
- Department of Comprehensive Oncology, Affiliated Hospital of Shandong Second Medical University, Kuiwen District, No.2428, Yuhe Road, Weifang, 261041, China
| | - Jin Liu
- Department of Comprehensive Oncology, Affiliated Hospital of Shandong Second Medical University, Kuiwen District, No.2428, Yuhe Road, Weifang, 261041, China.
| | - Wenhao Wang
- Department of Comprehensive Oncology, Affiliated Hospital of Shandong Second Medical University, Kuiwen District, No.2428, Yuhe Road, Weifang, 261041, China.
| |
Collapse
|
8
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Zhu M, Sun Y. Bactericidal Antibody Responses to Meningococcal Recombinant Outer Membrane Proteins. J Microbiol Biotechnol 2024; 34:1419-1424. [PMID: 38955797 PMCID: PMC11294639 DOI: 10.4014/jmb.2401.01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 07/04/2024]
Abstract
Secretin PilQ is an antigenically conserved outer membrane protein that is present in most meningococci and PorA is a major protein that elicits bactericidal immune response in humans following natural disease and immunization. In the present study, BALB/c mice were immunized subcutaneously with rPilQ406-770 or rPorA together with Freund's adjuvant (FA). Serum antibody responses to serogroup A and B Neisseria meningitides whole cells or purified proteins and functional activity of antibodies were determined by ELISA and serum bactericidal assay (SBA), respectively. Serum IgG responses were significantly increased in the immunized group with rPilQ406-770 or rPorA together with FA compared to control groups. IgG antibody response of mice immunized with rPilQ406-770 was significantly more than mice immunized with rPorA (OD at 450 nm was 1.6 versus 0.83). The booster injections were effective in increasing the responses of anti-rPilQ406-770 or anti-rPorA IgG significantly. Antisera produced against rPilQ406-770 or rPorA demonstrated strong surface reactivity to serogroup B N. meningitides in comparison with control groups. Antisera raised against rPorA or rPilQ406-770 and FA demonstrated SBA titers from 1/1024 to 1/2048 against serogroup B. The strongest bactericidal activity was detected in sera from mice immunized with rPilQ406-770 mixed with FA. These results suggest that rPilQ406-770 is a potential vaccine candidate for serogroup B N. meningitidis.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Pediatrics, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan, Middle Road, Tianqiao District, Jinan, Shandong 250031, P.R. China
| | - Yunqing Sun
- Department of Pediatrics, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan, Middle Road, Tianqiao District, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
10
|
Lv S, Zhao X, Ma C, Zhao D, Sun T, Fu W, Wei Y, Li W. Advancements in the study of acute lung injury resulting from intestinal ischemia/reperfusion. Front Med (Lausanne) 2024; 11:1399744. [PMID: 38933104 PMCID: PMC11199783 DOI: 10.3389/fmed.2024.1399744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.
Collapse
Affiliation(s)
- Shihua Lv
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Ma
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengming Zhao
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Sun
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Fu
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Wei
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenzhi Li
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Wang Y, She S, Li W, Zhu J, Li X, Yang F, Dai K. Inhibition of cGAS-STING pathway by stress granules after activation of M2 macrophages by human mesenchymal stem cells against drug induced liver injury. Mol Immunol 2024; 165:42-54. [PMID: 38150981 DOI: 10.1016/j.molimm.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/05/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Cells can produce stress granules (SGs) to protect itself from damage under stress. The cGAS-STING pathway is one of the important pattern recognition pathways in the natural immune system. This study was investigated whether human mesenchymal stem cells (hMSCs) could protect the liver by inducing M2 macrophages to produce SGs during acute drug induced liver injury (DILI) induced by acetaminophen (APAP). METHODS After intragastric administration of APAP in vivo to induce DILI mice model, hMSCs were injected into the tail vein. The co-culture system of hMSCs and M2 macrophages was established in vitro. It was further use SGs inhibitor anisomicin to intervene M2 macrophages. The liver histopathology, liver function, reactive oxygen species (ROS) level, apoptosis pathway, endoplasmic reticulum stress (ERS) level, SGs markers (G3BP1/TIA-1), cGAS-STING pathway, TNF-α, IL-6, IL-1β mRNA levels in liver tissue and M2 macrophages were observed. RESULTS In vivo experiments, it showed that hMSCs could alleviate liver injury, inhibite the level of ROS, apoptosis and ERS, protect liver function in DILI mice. The mount of M2 was increased in the liver. hMSCs could also induce the production of SGs, inhibit the cGAS-STING pathway and reduce TNF-α, IL-6, IL-1β mRNA expression. The results in vitro showed that hMSCs could induce the production of SGs in macrophages, inhibit the cGAS-STING pathway, promote the secretion of IL-4 and IL-13, and reduce TNF-α, IL-6, IL-1β mRNA level in cells. In the process of IL-4 inducing M2 macrophage activation, anisomycin could inhibit the production of SGs, activate the cGAS-STING pathway, and promote the inflammatory factor TNF-α, IL-6, IL-1β mRNA expression in cells. CONCLUSIONS HMSCs had a protective effect on acute DILI in mice induced by APAP. Its mechanism might involve in activating M2 type macrophages, promoting the production of SGs, inhibiting the cGAS-STING pathway, and reducing the expression of pro-inflammatory factors in macrophages, to reduce hepatocytes damage.
Collapse
Affiliation(s)
- Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sha She
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiling Zhu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
13
|
Pang K, Kong F, Wu D. Prospect of Mesenchymal Stem-Cell-Conditioned Medium in the Treatment of Acute Pancreatitis: A Systematic Review. Biomedicines 2023; 11:2343. [PMID: 37760784 PMCID: PMC10525511 DOI: 10.3390/biomedicines11092343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated potential in both clinical and pre-clinical research for mitigating tissue damage and inflammation associated with acute pancreatitis (AP) via paracrine mechanisms. Hence, there has been a recent surge of interest among researchers in utilizing MSC cultured medium (CM) and its components for the treatment of AP, which is recognized as the primary cause of hospitalization for gastrointestinal disorders globally. A systematic review was conducted by searching the MEDLINE, EMBASE, and Web of Science databases. Studies that involve the administration of MSC-CM, extracellular vesicles/microvesicles (EVs/MVs), or exosomes to AP animal models are included. A total of six research studies, including eight experiments, were identified as relevant. The findings of this study provide evidence in favor of a beneficial impact of MSC-CM on both clinical and immunological outcomes. Nevertheless, prior to clinical trials, large animal models should be used and prolonged observation periods conducted in pre-clinical research. Challenges arise due to the lack of standardization and consensus on isolation processes, quantifications, and purity testing, making it difficult to compare reports and conduct meta-analyses in MSC-CM-based therapies.
Collapse
Affiliation(s)
- Ke Pang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (K.P.); (F.K.)
| | - Fanyi Kong
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (K.P.); (F.K.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (K.P.); (F.K.)
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
14
|
Pan LF, Niu ZQ, Ren S, Pei HH, Gao YX, Feng H, Sun JL, Zhang ZL. Could extracellular vesicles derived from mesenchymal stem cells be a potential therapy for acute pancreatitis-induced cardiac injury? World J Stem Cells 2023; 15:654-664. [PMID: 37545754 PMCID: PMC10401421 DOI: 10.4252/wjsc.v15.i7.654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Acute pancreatitis (AP) often leads to a high incidence of cardiac injury, posing significant challenges in the treatment of severe AP and contributing to increased mortality rates. Mesenchymal stem cells (MSCs) release bioactive molecules that participate in various inflammatory diseases. Similarly, extracellular vesicles (EVs) secreted by MSCs have garnered extensive attention due to their comparable anti-inflammatory effects to MSCs and their potential to avoid risks associated with cell transplantation. Recently, the therapeutic potential of MSCs-EVs in various inflammatory diseases, including sepsis and AP, has gained increasing recognition. Although preclinical research on the utilization of MSCs-EVs in AP-induced cardiac injury is limited, several studies have demonstrated the positive effects of MSCs-EVs in regulating inflammation and immunity in sepsis-induced cardiac injury and cardiovascular diseases. Furthermore, clinical studies have been conducted on the therapeutic application of MSCs-EVs for some other diseases, wherein the contents of these EVs could be deliberately modified through prior modulation of MSCs. Consequently, we hypothesize that MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury. This paper aims to discuss this topic. However, additional research is essential to comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating AP-induced cardiac injury, as well as to ascertain their safety and efficacy.
Collapse
Affiliation(s)
- Long-Fei Pan
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - Ze-Qun Niu
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Song Ren
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hong-Hong Pei
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yan-Xia Gao
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hui Feng
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Jiang-Li Sun
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Zheng-Liang Zhang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
15
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Mordà D, Rinaldi C, D'Angelo R, Sidoti A. Human retinal secretome: A cross-link between mesenchymal and retinal cells. World J Stem Cells 2023; 15:665-686. [PMID: 37545752 PMCID: PMC10401416 DOI: 10.4252/wjsc.v15.i7.665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98125, Italy.
| | | | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| |
Collapse
|
16
|
Razliqi RN, Ahangarpour A, Mard SA, Khorsandi L. Gentisic acid ameliorates type 2 diabetes induced by Nicotinamide-Streptozotocin in male mice by attenuating pancreatic oxidative stress and inflammation through modulation of Nrf2 and NF-кB pathways. Life Sci 2023; 325:121770. [PMID: 37192699 DOI: 10.1016/j.lfs.2023.121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
AIMS There is a close link between oxidative stress, inflammation, and type 2 diabetes mellitus (T2DM). Gentisic acid (GA) is a di-phenolic compound and an active metabolite of aspirin that possesses antioxidant and anti-inflammatory properties, but its potential anti-diabetic effects have not been evaluated so far. Therefore, this study aimed to evaluate GA's potential antidiabetic effects through the Nuclear Factor Erythroid 2-Related Factor (Nrf2) and Nuclear Factor Kappa Beta (NF-кB) signaling pathways. MATERIAL AND METHODS In this study, T2DM induced by a single intraperitoneal injection of STZ (65 mg/kg B.W) after 15 min nicotinamide (120 mg/kg B.W) injection. After seven days of injections, fasting blood glucose (FBS) was measured. Seven days after FBS monitoring treatments started. Grouping and treatments were as follows: 1) Normal control group; NC, 2) Diabetic control group; DC, 3) Metformin group; MT (150 mg/kg B.W, daily), 4) Test group; GA (100 mg/kg B.W, daily). Treatments continued for 14 consecutive days. KEY FINDINGS Diabetic mice treatment with GA significantly decreased FBS, improved plasma lipid profiles and pancreatic antioxidant status. GA modulated Nrf2 pathway by upregulation of Nrf2 protein, NAD(P)H: quinone oxidoreductase 1 (Nqo1), and p21, and downregulation of miR-200a, Kelch-like ECH-associated protein 1 (Keap1), and nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2). Also, GA attenuated inflammation by upregulation of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and interleukin-10 (IL-10) and downregulation of miR-125b, NF-кB, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1ß). SIGNIFICANCE GA attenuates T2DM, possibly by improving antioxidant status through the Nrf2 pathway and attenuation of inflammation.
Collapse
Affiliation(s)
- Reza Noei Razliqi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Akram Ahangarpour
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyyed Ali Mard
- Physiology Research Center, Alimentary Tract Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz, Iran.
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|