1
|
Nair B, Kamath AJ, Tergaonkar V, Sethi G, Nath LR. Mast cells and the gut-liver Axis: Implications for liver disease progression and therapy. Life Sci 2024; 351:122818. [PMID: 38866220 DOI: 10.1016/j.lfs.2024.122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The role of mast cells, traditionally recognized for their involvement in immediate hypersensitivity reactions, has garnered significant attention in liver diseases. Studies have indicated a notable increase in mast cell counts following hepatic injury, underscoring their potential contribution to liver disorder pathogenesis. Predominantly situated in connective tissue that envelops the hepatic veins, bile ducts, and arteries, mast cells are central to both initiating and perpetuating liver disorders. Additionally, they are crucial for maintaining gastrointestinal barrier function. The gut-liver axis emphasizes the complex, two-way communication between the gut microbiome and the liver. Past research has implicated gut microbiota and their metabolites in the progression of hepatic disorders. This review sheds light on how mast cells are activated in various liver conditions such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, hepatic fibrogenesis, and hepatocellular carcinoma. It also briefly explores the connection between the gut microbiome and mast cell activation in these hepatic conditions.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India.
| |
Collapse
|
2
|
Lee SK, Choi JY, Jung ES, Kwon JH, Jang JW, Bae SH, Yoon SK. An Immunological Perspective on the Mechanism of Drug Induced Liver Injury: Focused on Drugs for Treatment of Hepatocellular Carcinoma and Liver Transplantation. Int J Mol Sci 2023; 24:5002. [PMID: 36902432 PMCID: PMC10003078 DOI: 10.3390/ijms24055002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The liver is frequently exposed to potentially toxic materials, and it is the primary site of clearance of foreign agents, along with many innate and adaptive immune cells. Subsequently, drug induced liver injury (DILI), which is caused by medications, herbs, and dietary supplements, often occurs and has become an important issue in liver diseases. Reactive metabolites or drug-protein complexes induce DILI via the activation of various innate and adaptive immune cells. There has been a revolutionary development of treatment drugs for hepatocellular carcinoma (HCC) and liver transplantation (LT), including immune checkpoint inhibitors (ICIs), that show high efficacy in patients with advanced HCC. Along with the high efficacy of novel drugs, DILI has become a pivotal issue in the use of new drugs, including ICIs. This review demonstrates the immunological mechanism of DILI, including the innate and adaptive immune systems. Moreover, it aims to provide drug treatment targets, describe the mechanisms of DILI, and detail the management of DILI caused by drugs for HCC and LT.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Xu H, Wang H. Immune cells in alcohol-related liver disease. LIVER RESEARCH 2022; 6:1-9. [PMID: 39959807 PMCID: PMC11791833 DOI: 10.1016/j.livres.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022]
Abstract
Alcohol-related liver disease (ALD), which is caused by excessive alcohol consumption, is one of the most common types of liver disease and a primary cause of hepatic injury, with a disease spectrum that includes steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Various lines of evidence have indicated that immune cells play a significant role in the inflammatory processes of ALD. On the one hand, the liver contains various resident immune cells that have been proven to perform different functions in ALD. For example, in the progression of the disease, Kupffer cells (KCs) are activated by lipopolysaccharide-Toll-like receptor 4 signaling and release various proinflammatory cytokines. Moreover, alcohol intake has been shown to depress the function of natural killer cells. Additionally, two types of unconventional T cells (natural killer T cells and mucosal-associated invariant T cells) are involved in the development of ALD. On the other hand, alcohol and many different cytokines stimulate the recruitment and infiltration of circulating immune cells (neutrophils, T cells, macrophages, and mast cells) into the liver. The neutrophils can produce proinflammatory mediators and cause the dysfunction of anti-infection processes. Additionally, alcohol intake can change the phenotype of T cells, resulting in their increased production of interleukin-17. Aside from KCs, infiltrating macrophages have also been observed in patients with ALD, but the roles of all of these cells in the progression of the disease have shown both similarities and differences. Additionally, the activated mast cells are also associated with the development of ALD. Herein, we review the diverse roles of the various immune cells in the progression of ALD.
Collapse
Affiliation(s)
- Honghai Xu
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Krause BC, Kriegel FL, Tartz V, Jungnickel H, Reichardt P, Singh AV, Laux P, Shemis M, Luch A. Combinatory Effects of Cerium Dioxide Nanoparticles and Acetaminophen on the Liver-A Case Study of Low-Dose Interactions in Human HuH-7 Cells. Int J Mol Sci 2021; 22:6866. [PMID: 34202329 PMCID: PMC8268126 DOI: 10.3390/ijms22136866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The interactions between pharmaceuticals and nanomaterials and its potentially resulting toxicological effects in living systems are only insufficiently investigated. In this study, two model compounds, acetaminophen, a pharmaceutical, and cerium dioxide, a manufactured nanomaterial, were investigated in combination and individually. Upon inhalation, cerium dioxide nanomaterials were shown to systemically translocate into other organs, such as the liver. Therefore we picked the human liver cell line HuH-7 cells as an in vitro system to investigate liver toxicity. Possible synergistic or antagonistic metabolic changes after co-exposure scenarios were investigated. Toxicological data of the water soluble tetrazolium (WST-1) assay for cell proliferation and genotoxicity assessment using the Comet assay were combined with an untargeted as well as a targeted lipidomics approach. We found an attenuated cytotoxicity and an altered metabolic profile in co-exposure experiments with cerium dioxide, indicating an interaction of both compounds at these endpoints. Single exposure against cerium dioxide showed a genotoxic effect in the Comet assay. Conversely, acetaminophen exhibited no genotoxic effect. Comet assay data do not indicate an enhancement of genotoxicity after co-exposure. The results obtained in this study highlight the advantage of investigating co-exposure scenarios, especially for bioactive substances.
Collapse
Affiliation(s)
- Benjamin C. Krause
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Fabian L. Kriegel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
- NUVISAN ICB GmbH, Preclinical Compound Profiling, Muellerstrasse 178, 13353 Berlin, Germany
| | - Victoria Tartz
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Harald Jungnickel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Philipp Reichardt
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Ajay Vikram Singh
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Peter Laux
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| | - Mohamed Shemis
- Department of Biochemistry & Molecular Biology, Theodor Bilharz Research Institute, Warak El-Hadar, Kornish El-Nile, P.O. Box 30 Imbaba, Giza 12411, Egypt;
| | - Andreas Luch
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (F.L.K.); (V.T.); (H.J.); (P.R.); (A.V.S.); (P.L.); (A.L.)
| |
Collapse
|
5
|
Huang A, Desai A, Brinster N, Marmon S. Telangiectasia macularis eruptiva perstans in the presence of liver cirrhosis. JAAD Case Rep 2020; 6:438-440. [PMID: 32382640 PMCID: PMC7200198 DOI: 10.1016/j.jdcr.2020.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Weiskirchen R, Meurer SK, Liedtke C, Huber M. Mast Cells in Liver Fibrogenesis. Cells 2019; 8:E1429. [PMID: 31766207 PMCID: PMC6912398 DOI: 10.3390/cells8111429] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells of the myeloid lineage that are present in the connective tissue throughout the body and in mucosa tissue. They originate from hematopoietic stem cells in the bone marrow and circulate as MC progenitors in the blood. After migration to various tissues, they differentiate into their mature form, which is characterized by a phenotype containing large granules enriched in a variety of bioactive compounds, including histamine and heparin. These cells can be activated in a receptor-dependent and -independent manner. Particularly, the activation of the high-affinity immunoglobulin E (IgE) receptor, also known as FcεRI, that is expressed on the surface of MCs provoke specific signaling cascades that leads to intracellular calcium influx, activation of different transcription factors, degranulation, and cytokine production. Therefore, MCs modulate many aspects in physiological and pathological conditions, including wound healing, defense against pathogens, immune tolerance, allergy, anaphylaxis, autoimmune defects, inflammation, and infectious and other disorders. In the liver, MCs are mainly associated with connective tissue located in the surrounding of the hepatic arteries, veins, and bile ducts. Recent work has demonstrated a significant increase in MC number during hepatic injury, suggesting an important role of these cells in liver disease and progression. In the present review, we summarize aspects of MC function and mediators in experimental liver injury, their interaction with other hepatic cell types, and their contribution to the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, D-52074 Aachen, Germany;
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
7
|
Altered gut-liver axis in liver diseases. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|