1
|
Rybicka A, Medel P, Gómez E, Carro MD, García J. Different Physiochemical Properties of Novel Fibre Sources in the Diet of Weaned Pigs Influence Animal Performance, Nutrient Digestibility, and Caecal Fermentation. Animals (Basel) 2024; 14:2612. [PMID: 39272397 PMCID: PMC11394630 DOI: 10.3390/ani14172612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The effect of including micronised fibre sources (FS) differing in fermentability and hydration capacity (HC) on growth performance, faecal digestibility, and caecal fermentation was investigated in piglets. There were four dietary treatments: a control diet (CON) and three treatments differing in the HC and fermentability of FS added at 1.5% to prestarter (28-42 d) and starter (42-61 d) diets. These were: LHC (low-HC by-product-based insoluble fibre (IF) with a prebiotic fraction (PF) from chicory root); MHC (medium-HC by-product-based IF with a PF); and HHC (high-HC non-fermentable wood-based IF with no PF). There were eight replicates per treatment. Over the entire period, LHC and MHC piglets showed a 10% increase in daily growth and feed intake (p ≤ 0.019) and tended to have a reduced feed conversion ratio (p = 0.087) compared to HHC piglets. At 42 d, faecal protein digestibility increased by 5% in the LHC and MHC groups compared with the HHC group (p = 0.035) and did not differ from the CON group. Both LHC and MHC fibres were more fermented in vitro with caecal inocula from 61 d old piglets than HHC fibre (p ≤ 0.003). These results suggest that balanced soluble and insoluble fibre concentrates can improve piglet performance.
Collapse
Affiliation(s)
- Agnieszka Rybicka
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Emilio Gómez
- Centro de Pruebas de Porcino, ITACyL, Hontalbilla, 40353 Segovia, Spain
| | - María Dolores Carro
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Javier García
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Ariaee A, Wardill HR, Wignall A, Prestidge CA, Joyce P. The Degree of Inulin Polymerization Is Important for Short-Term Amelioration of High-Fat Diet (HFD)-Induced Metabolic Dysfunction and Gut Microbiota Dysbiosis in Rats. Foods 2024; 13:1039. [PMID: 38611345 PMCID: PMC11011263 DOI: 10.3390/foods13071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Inulin, a non-digestible polysaccharide, has gained attention for its prebiotic properties, particularly in the context of obesity, a condition increasingly understood as a systemic inflammatory state linked to gut microbiota composition. This study investigates the short-term protective effects of inulin with different degrees of polymerization (DPn) against metabolic health deterioration and gut microbiota alterations induced by a high-fat diet (HFD) in Sprague Dawley rats. Inulin treatments with an average DPn of 7, 14, and 27 were administered at 1 g/kg of bodyweight to HFD-fed rats over 21 days. Body weight, systemic glucose levels, and proinflammatory markers were measured to assess metabolic health. Gut microbiota composition was analyzed through 16S rRNA gene sequencing. The results showed that inulin27 significantly reduced total weight gain and systemic glucose levels, suggesting a DPn-specific effect on metabolic health. The study also observed shifts in gut microbial populations, with inulin7 promoting several beneficial taxa from the Bifidobacterium genera, whilst inducing a unique microbial composition compared to medium-chain (DPn 14) and long-chain inulin (DPn: 27). However, the impact of inulin on proinflammatory markers and lipid metabolism parameters was not statistically significant, possibly due to the short study duration. Inulin with a higher DPn has a more pronounced effect on mitigating HFD-induced metabolic health deterioration, whilst inulin7 is particularly effective at inducing healthy microbial shifts. These findings highlight the benefits of inulin as a dietary adjuvant in obesity management and the importance of DPn in optimizing performance.
Collapse
Affiliation(s)
- Amin Ariaee
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Hannah R. Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia;
- Supportive Oncology Research Group, Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Clive A. Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| |
Collapse
|
3
|
Chen X, de Vos P. Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula. Crit Rev Food Sci Nutr 2023; 64:8325-8345. [PMID: 37035930 DOI: 10.1080/10408398.2023.2199072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Human milk oligosaccharides (hMOs) in mothers' milk play a crucial role in guiding the colonization of microbiota and gut-immune barrier development in infants. Non-digestible carbohydrates (NDCs) such as synthetic single hMOs, galacto-oligosaccharides (GOS), inulin-type fructans and pectin oligomers have been added to infant formula to substitute some hMOs' functions. HMOs and NDCs can modulate the gut-immune barrier, which is a multiple-layered functional unit consisting of microbiota, a mucus layer, gut epithelium, and the immune system. There is increasing evidence that the structures of the complex polysaccharides may influence their efficacy in modulating the gut-immune barrier. This review focuses on the role of different structures of individual hMOs and commonly applied NDCs in infant formulas in (i) direct regulation of the gut-immune barrier in a microbiota-independent manner and in (ii) modulation of microbiota composition and microbial metabolites of these polysaccharides in a microbiota-dependent manner. Both have been shown to be essential for guiding the development of an adequate immune barrier, but the effects are very dependent on the structural features of hMO or NDC. This knowledge might lead to tailored infant formulas for specific target groups.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Dietary Inclusion of Dried Chicory Root Affects Cecal Mucosa Proteome of Nursery Pigs. Animals (Basel) 2022; 12:ani12131710. [PMID: 35804609 PMCID: PMC9264899 DOI: 10.3390/ani12131710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A well-balanced diet seems to play a key role in disease prevention and health promotion in young animals. Therefore, many attempts have been made to supplement feeds with novel nutritional components, with potential prebiotic capacity. It seems that chicory root fulfils those criteria as it contains high amounts of inulin-type fructans. Hence, the aim of the study was to determine the effect of dietary supplementation with 4% dried chicory root on the cecal mucosa proteome of piglets. It is shown that this feed additive may affect cellular metabolism in the cecal epithelium and may be beneficial for gut health. Abstract Prebiotics are known to have many beneficial effects on intestinal health by modulating the gut microbiota composition, thereby affecting epithelial cell proliferation and metabolism. This study had two aims: (1) to identify the protein constituents in the cecal mucosa of 50-day-old healthy (PIC × Penarlan P76) barrows, and (2) to assess the effects of 4% inclusion of dried chicory root in a cereal-based diet on the cecal mucosa proteome changes. Pigs (eight per group) were randomly allotted to the groups and were fed a control diet from the tenth day of life (C) or a diet supplemented with 4% of died chicory root (CR), for 40 days. At the age of 50 days, animals were sacrificed and cecal tissue samples were collected. It was found that feeding a CR diet significantly decreased the expression of 16 cecal mucosa proteins. Among them, fifteen proteins were down-regulated, while only one (KRT20) was shown to be up-regulated when compared to the C group. Dietary supplementation with CR caused down-expression of metabolism-associated proteins including enzymes involved in the process of glycolysis (G6PD, TPI1, ALDH9A1, CKMT1 and AKR1A1) as well as those engaged in transcriptional and translational activity (PRPF19, EEF1G) and several structural proteins (ACTR3, KRT77, CAP1 and actin). From our findings, it is possible to conclude that dietary chicory root at 4% had beneficial effects on the gut health of pigs as indicated by a changed abundance of certain cecal proteins such as KRT20, SERPINB1, HSP27, ANAXA2 and ANAXA4.
Collapse
|
5
|
Tawfick MM, Xie H, Zhao C, Shao P, Farag MA. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int J Biol Macromol 2022; 208:948-961. [PMID: 35381290 DOI: 10.1016/j.ijbiomac.2022.03.218] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Inulin consumption in both humans and animal models is recognized for its prebiotic action with the most consistent change that lies in enhancing the growth and functionality of Bifidobacterium bacteria, as well as its effect on host gene expression and metabolism. Further, inulin-type fructans are utilized in the colon by bacterial fermentation to yield short-chain fatty acids (SCFAs), which play important role in its biological effects both locally inside the gut and in systemic actions. The gut symbiosis sustained by inulin supplementation among other dietary fibers exerts preventive and/or therapeutic options for many metabolic disorders including obesity, type 2 diabetes mellitus, cardiometabolic diseases, kidney diseases and hyperuricemia. Although, gastrointestinal negative effects due to inulin consumption were reported, such as gastrointestinal symptoms in humans and exacerbated inflammatory bowel disease (IBD) in mice. This comprehensive review aims to present the whole story of how inulin functions as a prebiotic at cellular levels and the interplay between physiological, functional and immunological responses inside the animal or human gut as influenced by inulin in diets, in context to its structural composition. Such review is of importance to identify management and feed strategies to optimize gut health, for instance, consumption of the tolerated doses to healthy adults of 10 g/day of native inulin or 5 g/day of naturally inulin-rich chicory extract. In addition, inulin-drug interactions should be further clarified particularly if used as a supplement for the treatment of degenerative diseases (e.g., diabetes) over a long period. The combined effect of probiotics and inulin appears more effective, and more research on this synergy is still needed.
Collapse
Affiliation(s)
- Mahmoud M Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Hualing Xie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt.
| |
Collapse
|
6
|
Chen P, Lei S, Tong M, Chang Q, Zheng B, Zhang Y, Zeng H. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Herosimczyk A, Lepczyński A, Ożgo M, Tuśnio A, Taciak M, Barszcz M. Effect of dietary inclusion of 1% or 3% of native chicory inulin on the large intestinal mucosa proteome of growing pigs. Animal 2020; 14:1647-1658. [PMID: 32167440 DOI: 10.1017/s1751731120000440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Native chicory inulin is one of the promising alternatives to replace antibiotic growth promoters in young animals. Several potential mechanisms of prebiotic action have been proposed, such as modification of the intestinal microbiota composition leading to improved epithelial integrity and gut mucosal immunity of the host. The current study was focused on inulin effect on the large intestinal proteome and its implications for gut barrier functions. Therefore, we used proteomic techniques to determine changes in the large intestinal mucosa proteome of growing pigs after 40-day supplementation with native chicory inulin. The experiment was performed on 24 piglets fed from the 10th day of life an unsupplemented cereal-based diet or inulin-enriched diets (1% or 3%) with an average degree of polymerisation ≥ 10. At the age of 50 days, animals were sacrificed and tissue samples were collected from the cecum, and proximal and distal colon. Feeding diets supplemented with both levels of native inulin increased cecal and colonic expression of molecular chaperones, protein foldases and antioxidant proteins, which are collectively responsible for maintaining mucosal cell integrity as well as protecting against endotoxins and reactive oxygen species. This may confirm the beneficial effect of inulin on the gut health in growing pigs.
Collapse
Affiliation(s)
- A Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Janickiego 29 Str., 71-270Szczecin, Poland
| | - A Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Janickiego 29 Str., 71-270Szczecin, Poland
| | - M Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Janickiego 29 Str., 71-270Szczecin, Poland
| | - A Tuśnio
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Janickiego 29 Str., 71-270Szczecin, Poland
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110Jabłonna, Poland
| | - M Taciak
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110Jabłonna, Poland
| | - M Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110Jabłonna, Poland
| |
Collapse
|
8
|
Zhu Z, Huang Y, Luo X, Wu Q, He J, Li S, Barba FJ. Modulation of lipid metabolism and colonic microbial diversity of high-fat-diet C57BL/6 mice by inulin with different chain lengths. Food Res Int 2019; 123:355-363. [PMID: 31284986 DOI: 10.1016/j.foodres.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
Abstract
The physicochemical properties, biological functions and microbial degradation of inulins differ according to their degree of polymerization. However, the relationship between inulin activities and its effect on gut microbiota remains unknown. In this study, high fat diet with inulin (1 or 5 g/kg·bw), either with short or long chains groups were administered to different groups of mice (n = 10) for 10 weeks in order to investigate the effect of inulin on the microbial diversity of the animals. Litchi pericarp procyanidins (LPPC) were used for comparison purposes. Furthermore, the lipid metabolism and key regulator genes in mice were determined. The results indicated that natural inulin (1 g/kg·bw) ingestion reduced the body weight of fat mice between week 6-9. Glutathione peroxidase (GSH-Px) activity in liver was remarkably higher after adding long chain inulin (5 g/kg·bw) compared to high-fat-diet mice. Moreover, high dose of natural inulin regulated malondialdehyde and advanced glycation end-products levels in mice liver. Likewise, the high dose of short-chain inulin increased sterol response element binding protein 1 (SREBP-1), β-Hydroxy β-methylglutaryl-CoA (HMG-CoA) and ATP-binding cassette transporter A1 (ABCA1) genetic expression. A significant change on the abundance of six genera in gut microbial profile suggested that inulin has the ability to modulate the lipid metabolism regardless of chain length, mainly due to its impact on colon microbiota variety.
Collapse
Affiliation(s)
- Zhenzhou Zhu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuqi Huang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao Luo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingren He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyi Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| |
Collapse
|
9
|
Wu XQ, Yu JX, Xu H, Huang XS. WITHDRAWN: Purification and characterization of a bifunctional fructan: Fructan 6G-fructosyl transferase from garlic (Allium sativum). Food Chem 2019. [DOI: 10.1016/j.foodchem.2019.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Barszcz M, Taciak M, Tuśnio A, Święch E, Bachanek I, Kowalczyk P, Borkowski A, Skomiał J. The effect of dietary level of two inulin types differing in chain length on biogenic amine concentration, oxidant-antioxidant balance and DNA repair in the colon of piglets. PLoS One 2018; 13:e0202799. [PMID: 30192784 PMCID: PMC6128538 DOI: 10.1371/journal.pone.0202799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/09/2018] [Indexed: 12/27/2022] Open
Abstract
The effect of dietary level of two types of inulin on amine concentration, redox status and DNA glycosylase activity in the colon of piglets was investigated. Seven groups of piglets were fed diets without inulin addition (control) or with 1%, 2% or 3% inulin with an average degree of polymerisation of 10 (IN10) or 23 (IN23) for 40 days. The 2% and 3% IN10 diets increased tryptamine concentration in the proximal colon, while methylamine concentration in the distal colon was increased by the 1% and 3% IN10 diets. The 1% and 2% IN23 diets increased phenylethylamine and methylamine concentration in the proximal colon, respectively, while 1,7-diaminoheptane content was increased by both diets. Its concentration in the middle and distal colon was increased by the 1% and 2% IN23 diet, respectively. There was no improvement in the oxidant-antioxidant balance in colonic digesta of piglets fed IN10 and IN23 diets. Piglets fed IN10 diets had lower 1,N6-etheno-2’-deoxyadenosine excision activity in each colon segment, as compared with the control group. It was also reduced by the 2% and 3% IN23 diets in the proximal colon, while in the middle and distal colon by all IN23 diets. Feeding all IN10 and IN23 diets reduced 3,N4-etheno-2’-deoxycytidine and 8-oxo-deoxyguanosine excision activities in each colon segment. Feeding IN10 and IN23 diets neither decreased amine concentrations nor improved the oxidant-antioxidant balance in colonic digesta of piglets. However, both types of inulin efficiently reduced the activity of DNA repair enzymes.
Collapse
Affiliation(s)
- Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
- * E-mail:
| | - Marcin Taciak
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Anna Tuśnio
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Ewa Święch
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Ilona Bachanek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Andrzej Borkowski
- Geomicrobiology Laboratory, Faculty of Geology, University of Warsaw, Warsaw, Poland
| | - Jacek Skomiał
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
11
|
Li B, Schroyen M, Leblois J, Wavreille J, Soyeurt H, Bindelle J, Everaert N. Effects of inulin supplementation to piglets in the suckling period on growth performance, postileal microbial and immunological traits in the suckling period and three weeks after weaning. Arch Anim Nutr 2018; 72:425-442. [PMID: 30160174 DOI: 10.1080/1745039x.2018.1508975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the effect of inulin (IN) supplementation to suckling piglets at and 3 weeks post-weaning. A total of 72 newborn piglets were used. Twenty-four piglets per group received different amounts of IN during the suckling period: (a) CON: no IN; (b) IN-0.5: 0.5 g IN/d on the 1st week, 1 g IN/d on the 2nd week, 1.5 g IN/d on the 3rd week and 2 g IN/d on the 4th week, or (c) IN-0.75: 0.75 g IN/d on the 1st week, 1.5 g IN/d on the 2nd week, 2.25 g IN/d on the 3rd week and 3 g IN/d on the 4th week. Starting at 28 d of age, piglets were weaned and received a post-weaning diet without inulin during the following 3 weeks. At both 28 d and 49 d of age, piglets were euthanised for sampling. Piglets of group IN-0.5 had the highest body weight starting from the 3rd week (p < 0.05), concomitant with the highest villus height and the ratio of villus height/crypt depth in the jejunum and ileum on both sampling days (p < 0.05). At 28 d of age, an increased concentration of propionate, iso-butyrate or total short chain fatty acids was observed between treatment IN-0.5 and the other groups in the caecum or colon (p < 0.05). Moreover, the relative abundance of Escherichia coli (p = 0.05) and Enterobacteriaceae (p = 0.01) in colonic digesta were reduced in IN-0.5-treated piglets, and in both IN-supplemented groups, colonic interleukin-8, tumor necrosis factor-α and toll-like receptor-4 mRNA abundance were decreased compared to the CON group (p < 0.05). However, at 49 d of age, most of these differences disappeared. In conclusion, treatment IN-0.5 improved during the suckling period of piglets development of intestine, but these beneficial effects were not lasting after weaning, when IN supplementation was terminated. Treatment IN-0.75, however, did not display a prebiotic effect.
Collapse
Affiliation(s)
- Bing Li
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| | - Martine Schroyen
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| | - Julie Leblois
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium.,b Research Foundation for Industry and Agriculture , Fonds De La Recherche Scientifique - FNRS , Brussels , Belgium
| | - José Wavreille
- c Department of Production and Sectors , Walloon Agricultural Research Centre , Gembloux , Belgium
| | - Hélène Soyeurt
- d Laboratory of statistics, informatics and modelling applied to bioengineering, agrobiochem department, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| | - Jérôme Bindelle
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| | - Nadia Everaert
- a Precision livestock and nutrition unit, Gembloux Agro-Bio Tech, Teaching and Research Centre , University of Liège , Gembloux , Belgium
| |
Collapse
|
12
|
Herosimczyk A, Lepczyński A, Ożgo M, Barszcz M, Marynowska M, Tuśnio A, Taciak M, Markulen A, Skomiał J. Proteome changes in ileal mucosa of young pigs resulting
from different levels of native chicory inulin in the diet. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/93737/2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydr Polym 2018; 193:212-220. [DOI: 10.1016/j.carbpol.2018.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 11/19/2022]
|
14
|
Castillo Andrade A, Rivera Bautista C, Godínez Hernández C, Ruiz Cabrera M, Fuentes Ahumada C, García Chávez E, Grajales Lagunes A. Physiometabolic effects of Agave salmiana fructans evaluated in Wistar rats. Int J Biol Macromol 2018; 108:1300-1309. [DOI: 10.1016/j.ijbiomac.2017.11.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
15
|
Barszcz M, Taciak M, Skomiał J. Influence of different inclusion levels and chain length of inulin on microbial ecology and the state of mucosal protective barrier in the large intestine of young pigs. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the study was to examine the effect of inulin level, in regard to its degree of polymerisation (DP), on microbial activity and mucosal immune system of the large intestine of pigs. A total of 56 castrated male piglets (PIC × Penarlan P76) were allocated to seven groups and fed from the 10th day of life cereal-based diets without the addition of inulin or with 1%, 2% or 3% of inulin with an average DP of 10 (IN10) or 23 (IN23). Pigs were sacrificed at the age of 50 days. Feeding IN10 diets increased fructan concentration in the large intestine compared with IN23 diets, but did not affect microbial activity, except for digesta pH and mucinase activity in the middle colon, which were greater at the 1% level compared with the control group and other IN10 diets, respectively. The concentration of secretory immunoglobulin A in the caecum and middle colon was reduced by the 1% IN10 diet compared with the control group. Pigs fed the 2% IN23 diet had a higher butyric acid concentration in the caecum and proximal colon and greater isoacid concentrations in the middle and distal colon in comparison to the control. Dietary level of IN23 did not affect secretory immunoglobulin A concentration but the count of caecal intraepithelial lymphocytes was higher in pigs on the 1% IN23 diet than on the control diet. Neither IN10 nor IN23 diets affected populations of Bifidobacterium or Lactobacillus spp. In conclusion, the effects of inulin in the large intestine of pigs depended on dietary level and DP. IN23 increased short-chain fatty acid production at the 2% level and slightly activated mucosal immune status at the 1% level.
Collapse
|
16
|
Harlow BE, Kagan IA, Lawrence LM, Flythe MD. Effects of Inulin Chain Length on Fermentation by Equine Fecal Bacteria and Streptococcus bovis. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2015.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Barszcz M, Taciak M, Skomiał J. The effects of inulin, dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch Anim Nutr 2016; 70:278-92. [DOI: 10.1080/1745039x.2016.1184368] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
De Sadeleer E, Vergauwen R, Struyf T, Le Roy K, Van den Ende W. 1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor. FRONTIERS IN PLANT SCIENCE 2015; 6:616. [PMID: 26322058 PMCID: PMC4531242 DOI: 10.3389/fpls.2015.00616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/27/2015] [Indexed: 05/26/2023]
Abstract
Fructans are important vacuolar reserve carbohydrates with drought, cold, ROS and general abiotic stress mediating properties. They occur in 15% of all flowering plants and are believed to display health benefits as a prebiotic and dietary fiber. Fructans are synthesized by specific fructosyltransferases and classified based on the linkage type between fructosyl units. Inulins, one of these fructan types with β(2-1) linkages, are elongated by fructan:fructan 1-fructosyltransferases (1-FFT) using a fructosyl unit from a donor inulin to elongate the acceptor inulin molecule. The sequence identity of the 1-FFT of Viguiera discolor (Vd) and Helianthus tuberosus (Ht) is 91% although these enzymes produce distinct fructans. The Vd 1-FFT produces high degree of polymerization (DP) inulins by preferring the elongation of long chain inulins, in contrast to the Ht 1-FFT which prefers small molecules (DP3 or 4) as acceptor. Since higher DP inulins have interesting properties for industrial, food and medical applications, we report here on the influence of two amino acids on the high DP inulin production capacity of the Vd 1-FFT. Introducing the M19F and H308T mutations in the active site of the Vd 1-FFT greatly reduces its capacity to produce high DP inulin molecules. Both amino acids can be considered important to this capacity, although the double mutation had a much higher impact than the single mutations.
Collapse
Affiliation(s)
| | | | | | | | - Wim Van den Ende
- *Correspondence: Wim Van den Ende, Laboratory of Molecular Plant Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
19
|
Sattler VA, Bayer K, Schatzmayr G, Haslberger AG, Klose V. Impact of a probiotic, inulin, or their combination on the piglets' microbiota at different intestinal locations. Benef Microbes 2015; 6:473-83. [PMID: 25380797 DOI: 10.3920/bm2014.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural feed additives are used to maintain health and to promote performance of pigs without antibiotics. Effects of a probiotic, inulin, and their combination (synbiotic), on the microbial diversity and composition at different intestinal locations were analysed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and 16S rRNA gene pyrosequencing. Bacterial diversity assessed by DGGE and/or pyrosequencing was increased by inulin in all three gut locations and by the synbiotic in the caecum and colon. In contrast, the probiotic did only affect the microbiota diversity in the ileum. Shifts in the DGGE microbiota profiles of the caecum and colon were detected for the pro- and synbiotic fed animals, whereas inulin profiles were more similar to the ones of the control. 16S rRNA gene pyrosequencing revealed that all three additives could reduce Escherichia species in each gut location, indicating a potential beneficial effect on the gut microbiota. An increase of relative abundance of Clostridiaceae in the large intestine was found in the inulin group and of Enterococcaceae in the ileum of probiotic fed pigs. Furthermore, real-time PCR results showed that the probiotic and synbiotic increased bifidobacterial numbers in the ileum, which was supported by sequencing results. The probiotic and inulin, to different extents, changed the diversity, relative abundance of phylotypes, and community profiles of the porcine microbiota. However, alterations of the bacterial community were not uniformly between gut locations, demonstrating that functionality of feed additives is site specific. Therefore, gut sampling from various locations is crucial when investigations aim to identify the composition of a healthy gut microbiota after its manipulation through feed additives.
Collapse
Affiliation(s)
- V A Sattler
- 1 University of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, IFA Tulln, Konrad-Lorenz Strasse 20, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
20
|
Pieper R, Vahjen W, Zentek J. Dietary fibre and crude protein: impact on gastrointestinal microbial fermentation characteristics and host response. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an15278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of the gastrointestinal tract microbiota in animal health and nutrition has become the subject of intensive research. Carbohydrates and crude protein are major components of swine diets and numerous studies have been performed looking at the effect of inclusion of dietary fibre with possible functional properties. In recent years, our understanding of the diversity and functionality of the gastrointestinal tract microbiota has increased further enabling the possibility for their targeted modulation. However, favouring potential beneficial bacteria, inhibiting possible pathogens or promotion of the formation of desired metabolites, is complex and underlies many factors and uncertainties. Approaches targeting this complex ecosystem (and discussed in this review) include the utilisation of fermentable carbohydrates such as resistant starch, cereal 1–3/1–4 β-glucans, arabinoxylans, inulin or other sources from legumes and industrial by-products. In addition, strategies regarding protein level and the protein : carbohydrate ratio are discussed briefly. Results are both promising and sometimes rather disillusioning considering the dietary concentrations needed to show biologically relevant effects. Deriving recommendations for an optimal inclusion rate of dietary fibre for weaning, growing pigs and sows and maximum levels for dietary crude protein may be one of the main challenges in the near future in the swine industry.
Collapse
|
21
|
Rochus K, Bosch G, Vanhaecke L, Van de Velde H, Depauw S, Xu J, Fievez V, Van de Wiele T, Hendriks WH, Paul Jules Janssens G, Hesta M. Incubation of selected fermentable fibres with feline faecal inoculum: correlations between in vitro fermentation characteristics and end products. Arch Anim Nutr 2013; 67:416-31. [PMID: 23952674 DOI: 10.1080/1745039x.2013.830519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study aimed to evaluate correlations between fermentation characteristics and end products of selected fermentable fibres (three types of fructans, citrus pectin, guar gum), incubated with faecal inocula from donor cats fed two diets, differing in fibre and protein sources and concentrations. Cumulative gas production was measured over 72 h, fermentation end products were analysed at 4, 8, 12, 24, 48 and 72 h post-incubation, and quantification of lactobacilli, bifidobacteria and bacteroides in fermentation liquids were performed at 4 and 48 h of incubation. Partial Pearson correlations, corrected for inoculum, were calculated to assess the interdependency of the fermentation characteristics of the soluble fibre substrates. Butyric and valeric acid concentrations increased with higher fermentation rates, whereas acetic acid declined. Concentrations of butyric acid (highest in fructans) and propionic acid were inversely correlated with protein fermentation end products at several time points, whereas concentrations of acetic acid (highest in citrus pectin) were positively correlated with these products at most time points. Remarkably, a lack of clear relationship between the counts of bacterial groups and their typically associated products after 4 h of incubation was observed. Data from this experiment suggest that differences in fibre fermentation rate in feline faecal inocula coincide with typical changes in the profile of bacterial fermentation products. The observed higher concentrations of propionic and butyric acid as a result of fibre fermentation could possibly have beneficial effects on intestinal health, and may be confounded with a concurrent decrease in the production of putrefactive compounds. In conclusion, supplementing guar gum or fructans to a feline diet might be more advantageous compared with citrus pectin. However, in vivo research is warranted to confirm these conclusions in domestic cats.
Collapse
Affiliation(s)
- Kristel Rochus
- a Department of Nutrition, Genetics and Ethology , Ghent University , Merelbeke , Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Effects of cellooligosaccharide or a combination of cellooligosaccharide and live Clostridium butyricum culture on performance and intestinal ecology in Holstein calves fed milk or milk replacer. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal 2013; 7:1067-78. [DOI: 10.1017/s1751731113000062] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|