1
|
Wang Q, Guo C, Wang T, Shuai P, Wu W, Huang S, Li Y, Zhao P, Zeng C, Yi L. Drug protection against radiation-induced neurological injury: mechanisms and developments. Arch Toxicol 2025; 99:851-863. [PMID: 39724149 DOI: 10.1007/s00204-024-03933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
In daily life, individuals are frequently exposed to various forms of radiation, which, when adhering to safety standards, typically result in relatively minor health effects. However, accidental exposure to radiation levels that exceed these safety standards can lead to significant health consequences. This study focuses on the analysis of radiation-induced damage to the nervous system and the mechanisms of pharmacological protection. The findings indicate that radiation can adversely affect neural structures, memory, and neurobehaviour. A range of pharmacological agents, including traditional Chinese medicine, Western medicine, and other therapeutic drugs, can be employed to safeguard the nervous system from radiation damage. The primary protective mechanisms of these agents encompass antioxidant effects, attenuation of apoptosis, and reduction of neurogenesis. A comprehensive review of these topics will offer new insights for the development and investigation of drugs aimed at mitigating radiation-induced damage to the nervous system.
Collapse
Affiliation(s)
- Qingyu Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Caimao Guo
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tiantian Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Peimeng Shuai
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenyu Wu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shuqi Huang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyuan Li
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pei Zhao
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Chengkai Zeng
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Cahoon DS, Fisher DR, Zheng T, Lamon-Fava S, Wu D, Rabin BM, Shukitt-Hale B. Dietary Blueberry before and/or after Exposure to High Energy and Charge Particle Radiation Attenuates Neuroinflammation, Oxidative Stress, Glial Cell Activation, and Memory Deficits in Rats. J Nutr 2025; 155:690-702. [PMID: 39800309 DOI: 10.1016/j.tjnut.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration. OBJECTIVES This study assessed the differential efficacy and mechanistic targets of a BB-supplemented diet before and/or after HZE particle irradiation on neuroinflammation, OS, glial cell activation, and memory deficits. METHODS Two-month-old male Sprague-Dawley rats (n = 120) consumed a 2% BB or control diet for 45 d. Rats were whole-body irradiated (150 cGy 56Fe) or were not irradiated, followed by a 45-d post-treatment interval in which they were fed a 2% BB or control diet. The novel object recognition (NOR) test was performed at the end of the post-treatment interval to evaluate memory. Biomarkers of neuroinflammation, OS, and glial cell activity were evaluated in the hippocampus and frontal cortex of rat brains after euthanasia. Statistical analyses included analysis of variance, t-tests, and Pearson correlations. RESULTS Pre- and/or post-irradiation BB treatments were similarly effective at reducing 56Fe-induced recognition memory deficits on the NOR and the protein and/or mRNA expression of neuroinflammatory factors (tumor necrosis factor-ɑ, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated IκB-α), 1 mediator of OS (nicotinamide adenine dinucleotide phosphate [NADPH] oxidase-2), and markers for microglia and astrocyte activity (CD68 and glial fibrillary acidic protein) in the frontal cortex and hippocampus of rats 45 d post-irradiation (P < 0.05). CONCLUSIONS Findings support the use of dietary post-treatments with antioxidant and anti-inflammatory properties to attenuate biochemical changes in the brain and memory deficits after acute neuroinflammatory/OS-inducing stressors, in addition to having protective benefits.
Collapse
Affiliation(s)
- Danielle S Cahoon
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Derek R Fisher
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Tong Zheng
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Stefania Lamon-Fava
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Dayong Wu
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Bernard M Rabin
- Department of Psychology, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Barbara Shukitt-Hale
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.
| |
Collapse
|
3
|
Zhao M. Food systems for long-term spaceflight: Understanding the role of non-nutrient polyphenols in astronauts' health. Heliyon 2024; 10:e37452. [PMID: 39391512 PMCID: PMC11466544 DOI: 10.1016/j.heliyon.2024.e37452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Background Manned space exploration missions have developed at a rapid pace, with missions to Mars likely to be in excess of 1000 days being planned for the next 20 years. As such, it is important to understand and address the challenges that astronauts face, such as higher radiation exposure, altered gravity, and isolation. Meanwhile, until now the formulation of space food systems has not focused on non-nutrients, and has not considered issues arising from their absence during space missions or the possibility of them to solve the challenges caused by space hazards. Aims This study investigates, by systematic review, current space food systems and the potential for non-nutrients, such as flavonoids and polyphenols, to counteract radiation- and low gravity-induced degeneration of bone, vision, muscle strength, immune function and cognition. Results and discussion A systematic approach found 39 related animal model studies, and that polyphenol dietary interventions have been shown to mitigate radiation-related physiological problems and cognitive decline, as well as reduce the implications of radiotherapy. From the results of these studies, it appears that berry extracts have a significant effect on preventing cognitive problems through attenuating the expression of NADPH-oxidoreductase-2 (NOX2) and cycloocygenase-2 (COX2) in both frontal cortex and hippocampus and immune system problems caused by radiation similar to that experienced in space. For physiological problems like alteration of blood-testicular barrier permeability and oxidative stress in kidney and liver caused by gamma rays and X-rays, various polyphenol compounds including resveratrol and tea polyphenols have a certain degree of protective effect like enhancing metabolism of heart and decreasing DNA damage respectively. Due to the lack of quantitative studies and the limited number of relevant studies, it is impossible to compare which polyphenol compounds are more effective. Only one study showed no difference in the performances of a blueberry extract-fed group and a control group exposed to Fe irradiation after 12 months. Conclusion In conclusion, current animal studies have shown that polyphenols can mitigate radiation damage to some extent, but more research is needed to enable the application of a polyphenol diet to actual space flights.
Collapse
Affiliation(s)
- Menglan Zhao
- School of Health, Tianhua College, Shanghai Normal University, 201800, Shanghai, China
| |
Collapse
|
4
|
Curtis AF, Musich M, Costa AN, Gonzales J, Gonzales H, Ferguson BJ, Kille B, Thomas AL, Wei X, Liu P, Greenlief CM, Shenker JI, Beversdorf DQ. Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment. Int J Mol Sci 2024; 25:4352. [PMID: 38673938 PMCID: PMC11050618 DOI: 10.3390/ijms25084352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Despite data showing that nutritional interventions high in antioxidant/anti-inflammatory properties (anthocyanin-rich foods, such as blueberries/elderberries) may decrease risk of memory loss and cognitive decline, evidence for such effects in mild cognitive impairment (MCI) is limited. This study examined preliminary effects of American elderberry (Sambucus nigra subsp. canadensis) juice on cognition and inflammatory markers in patients with MCI. In a randomized, double-blind, placebo-controlled trial, patients with MCI (n = 24, Mage = 76.33 ± 6.95) received American elderberry (n = 11) or placebo (n = 13) juice (5 mL orally 3 times a day) for 6 months. At baseline, 3 months, and 6 months, patients completed tasks measuring global cognition, verbal memory, language, visuospatial cognitive flexibility/problem solving, and memory. A subsample (n = 12, 7 elderberry/5 placebo) provided blood samples to measure serum inflammatory markers. Multilevel models examined effects of the condition (elderberry/placebo), time (baseline/3 months/6 months), and condition by time interactions on cognition/inflammation outcomes. Attrition rates for elderberry (18%) and placebo (15%) conditions were fairly low. The dosage compliance (elderberry-97%; placebo-97%) and completion of cognitive (elderberry-88%; placebo-87%) and blood-based (elderberry-100%; placebo-100%) assessments was high. Elderberry (not placebo) trended (p = 0.09) towards faster visuospatial problem solving performance from baseline to 6 months. For the elderberry condition, there were significant or significantly trending decreases over time across several markers of low-grade peripheral inflammation, including vasorin, prenylcysteine oxidase 1, and complement Factor D. Only one inflammatory marker showed an increase over time (alpha-2-macroglobin). In contrast, for the placebo, several inflammatory marker levels increased across time (L-lactate dehydrogenase B chain, complement Factor D), with one showing deceased levels over time (L-lactate dehydrogenase A chain). Daily elderberry juice consumption in patients with MCI is feasible and well tolerated and may provide some benefit to visuospatial cognitive flexibility. Preliminary findings suggest elderberry juice may reduce low-grade inflammation compared to a placebo-control. These promising findings support the need for larger, more definitive prospective studies with longer follow-ups to better understand mechanisms of action and the clinical utility of elderberries for potentially mitigating cognitive decline.
Collapse
Affiliation(s)
- Ashley F. Curtis
- College of Nursing, University of South Florida, Tampa, FL 33620, USA; (A.F.C.); (A.N.C.)
| | - Madison Musich
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65201, USA; (M.M.); (B.K.)
| | - Amy N. Costa
- College of Nursing, University of South Florida, Tampa, FL 33620, USA; (A.F.C.); (A.N.C.)
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA
| | - Joshua Gonzales
- School of Osteopathic Medicine, A. T. Still University, Kirksville, MO 63501, USA;
- Department of Internal Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Hyeri Gonzales
- School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Bradley J. Ferguson
- Department of Neurology, University of Missouri, Columbia, MO 65211, USA; (B.J.F.); (J.I.S.)
| | - Briana Kille
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65201, USA; (M.M.); (B.K.)
- Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Andrew L. Thomas
- Division of Plant Science and Technology, University of Missouri, Southwest Research Extension and Education Center, Mt. Vernon, MO 65201, USA;
| | - Xing Wei
- Charles W. Gehrke Proteomics Center, Department of Chemistry, University of Missouri, Columbia, MO 65201, USA; (X.W.); (P.L.); (C.M.G.)
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, Department of Chemistry, University of Missouri, Columbia, MO 65201, USA; (X.W.); (P.L.); (C.M.G.)
| | - C. Michael Greenlief
- Charles W. Gehrke Proteomics Center, Department of Chemistry, University of Missouri, Columbia, MO 65201, USA; (X.W.); (P.L.); (C.M.G.)
| | - Joel I. Shenker
- Department of Neurology, University of Missouri, Columbia, MO 65211, USA; (B.J.F.); (J.I.S.)
| | - David Q. Beversdorf
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65201, USA; (M.M.); (B.K.)
- Department of Neurology, University of Missouri, Columbia, MO 65211, USA; (B.J.F.); (J.I.S.)
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Cahoon DS, Rabin BM, Fisher DR, Shukitt-Hale B. Effects of HZE-Particle Exposure Location and Energy on Brain Inflammation and Oxidative Stress in Rats. Radiat Res 2023; 200:431-443. [PMID: 37758038 DOI: 10.1667/rade-22-00041.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Astronauts on exploratory missions will be exposed to particle radiation of high energy and charge (HZE particles), which have been shown to produce neurochemical and performance deficits in animal models. Exposure to HZE particles can produce both targeted effects, resulting from direct ionization of atoms along the particle track, and non-targeted effects (NTEs) in cells that are distant from the track, extending the range of potential damage beyond the site of irradiation. While recent work suggests that NTEs are primarily responsible for changes in cognitive function after HZE exposures, the relative contributions of targeted and non-targeted effects to neurochemical changes after HZE exposures are unclear. The present experiment was designed to further explore the role of targeted and non-targeted effects on HZE-induced neurochemical changes (inflammation and oxidative stress) by evaluating the effects of exposure location and particle energy/linear energy transfer (LET). Forty-six male Sprague-Dawley rats received head-only or body-only exposures to 56Fe particles [600 MeV/n (75 cGy) or 1,000 MeV/n (100 cGy)] or 48Ti particles [500 MeV/n (50 cGy) or 1,100 MeV/n (75 cGy)] or no irradiation (0 cGy). Twenty-four h after irradiation, rats were euthanized, and the brain was dissected for analysis of HZE-particle-induced neurochemical changes in the hippocampus and frontal cortex. Results showed that exposure to 56Fe and 48Ti ions produced changes in measurements of brain inflammation [glial fibrillary astrocyte protein (GFAP)], oxidative stress [NADPH-oxidoreductase-2 (NOX2)] and antioxidant enzymes [superoxide dismutase (SOD), glutathione S-transferase (GST), nuclear factor erythroid 2-related factor 2 (Nrf2)]. However, radiation effects varied depending upon the specific measurement, brain region, and exposure location. Although overall exposures of the head produced more detrimental changes in neuroinflammation and oxidative stress than exposures of the body, body-only exposures also produced changes relative to no irradiation, and the effect of particle energy/LET on neurochemical changes was minimal. Results indicate that both targeted and non-targeted effects are important contributors to neurochemical changes after head-only exposure. However, because there were no consistent neurochemical changes as a function of changes in track structure after head-only exposures, the role of direct effects on neuronal function is uncertain. Therefore, these findings, although in an animal model, suggest that NTEs should be considered in the estimation of risk to the central nervous system (CNS) and development of countermeasures.
Collapse
Affiliation(s)
- Danielle S Cahoon
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Maryland 02111
| | - Bernard M Rabin
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Derek R Fisher
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Maryland 02111
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, Maryland 02111
| |
Collapse
|
6
|
Krikorian R, Shidler MD, Summer SS. Early Intervention in Cognitive Aging with Strawberry Supplementation. Nutrients 2023; 15:4431. [PMID: 37892506 PMCID: PMC10610192 DOI: 10.3390/nu15204431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Late-life dementia is a growing public health concern lacking effective treatment. Neurodegenerative disorders such as Alzheimer's disease (AD) develop over a preclinical period of many years beginning in midlife. The prevalence of insulin resistance, a prominent risk factor for late-life dementia, also accelerates in middle-age. Consumption of berry fruits, including strawberries, has been shown to influence metabolism as well as cognitive performance suggesting potential to mitigate risk for dementia. In this controlled trial, we enrolled overweight middle-aged men and women with insulin resistance and subjective cognitive decline and performed a 12-week intervention with daily administration of whole-fruit strawberry powder. Diet records showed that participants in both groups maintained the prescribed abstinence from berry product consumption outside the study. We observed diminished memory interference (p = 0.02; Cohen's f = 0.45) and a reduction of depressive symptoms (p = 0.04; Cohen's f = 0.39) for the strawberry-treated participants; benefits consistent with improved executive ability. However, there was no effect of the intervention on metabolic measures, possibly a consequence of the sample size, length of the intervention, or comparatively low anthocyanin dose. Anti-inflammatory actions of anthocyanins were considered as a primary mechanistic factor. The findings support the notion that strawberry supplementation has a role in dementia risk reduction when introduced in midlife. However, further investigation with longer intervention periods, larger samples, and differing dosing regimens will be required to assess the benefits of strawberry intake with respect to cognition and metabolic function in the context of aging.
Collapse
Affiliation(s)
- Robert Krikorian
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati Academic Health Center, Cincinnati, OH 45267, USA;
| | - Marcelle D. Shidler
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati Academic Health Center, Cincinnati, OH 45267, USA;
| | - Suzanne S. Summer
- Bionutrition Core, Schubert Research Clinic, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| |
Collapse
|
7
|
Rabin BM, Miller MG, Shukitt-Hale B. Effects of preexposure to a subthreshold dose of helium particles on the changes in performance produced by exposure to helium particles. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:88-96. [PMID: 37087183 DOI: 10.1016/j.lssr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
On exploratory class missions, such as a mission to Mars, astronauts will be exposed to doses of particles of high energy and charge and protons up to 30 - 40 cGy. These exposures will most likely occur at random intervals across the estimated 3-yr duration of the mission. As such, the possibility of an interaction between particles must be taken into account: a prior subthreshold exposure to one particle may prevent or minimize the effect of a subsequent exposure (adaptation), or there may be an additive effect such that the prior exposure may sensitize the individual to a subsequent exposure of the same or different radiations. Two identical replications were run in which rats were exposed to a below threshold dose of 4He particles and 2, 24 or 72 h later given either a second below threshold or an above threshold dose of 4He particles and tested for performance on an operant task. The results indicate that preexposure to a subthreshold dose of 4He particles can either sensitize or attenuate the effects of the subsequent dose, depending upon the interval between exposures and the doses. These results suggest that exposure to multiple doses of heavy particles may have implications for astronaut health on exploratory class missions.
Collapse
Affiliation(s)
- Bernard M Rabin
- Department of Psychology, UMBC, Baltimore, MD 21250, United States of America.
| | - Marshall G Miller
- Duke Molecular Physiology Institute and Center for the Study of Aging and Human Development, Duke Univ., Durham, NC 27710, United States of America
| | - Barbara Shukitt-Hale
- Human Nutrition Research Center on Aging, USDA, Tufts Univ., Boston, MA 02111, United States of America
| |
Collapse
|
8
|
Savall ASP, Fidelis EM, de Mello JD, Quines CB, Denardin CC, Marques LS, Klann IP, Nogueira CW, Sampaio TB, Pinton S. Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: The involvement of pro-BDNF/p75 NTR pathway. Life Sci 2023; 324:121711. [PMID: 37088413 DOI: 10.1016/j.lfs.2023.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease is a multisystemic neurodegenerative disorder that includes motor and non-motor symptoms, and common symptoms include memory loss and learning difficulties. Thus, we investigated the neuroprotective potential of a hydroalcoholic extract of Brazilian purple cherry (Eugenia uniflora) (HAE-BC) on memory impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats and the involvement of hippocampal BDNF/TrkB/p75NTR pathway in its effects. Adult male Wistar rats were exposed to MPTP (1 mg/nostril) or vehicle. Twenty-four hours later, the HAE-BC treatments began at doses of 300 or 2000 mg/kg/day or vehicle for 14 days. From 7 days after the MPTP induction, the animals were subjected to behavioral tests to evaluate several cognitive paradigms. HAE-BC treatments, at both doses, blocked the MPTP-caused disruption in the social recognition memory, short- and long-term object recognition memories, and working memory. Furthermore, MPTP-induced motor deficit linked to striatal tyrosine hydroxylase levels decreased, which was blocked by HAE-BC. Our findings demonstrated that HAE-BC blocked the MPTP-induced increase in the hippocampal pro-BDNF, TrkB.t1, and p75NTR levels. The pro-BDNF/p75NTR interaction negatively regulates synaptic transmission and plasticity, and the neuroprotective effect of HAE-BC was related, at least partly, to the modulation of this hippocampal signaling pathway. Thus, our study reports the first evidence of the potential therapeutic of E. uniflora in a Parkinson's disease model in rodents.
Collapse
Affiliation(s)
| | | | | | | | | | - Luiza Souza Marques
- Federal University of Santa Maria - Campus Camobi, Santa Maria CEP 97105-900, RS, Brazil
| | | | | | | | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana CEP 97500-970, RS, Brazil.
| |
Collapse
|
9
|
DiCarlo AL, Carnell LS, Rios CI, Prasanna PG. Inter-agency perspective: Translating advances in biomarker discovery and medical countermeasures development between terrestrial and space radiation environments. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:9-19. [PMID: 36336375 PMCID: PMC9832585 DOI: 10.1016/j.lssr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 06/12/2022] [Indexed: 05/22/2023]
Abstract
Over the past 20+ years, the U.S. Government has made significant strides in establishing research funding and initiating a portfolio consisting of subject matter experts on radiation-induced biological effects in normal tissues. Research supported by the National Cancer Institute (NCI) provided much of the early findings on identifying cellular pathways involved in radiation injuries, due to the need to push the boundaries to kill tumor cells while minimizing damage to intervening normal tissues. By protecting normal tissue surrounding the tumors, physicians can deliver a higher radiation dose to tumors and reduce adverse effects related to the treatment. Initially relying on this critical NCI research, the National Institute of Allergy and Infectious Diseases (NIAID), first tasked with developing radiation medical countermeasures in 2004, has provided bridge funding to move basic research toward advanced development and translation. The goal of the NIAID program is to fund approaches that can one day be employed to protect civilian populations during a radiological or nuclear incident. In addition, with the reality of long-term space flights and the possibility of radiation exposures to both acute, high-intensity, and chronic lower-dose levels, the National Aeronautics and Space Administration (NASA) has identified requirements to discover and develop radioprotectors and mitigators to protect their astronauts during space missions. In sustained partnership with sister agencies, these three organizations must continue to leverage funding and findings in their overlapping research areas to accelerate biomarker identification and product development to help safeguard these different and yet undeniably similar human populations - cancer patients, public citizens, and astronauts.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD, 20852 United States of America.
| | - Lisa S Carnell
- Biological and Physical Sciences Division, National Aeronautics and Space Administration (NASA), 300 E Street SW, Washington, DC, 20546 United States of America
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD, 20852 United States of America
| | - Pataje G Prasanna
- Radiation Research Program (RRP), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Bethesda, MD, 20892 United States of America
| |
Collapse
|
10
|
Stutte GW, Yorio NC, Edney SL, Richards JT, Hummerick MP, Stasiak M, Dixon M, Wheeler RM. Effect of reduced atmospheric pressure on growth and quality of two lettuce cultivars. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:37-44. [PMID: 35940688 DOI: 10.1016/j.lssr.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/24/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Future space missions will likely include plants to provide fresh foods and bioregenerative life support capabilities. Current spacecraft such as the International Space Station (ISS) operate at 1 atm (101 kPa) pressure, but future missions will likely use reduced pressures to minimize gas leakage and facilitate rapid egress (space walks). Plants for these missions must be able to tolerate and grow reliably at these reduced pressures. We grew two lettuce cultivars, 'Flandria' a green bibb-type and 'Outredgeous,' a red, loose-leaf type, under three pressures: 96 kPa (ambient control), 67 kPa (2/3 atm), and 33 kPa (1/3 atm) for 21 days in rockwool using recirculating nutrient film technique hydroponics. Each treatment was repeated three times using a different hypobaric chamber each time. A daily light integral of 17.2 Moles Photosynthetically Active Radiation per day was provided with metal halide lamps set to deliver 300 µmol m-2s -1 photosynthetic photon flux (PPF) for a 16 h photoperiod at 22 °C. Oxygen was maintained at 21 kPa (equal to 21% at 1 atm) and CO2 at 0.12 kPa (equal to 1200 ppm at 1 atm). Leaf area for 'Outredgeous' was reduced 20% and 38% at 67 kPa and 33 kPa respectively; shoot fresh mass was reduced 22% and 41% at 67 kPa and 33 kPa respectively when compared to control plants at 96 kPa. These trends were not statistically significant at P ≥ 0.05. Leaf area for 'Flandria' showed no difference between 96 and 67 kPa but was reduced 31% at 33 kPa; shoot fresh mass was reduced 6% and 27% at 66 kPa and 33 kPa respectively compared to 96 kPa. There were 10% and 25% increases in anthocyanin concentration at 66 kPa and 33 kPa compared to 96 kPa, potentially increasing the bioprotective capacity of the plant. Previous studies with other cultivars of lettuce showed slight change in growth across this range of pressures, suggesting responses may vary among genotypes, hypobaric exposure treatments, and / or environmental conditions. Collectively, the findings suggest further testing is needed to understand the effects of atmospheric pressure on plant growth.
Collapse
Affiliation(s)
- Gary W Stutte
- Dynamac Corporation, Kennedy Space Center, FL 32899, United States.
| | - N C Yorio
- Dynamac Corporation, Kennedy Space Center, FL 32899, United States
| | - S L Edney
- Dynamac Corporation, Kennedy Space Center, FL 32899, United States
| | - J T Richards
- Dynamac Corporation, Kennedy Space Center, FL 32899, United States
| | - M P Hummerick
- Dynamac Corporation, Kennedy Space Center, FL 32899, United States
| | - M Stasiak
- Controlled Environment Systems Research Facility, School of Environmental Science, University of Guelph, Guelph, ON N1G2W1, Canada
| | - M Dixon
- Controlled Environment Systems Research Facility, School of Environmental Science, University of Guelph, Guelph, ON N1G2W1, Canada
| | - R M Wheeler
- NASA, NASA Exploration Research and Technology, Kennedy Space Center, Amentum, FL 32899, United States
| |
Collapse
|
11
|
Lalkovicova M. Neuroprotective agents effective against radiation damage of central nervous system. Neural Regen Res 2022; 17:1885-1892. [PMID: 35142663 PMCID: PMC8848589 DOI: 10.4103/1673-5374.335137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ionizing radiation caused by medical treatments, nuclear events or even space flights can irreversibly damage structure and function of brain cells. That can result in serious brain damage, with memory and behavior disorders, or even fatal oncologic or neurodegenerative illnesses. Currently used treatments and drugs are mostly targeting biochemical processes of cell apoptosis, radiation toxicity, neuroinflammation, and conditions such as cognitive-behavioral disturbances or others that result from the radiation insult. With most drugs, the side effects and potential toxicity are also to be considered. Therefore, many agents have not been approved for clinical use yet. In this review, we focus on the latest and most effective agents that have been used in animal and also in the human research, and clinical treatments. They could have the potential therapeutical use in cases of radiation damage of central nervous system, and also in prevention considering their radioprotecting effect of nervous tissue.
Collapse
Affiliation(s)
- Mária Lalkovicova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Russia; Slovak Academy of Sciences, Institute of Experimental Physics, Košice, Slovakia
| |
Collapse
|
12
|
Long-Term Sex- and Genotype-Specific Effects of 56Fe Irradiation on Wild-Type and APPswe/PS1dE9 Transgenic Mice. Int J Mol Sci 2021; 22:ijms222413305. [PMID: 34948098 PMCID: PMC8703695 DOI: 10.3390/ijms222413305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.
Collapse
|
13
|
Prelich MT, Matar M, Gokoglu SA, Gallo CA, Schepelmann A, Iqbal AK, Lewandowski BE, Britten RA, Prabhu RK, Myers JG. Predicting Space Radiation Single Ion Exposure in Rodents: A Machine Learning Approach. Front Syst Neurosci 2021; 15:715433. [PMID: 34720896 PMCID: PMC8555470 DOI: 10.3389/fnsys.2021.715433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
This study presents a data-driven machine learning approach to predict individual Galactic Cosmic Radiation (GCR) ion exposure for 4He, 16O, 28Si, 48Ti, or 56Fe up to 150 mGy, based on Attentional Set-shifting (ATSET) experimental tests. The ATSET assay consists of a series of cognitive performance tasks on irradiated male Wistar rats. The GCR ion doses represent the expected cumulative radiation astronauts may receive during a Mars mission on an individual ion basis. The primary objective is to synthesize and assess predictive models on a per-subject level through Machine Learning (ML) classifiers. The raw cognitive performance data from individual rodent subjects are used as features to train the models and to explore the capabilities of three different ML techniques for elucidating a range of correlations between received radiation on rodents and their performance outcomes. The analysis employs scores of selected input features and different normalization approaches which yield varying degrees of model performance. The current study shows that support vector machine, Gaussian naive Bayes, and random forest models are capable of predicting individual ion exposure using ATSET scores where corresponding Matthews correlation coefficients and F1 scores reflect model performance exceeding random chance. The study suggests a decremental effect on cognitive performance in rodents due to ≤150 mGy of single ion exposure, inasmuch as the models can discriminate between 0 mGy and any exposure level in the performance score feature space. A number of observations about the utility and limitations in specific normalization routines and evaluation scores are examined as well as best practices for ML with imbalanced datasets observed.
Collapse
Affiliation(s)
| | - Mona Matar
- NASA Glenn Research Center, Cleveland, OH, United States
| | | | | | | | - Asad K Iqbal
- ZIN Technologies, Inc., Cleveland, OH, United States
| | | | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - R K Prabhu
- Universities Space Research Association, Cleveland, OH, United States
| | - Jerry G Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| |
Collapse
|
14
|
Wang C, Shuna Y, Jiying J, Li H, Pan Y, Li W, Bai C, Li M, Xie P, Liu J, Li J. Protective effect of Anthocyanins on Radiation-induced Hippocampal Injury through Activation of SIRT3. Curr Pharm Des 2021; 28:1103-1108. [PMID: 34082675 DOI: 10.2174/1381612827666210603151224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuronal cell apoptosis is associated with radiation exposure. It is urgent to study the radiation protection of hippocampal neurons. OBJECTIVE The purpose of this study was to investigate the protective effect of anthocyanins on radiation and its potential mechanism. MATERIALS AND METHODS The irradiation was carried out at room temperature with 4-Gy dose. Anthocyanins were intraperitoneally administered to rats prior to radiation exposure. The immunohistology and survival of neurons within the hippocampi,neuroprotective effects of anthocyanin,mean ROS accumulation and SIRT3 expression by Western Blot and qRTPCR were performed. RESULTS Anthocyanins inhibit radiation-induced apoptosis by activating SIRT3. SIRT3 mRNA increased 24 hours after anthocyanin performed, accompanied by an increase in SIRT3 protein and activity. CONCLUSIONS Anthocyanin can effectively resist radiation-induced oxidation and support its role in scavenging cellular reactive oxygen species. The results showed that anthocyanin protected hippocampal neurons from apoptosis through the activity of SIRT3 after irradiation.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Yu Shuna
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Jiang Jiying
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Huiting Li
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Yitong Pan
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Wanzhen Li
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Chen Bai
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Ming Li
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Peitong Xie
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Jiao Liu
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| | - Jianguo Li
- Department of Anatomy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
15
|
Britten RA, Wellman LL, Sanford LD. Progressive increase in the complexity and translatability of rodent testing to assess space-radiation induced cognitive impairment. Neurosci Biobehav Rev 2021; 126:159-174. [PMID: 33766676 DOI: 10.1016/j.neubiorev.2021.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
Ground-based rodent models have established that space radiation doses (approximately those that astronauts will be exposed to on a mission to Mars) significantly impair performance in a wide range of cognitive tasks. Over the last 40 years there has been a progressive increase in both the complexity and the translatability (to humans) of the cognitive tasks investigated. This review outlines technical and conceptual advances in space radiation rodent testing approaches, along with the advances in analytical approaches, that will make data from ground based studies more amenable to probabilistic risk analysis. While great progress has been made in determining the impact of space radiation on many advanced cognitive processes, challenges remain that need to be addressed prior to commencing deep space missions. A summary of on-going attempts to address existing knowledge gaps and the critical role that rodent studies will have in establishing the impact of space radiation on even more complex (human) cognitive tasks are presented and discussed.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Laurie L Wellman
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Larry D Sanford
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA; Department of Pathology & Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| |
Collapse
|
16
|
Kiffer F, Alexander T, Anderson J, Groves T, McElroy T, Wang J, Sridharan V, Bauer M, Boerma M, Allen A. Late Effects of 1H + 16O on Short-Term and Object Memory, Hippocampal Dendritic Morphology and Mutagenesis. Front Behav Neurosci 2020; 14:96. [PMID: 32670032 PMCID: PMC7332779 DOI: 10.3389/fnbeh.2020.00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
The space extending beyond Earth’s magnetosphere is subject to a complex field of high-energy charged nuclei, which are capable of traversing spacecraft shielding and human tissues, inducing dense ionization events. The central nervous system is a major area of concern for astronauts who will be exposed to the deep-space radiation environment on a mission to Mars, as charged-particle radiation has been shown to elicit changes to the dendritic arbor within the hippocampus of rodents, and related cognitive-behavioral deficits. We exposed 6-month-old male mice to whole-body 1H (0.5 Gy; 150 MeV/n; 18–19 cGy/minute) and an hour later to 16O (0.1Gy; 600 MeV/n; 18–33 Gy/min) at NASA’s Space Radiation Laboratory as a galactic cosmic ray-relevant model. Animals were housed with bedding which provides cognitive enrichment. Mice were tested for cognitive behavior 9 months after exposure to elucidate late radiation effects. Radiation induced significant deficits in novel object recognition and short-term spatial memory (Y-maze). Additionally, we observed opposing morphological differences between the mature granular and pyramidal neurons throughout the hippocampus, with increased dendritic length in the dorsal dentate gyrus and reduced length and complexity in the CA1 subregion of the hippocampus. Dendritic spine analyses revealed a severe reduction in mushroom spine density throughout the hippocampus of irradiated animals. Finally, we detected no general effect of radiation on single-nucleotide polymorphisms in immediate early genes, and genes involved in inflammation but found a higher variant allele frequency in the antioxidants thioredoxin reductase 2 and 3 loci.
Collapse
Affiliation(s)
- Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tyler Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Julie Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
17
|
Bensalem J, Dudonné S, Etchamendy N, Pellay H, Amadieu C, Gaudout D, Dubreuil S, Paradis ME, Pomerleau S, Capuron L, Hudon C, Layé S, Desjardins Y, Pallet V. Polyphenols From Grape and Blueberry Improve Episodic Memory in Healthy Elderly with Lower Level of Memory Performance: A Bicentric Double-Blind, Randomized, Placebo-Controlled Clinical Study. J Gerontol A Biol Sci Med Sci 2020; 74:996-1007. [PMID: 30032176 DOI: 10.1093/gerona/gly166] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Indexed: 01/01/2023] Open
Abstract
Polyphenols are promising nutritional bioactives exhibiting beneficial effect on age-related cognitive decline. This study evaluated the effect of a polyphenol-rich extract from grape and blueberry (PEGB) on memory of healthy elderly subjects (60-70 years-old). A bicentric, randomized, double-blind, placebo-controlled trial was conducted with 215 volunteers receiving 600 mg/day of PEGB (containing 258 mg flavonoids) or a placebo for 6 months. The primary outcome was the CANTAB Paired Associate Learning (PAL), a visuospatial learning and episodic memory test. Secondary outcomes included verbal episodic and recognition memory (VRM) and working memory (SSP). There was no significant effect of PEGB on the PAL on the whole cohort. Yet, PEGB supplementation improved VRM-free recall. Stratifying the cohort in quartiles based on PAL at baseline revealed a subgroup with advanced cognitive decline (decliners) who responded positively to the PEGB. In this group, PEGB consumption was also associated with a better VRM-delayed recognition. In addition to a lower polyphenol consumption, the urine metabolomic profile of decliners revealed that they excreted more metabolites. Urinary concentrations of specific flavan-3-ols metabolites were associated, at the end of the intervention, with the memory improvements. Our study demonstrates that PEGB improves age-related episodic memory decline in individuals with the highest cognitive impairments.
Collapse
Affiliation(s)
- Julien Bensalem
- Univ. de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,Activ'Inside, Beychac et Caillau, France
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Québec Canada.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Nicole Etchamendy
- Univ. de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
| | - Hermine Pellay
- Univ. de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,Activ'Inside, Beychac et Caillau, France
| | - Camille Amadieu
- Univ. de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
| | | | | | - Marie-Eve Paradis
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Québec Canada.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sonia Pomerleau
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Québec Canada
| | - Lucile Capuron
- Univ. de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Carol Hudon
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Québec Canada.,Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Sophie Layé
- Univ. de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Québec Canada.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Véronique Pallet
- Univ. de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France.,Bordeaux INP, Nutrition et neurobiologie intégrée, UMR, Bordeaux, France
| |
Collapse
|
18
|
Total Polysaccharides of Lily Bulb Ameliorate Menopause-Like Behavior in Ovariectomized Mice: Multiple Mechanisms Distinct from Estrogen Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6869350. [PMID: 31428228 PMCID: PMC6683782 DOI: 10.1155/2019/6869350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022]
Abstract
Our previous study has demonstrated the effects of aqueous extract of lily bulb in alleviating menopause-related psychiatric symptoms in ovariectomized (OVX) mice. This study sought to further investigate the psychotropic effects of total polysaccharides of lily bulb (TPLB) against anxiety, depression, and cognitive deterioration and the underlying mechanisms in OVX mice using behavioral, neurochemical, molecular, and proteomic approaches in comparison with estrogen therapy. While TPLB and estradiol showed similar effects in reducing OVX-induced anxiety, depression, and cognitive impairment, the psychotropic effects of TPLB were more closely associated with the predominant activation of estrogen receptors (ERs) and regulation of brain regional neurotransmitters and neurotrophins with minor effects on the uterus. Estradiol had similar potencies in binding affinity at ERα and ERβ, which caused widespread genetic and epigenetic effects. In contrast, TPLB displayed a higher affinity at ERβ than ERα, triggering the specific Ras/Akt/ERK/CREB signaling pathway without affecting any epigenetic activity. TPLB additionally modulated multiple proteins associated with mitochondrial oxidative stress, but estradiol did not. These results indicate that TPLB has comparable efficacy in reducing menopause-associated neuropsychological symptoms with a better safety profile compared to estrogen therapy. We suggest that TPLB could serve as a novel agent for menopause syndrome.
Collapse
|
19
|
Liu B, Hinshaw RG, Le KX, Park MA, Wang S, Belanger AP, Dubey S, Frost JL, Shi Q, Holton P, Trojanczyk L, Reiser V, Jones PA, Trigg W, Di Carli MF, Lorello P, Caldarone BJ, Williams JP, O'Banion MK, Lemere CA. Space-like 56Fe irradiation manifests mild, early sex-specific behavioral and neuropathological changes in wildtype and Alzheimer's-like transgenic mice. Sci Rep 2019; 9:12118. [PMID: 31431669 PMCID: PMC6702228 DOI: 10.1038/s41598-019-48615-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Space travel will expose people to high-energy, heavy particle radiation, and the cognitive deficits induced by this exposure are not well understood. To investigate the short-term effects of space radiation, we irradiated 4-month-old Alzheimer’s disease (AD)-like transgenic (Tg) mice and wildtype (WT) littermates with a single, whole-body dose of 10 or 50 cGy 56Fe ions (1 GeV/u) at Brookhaven National Laboratory. At ~1.5 months post irradiation, behavioural testing showed sex-, genotype-, and dose-dependent changes in locomotor activity, contextual fear conditioning, grip strength, and motor learning, mainly in Tg but not WT mice. There was little change in general health, depression, or anxiety. Two months post irradiation, microPET imaging of the stable binding of a translocator protein ligand suggested no radiation-specific change in neuroinflammation, although initial uptake was reduced in female mice independently of cerebral blood flow. Biochemical and immunohistochemical analyses revealed that radiation reduced cerebral amyloid-β levels and microglia activation in female Tg mice, modestly increased microhemorrhages in 50 cGy irradiated male WT mice, and did not affect synaptic marker levels compared to sham controls. Taken together, we show specific short-term changes in neuropathology and behaviour induced by 56Fe irradiation, possibly having implications for long-term space travel.
Collapse
Affiliation(s)
- Bin Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Robert G Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin X Le
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mi-Ae Park
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shuyan Wang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anthony P Belanger
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Shipra Dubey
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeffrey L Frost
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Qiaoqiao Shi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Peter Holton
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lee Trojanczyk
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Paul A Jones
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - William Trigg
- GE Healthcare, Chalfont St Giles, HP8 4SP, United Kingdom
| | - Marcelo F Di Carli
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Paul Lorello
- Harvard Medical School Mouse Behavior Core, Boston, MA, 02115, USA
| | | | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Shukitt-Hale B, Thangthaeng N, Miller MG, Poulose SM, Carey AN, Fisher DR. Blueberries Improve Neuroinflammation and Cognition differentially Depending on Individual Cognitive baseline Status. J Gerontol A Biol Sci Med Sci 2019; 74:977-983. [PMID: 30772901 PMCID: PMC6580694 DOI: 10.1093/gerona/glz048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Daily supplementation of blueberries (BBs) reverses age-related deficits in behavior in aged rats. However, it is unknown whether BB is more beneficial to one subset of the population dependent on baseline cognitive performance and inflammatory status. To examine the effect of individual differences on the efficacy of BB, aged rats (17 months old) were assessed for cognition in the radial arm water maze (RAWM) and divided into good, average, and poor performers based on navigation errors. Half of the rats in each cognitive group were then fed a control or a 2% BB diet for 8 weeks before retesting. Serum samples were collected, pre-diet and post-diet, to assess inflammation. Latency in the radial arm water maze was significantly reduced in the BB-fed poor performers (p < .05) and preserved in the BB-fed good performers. The control-fed good performers committed more working and reference memory errors in the post-test than pretest (p < .05), whereas the BB-fed good performers showed no change. An in vitro study using the serum showed that BB supplementation attenuated lipopolysaccharide (LPS)-induced nitrite and tumor necrosis factor-alpha, and cognitive performance was associated with innate anti-inflammatory capability. Therefore, consumption of BB may reverse some age-related deficits in cognition, as well as preserve function among those with intact cognitive ability.
Collapse
Affiliation(s)
- Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Nopporn Thangthaeng
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Marshall G Miller
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Shibu M Poulose
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Amanda N Carey
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Derek R Fisher
- USDA-ARS, Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
21
|
Medina dos Santos N, Berilli Batista P, Batista ÂG, Maróstica Júnior MR. Current evidence on cognitive improvement and neuroprotection promoted by anthocyanins. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Rabin BM, Poulose SM, Bielinski DF, Shukitt-Hale B. Effects of head-only or whole-body exposure to very low doses of 4He (1000 MeV/n) particles on neuronal function and cognitive performance. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:85-92. [PMID: 30797437 DOI: 10.1016/j.lssr.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 02/04/2019] [Indexed: 05/03/2023]
Abstract
On exploratory class missions, astronauts will be exposed to a range of heavy particles which vary in linear energy transfer (LET). Previous research has shown a direct relationship between particle LET and cognitive performance such that, as particle LET decreases the dose needed to affect cognitive performance also decreases. Because a significant portion of the total dose experienced by astronauts may be expected to come from exposure to low LET 4He particles, it would be important to establish the threshold dose of 4He particles that can produce changes in cognitive performance. The results indicated that changes in neuronal function and cognitive performance could be observed following both head-only and whole-body exposures to 4He particles at doses as low as 0.01-0.025 cGy. These results, therefore, suggest the possibility that astronauts on exploratory class missions may be at a greater risk for HZE-induced deficits than previously anticipated.
Collapse
Affiliation(s)
- Bernard M Rabin
- Department of Psychology, UMBC, Baltimore, MD 21250, United States.
| | - Shibu M Poulose
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, United States
| | - Donna F Bielinski
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, United States
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, United States
| |
Collapse
|
23
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
24
|
Oral administration of Grifola frondosa
polysaccharides improves memory impairment in aged rats via antioxidant action. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
|