1
|
Ferraro S, Dave A, Cereda C, Verduci E, Marcovina S, Zuccotti G. Space research to explore novel biochemical insights on Earth. Clin Chim Acta 2024; 558:119673. [PMID: 38621588 DOI: 10.1016/j.cca.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), β-hydroxy-β methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Simona Ferraro
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy.
| | - Anilkumar Dave
- Space Economy and Open Innovation, Darwix srl, Venice, Italy
| | - Cristina Cereda
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Center of Functional Genomics and Rare Diseases
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, Milan, Italy; Metabolic Diseases Unit, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Walsh L, Hafner L, Berger T, Matthiä D, Schneider U, Straube U. European astronaut radiation related cancer risk assessment using dosimetric calculations of organ dose equivalents. Z Med Phys 2024; 34:92-99. [PMID: 37932191 PMCID: PMC10919965 DOI: 10.1016/j.zemedi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
An illustrative sample mission of a Mars swing-by mission lasting one calendar year was chosen to highlight the application of European risk assessment software to cancer (all solid cancer plus leukaemia) risks from radiation exposures in space quantified with organ dose equivalent rates from model calculations based on the quantity Radiation Attributed Decrease of Survival (RADS). The relevant dose equivalent to the colon for radiation exposures from this Mars swing-by mission were found to vary between 198 and 482 mSv. These doses depend on sex and the two other factors investigated here of: solar activity phase (maximum or minimum); and the choice of space radiation quality factor used in the calculations of dose equivalent. Such doses received at typical astronaut ages around 40 years old will result in: the probability of surviving until retirement age (65 years) being reduced by a range from 0.38% (95%CI: 0.29; 0.49) to 1.29% (95%CI: 1.06; 1.56); and the probability of surviving cancer free until retirement age being reduced by a range from 0.78% (95%CI: 0.59; 0.99) to 2.63% (95%CI: 2.16; 3.18). As expected from the features of the models applied to quantify the general dosimetric and radiation epidemiology parameters, the cancer incidence risks in terms of surviving cancer free, are higher than the cancer mortality risks in terms of surviving, the risks for females are higher than for males, and the risks at solar minimum are higher than at solar maximum.
Collapse
Affiliation(s)
- Linda Walsh
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Luana Hafner
- Swiss Federal Nuclear Safety Inspectorate ENSI, Industriestrasse 19, 5201 Brugg, Switzerland.
| | - Thomas Berger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Höhe, 51147 Köln, Germany.
| | - Daniel Matthiä
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Höhe, 51147 Köln, Germany.
| | - Uwe Schneider
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Ulrich Straube
- European Space Agency ESA, European Astronaut Centre EAC, Space Medicine HRE-OM, Cologne, Germany.
| |
Collapse
|
3
|
Shavers M, Semones E, Tomi L, Chen J, Straube U, Komiyama T, Shurshakov V, Li C, Rühm W. Space agency-specific standards for crew dose and risk assessment of ionising radiation exposures for the International Space Station. Z Med Phys 2024; 34:14-30. [PMID: 37507310 PMCID: PMC10919966 DOI: 10.1016/j.zemedi.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The Partner Agencies of the International Space Station (ISS) maintain separate career exposure limits and shared Flight Rules that control the ionising radiation exposures that crewmembers can experience due to ambient environments throughout their space missions. In low Earth orbit as well as further out in space, energetic ions referred to as galactic cosmic radiation (GCR) easily penetrate spacecraft and spacecraft contents and consequently are always present at low dose rates. Protons and electrons that are trapped in the Earth's geomagnetic field are encountered intermittently, and a rare energetic solar particle event (SPE) may expose crew to (mostly) energetic protons. Space radiation protection goals are to optimize radiation exposures to maintain deleterious late effects at known and acceptable levels and to prevent any early effects that might compromise crew health and mission success. The conventional radiation protection metric effective dose provides a basic framework for limiting exposures associated with human spaceflight and can be communicated to all stakeholders. Additional metrics and uncertainty analyses are required to understand more completely and to convey nuanced information about potential impacts to an individual astronaut or to a space mission. Missions to remote destinations well beyond low Earth orbit (BLEO) are upcoming and bestow additional challenges that shape design and radiation protection needs. NASA has recently adopted a more permissive career exposure limit based upon effective dose and new restrictions on mission exposures imposed by nuclear technologies. This manuscript reviews the exposure limits that apply to the ISS crewmembers. This work was performed in collaboration with the advisory and guidance efforts of International Commission on Radiological Protection (ICRP) Task Group 115 and will be summarized in an upcoming ICRP Report.
Collapse
Affiliation(s)
- Mark Shavers
- KBR Human Health and Performance, NASA Johnson Space Centre, Houston, TX, USA.
| | - Edward Semones
- NASA Space Radiation Analysis Group-Johnson Space Centre, Houston, TX, USA
| | - Leena Tomi
- Canadian Space Agency, Saint-Hubert, Quebec, Canada
| | - Jing Chen
- Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Ulrich Straube
- European Space Agency ESA, European Astronaut Center EAC, Space Medicine HRE-OM, Cologne, Germany
| | - Tatsuto Komiyama
- Japan Aerospace Exploration Agency (JAXA), Tsukuba Space Center, Ibaraki, Japan
| | | | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Werner Rühm
- Federal Office of Radiation Protection, Munich, Germany
| |
Collapse
|
4
|
Coulombe JV, Harrisson G, Lewis BJ, El-Jaby S. Evolving radiological protection guidelines for exploration-class missions. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:70-77. [PMID: 36682831 DOI: 10.1016/j.lssr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/17/2023]
Abstract
International Space Station partner nations have yet to agree on career radiation dose constraints. This is of increasing concern for collaborative mission planning beyond low-Earth orbit, since it is likely that one or two long-duration missions will expose crew to a cumulative dose that approaches or exceeds their current respective limits. As with radiological effects, the cumulative health impact of the numerous other injuries and illnesses documented during spaceflight is inherently heightened with longer and farther missions, say to the Moon and Mars. This paper summarizes the origin of existing radiological constraints employed by the Canadian Space Agency and explores how to build upon these protection practices to address the challenges associated with beyond low-Earth orbit missions. The discussion then leads into a review of conventional risk metrics currently under evaluation by space-faring nations to quantify risk of radiation-induced cancer mortality. This paper concludes with a proposal for the application of an existing burden of disease model termed the Disability Adjusted Life Year, to space exploration. This model can accommodate the many health hazards of spaceflight, including ionizing radiation, on a common scale. It has the potential to serve as an intuitive communication tool for informing on the impact of spaceflight on crew health.
Collapse
Affiliation(s)
- Jocelyn V Coulombe
- Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, Ontario, K0J 1J0, Canada; Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Geneviève Harrisson
- Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, Ontario, K0J 1J0, Canada
| | - Brent J Lewis
- Emeritus, Royal Military College of Canada, 13 General Crerar Crescent, Kingston, Ontario, K7K 7B4, Canada
| | - Samy El-Jaby
- Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, Ontario, K0J 1J0, Canada.
| |
Collapse
|
5
|
Towards sustainable human space exploration-priorities for radiation research to quantify and mitigate radiation risks. NPJ Microgravity 2023; 9:8. [PMID: 36707520 PMCID: PMC9883222 DOI: 10.1038/s41526-023-00262-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon's orbit, return to the Moon's surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit.
Collapse
|
6
|
Joint Cartilage in Long-Duration Spaceflight. Biomedicines 2022; 10:biomedicines10061356. [PMID: 35740378 PMCID: PMC9220015 DOI: 10.3390/biomedicines10061356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current literature available on joint cartilage alterations in long-duration spaceflight. Evidence from spaceflight participants is currently limited to serum biomarker data in only a few astronauts. Findings from analogue model research, such as bed rest studies, as well as data from animal and cell research in real microgravity indicate that unloading and radiation exposure are associated with joint degeneration in terms of cartilage thinning and changes in cartilage composition. It is currently unknown how much the individual cartilage regions in the different joints of the human body will be affected on long-term missions beyond the Low Earth Orbit. Given the fact that, apart from total joint replacement or joint resurfacing, currently no treatment exists for late-stage osteoarthritis, countermeasures might be needed to avoid cartilage damage during long-duration missions. To plan countermeasures, it is important to know if and how joint cartilage and the adjacent structures, such as the subchondral bone, are affected by long-term unloading, reloading, and radiation. The use of countermeasures that put either load and shear, or other stimuli on the joints, shields them from radiation or helps by supporting cartilage physiology, or by removing oxidative stress possibly help to avoid OA in later life following long-duration space missions. There is a high demand for research on the efficacy of such countermeasures to judge their suitability for their implementation in long-duration missions.
Collapse
|
7
|
Horst F, Boscolo D, Cartechini G, Durante M, Hartel C, Kozlova E, La Tessa C, Missiaggia M, Pierobon E, Radon T, Ridolfi R, Ritter S, Schuy C, Sokolov A, Weber U, Zbořil M. A multi-detector experimental setup for the study of space radiation shielding materials: Measurement of secondary radiation behind thick shielding and assessment of its radiobiological effect. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226103002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Space agencies have recognized the risks of astronauts’ exposure to space radiation and are developing complex model-based risk mitigation strategies. In the foundation of these models, there are still significant gaps of knowledge concerning nuclear fragmentation reactions which need to be addressed by ground-based experiments. There is a lack of data on neutron and light ion production by heavy ions, which are an important component of galactic cosmic radiation (GCR). A research collaboration has been set up to characterize the secondary radiation field produced by GCR-like radiation provided by a particle accelerator in thick shielding. The aim is to develop a novel method for producing high-quality experimental data on neutron and light ion production in shielding materials relevant for space radiation protection. Four complementary detector systems are used to determine the energy and angular distributions of high-energy secondary neutrons and light ions. In addition to the physical measurement approach, the biological effectiveness of the secondary radiation field is determined by measuring chromosome aberrations in human peripheral lymphocytes placed behind the shielding. The experiments are performed at the heavy ion
Collapse
|
8
|
Dose Limits and Countermeasures for Mitigating Radiation Risk in Moon and Mars Exploration. PHYSICS 2022. [DOI: 10.3390/physics4010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After decades of research on low-Earth orbit, national space agencies and private entrepreneurs are investing in exploration of the Solar system. The main health risk for human space exploration is late toxicity caused by exposure to cosmic rays. On Earth, the exposure of radiation workers is regulated by dose limits and mitigated by shielding and reducing exposure times. For space travel, different international space agencies adopt different limits, recently modified as reviewed in this paper. Shielding and reduced transit time are currently the only practical solutions to maintain acceptable risks in deep space missions.
Collapse
|
9
|
Strigari L, Strolin S, Morganti AG, Bartoloni A. Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Front Public Health 2021; 9:733337. [PMID: 34820349 PMCID: PMC8606590 DOI: 10.3389/fpubh.2021.733337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Space radiobiology is an interdisciplinary science that examines the biological effects of ionizing radiation on humans involved in aerospace missions. The dose-effect models are one of the relevant topics of space radiobiology. Their knowledge is crucial for optimizing radioprotection strategies (e.g., spaceship and lunar space station-shielding and lunar/Mars village design), the risk assessment of the health hazard related to human space exploration, and reducing damages induced to astronauts from galactic cosmic radiation. Dose-effect relationships describe the observed damages to normal tissues or cancer induction during and after space flights. They are developed for the various dose ranges and radiation qualities characterizing the actual and the forecast space missions [International Space Station (ISS) and solar system exploration]. Based on a Pubmed search including 53 papers reporting the collected dose-effect relationships after space missions or in ground simulations, 7 significant dose-effect relationships (e.g., eye flashes, cataract, central nervous systems, cardiovascular disease, cancer, chromosomal aberrations, and biomarkers) have been identified. For each considered effect, the absorbed dose thresholds and the uncertainties/limitations of the developed relationships are summarized and discussed. The current knowledge on this topic can benefit from further in vitro and in vivo radiobiological studies, an accurate characterization of the quality of space radiation, and the numerous experimental dose-effects data derived from the experience in the clinical use of ionizing radiation for diagnostic or treatments with doses similar to those foreseen for the future space missions. The growing number of pooled studies could improve the prediction ability of dose-effect relationships for space exposure and reduce their uncertainty level. Novel research in the field is of paramount importance to reduce damages to astronauts from cosmic radiation before Beyond Low Earth Orbit exploration in the next future. The study aims at providing an overview of the published dose-effect relationships and illustrates novel perspectives to inspire future research.
Collapse
Affiliation(s)
- Lidia Strigari
- Department of Medical Physics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology Center, School of Medicine, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | | |
Collapse
|
10
|
Walsh L, Hafner L, Straube U, Ulanowski A, Fogtman A, Durante M, Weerts G, Schneider U. A bespoke health risk assessment methodology for the radiation protection of astronauts. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:213-231. [PMID: 33929575 PMCID: PMC8116305 DOI: 10.1007/s00411-021-00910-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/10/2021] [Indexed: 05/05/2023]
Abstract
An alternative approach that is particularly suitable for the radiation health risk assessment (HRA) of astronauts is presented. The quantity, Radiation Attributed Decrease of Survival (RADS), representing the cumulative decrease in the unknown survival curve at a certain attained age, due to the radiation exposure at an earlier age, forms the basis for this alternative approach. Results are provided for all solid cancer plus leukemia incidence RADS from estimated doses from theoretical radiation exposures accumulated during long-term missions to the Moon or Mars. For example, it is shown that a 1000-day Mars exploration mission with a hypothetical mission effective dose of 1.07 Sv at typical astronaut ages around 40 years old, will result in the probability of surviving free of all types of solid cancer and leukemia until retirement age (65 years) being reduced by 4.2% (95% CI 3.2; 5.3) for males and 5.8% (95% CI 4.8; 7.0) for females. RADS dose-responses are given, for the outcomes for incidence of all solid cancer, leukemia, lung and female breast cancer. Results showing how RADS varies with age at exposure, attained age and other factors are also presented. The advantages of this alternative approach, over currently applied methodologies for the long-term radiation protection of astronauts after mission exposures, are presented with example calculations applicable to European astronaut occupational HRA. Some tentative suggestions for new types of occupational risk limits for space missions are given while acknowledging that the setting of astronaut radiation-related risk limits will ultimately be decided by the Space Agencies. Suggestions are provided for further work which builds on and extends this new HRA approach, e.g., by eventually including non-cancer effects and detailed space dosimetry.
Collapse
Affiliation(s)
- Linda Walsh
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luana Hafner
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8092 Zurich, Switzerland
| | - Ulrich Straube
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Alexander Ulanowski
- Present Address: Environment Laboratories, International Atomic Energy Agency, 2444 Seibersdorf, Austria
- Institute of Radiation Medicine, Helmholtz Zentrum München- German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Anna Fogtman
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Guillaume Weerts
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Uwe Schneider
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, 8032 Zurich, Switzerland
| |
Collapse
|
11
|
Durante M. Failla Memorial Lecture: The Many Facets of Heavy-Ion Science. Radiat Res 2021; 195:403-411. [PMID: 33979440 DOI: 10.1667/rade-21-00029.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/03/2022]
Abstract
Heavy ions are riveting in radiation biophysics, particularly in the areas of radiotherapy and space radiation protection. Accelerated charged particles can indeed penetrate deeply in the human body to sterilize tumors, exploiting the favorable depth-dose distribution of ions compared to conventional X rays. Conversely, the high biological effectiveness in inducing late effects presents a hazard for manned space exploration. Even after half a century of accelerator-based experiments, clinical applications and flight research, these two topics remain both fascinating and baffling. Heavy-ion therapy is very expensive, and despite the clinical success it remains controversial. Research on late radiation morbidity in spaceflight led to a reduction in uncertainty, but also pointed to new risks previously underestimated, such as possible damage to the central nervous system. Recently, heavy ions have also been used in other, unanticipated biomedical fields, such as treatment of heart arrhythmia or inactivation of viruses for vaccine development. Heavy-ion science nicely merges physics and biology and remains an extraordinary research field for the 21st century.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; and Technische Universität Darmstadt, Institute of Condensed Matter Physics, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Utilisation of Moon Regolith for Radiation Protection and Thermal Insulation in Permanent Lunar Habitats. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the context of a sustainable long-term human presence on the Moon, solutions for habitat radiation and thermal protection with regolith are investigated. Regolith compression is studied to choose the optimal density-thickness combination in terms of radiation shielding and thermal insulation. The applied strategy is to protect the whole habitat from the hazards of galactic cosmic rays and design a dedicated shelter area for protection during solar particle events, which eventually may be a lava tube. Simulations using NASA’s OLTARIS tool show that the effective dose equivalent decreases significantly when a multilayer structure mainly constituted of regolith and other available materials is used instead of pure regolith. The computerised anatomical female model is considered here because future missions will be mixed crews, and, generally, more sex-specific data are required in the field of radiation protection and human spaceflight. This study shows that if reasonably achievable radioprotection conditions are met, mixed crews can stay safely on the lunar surface. Compressed regolith demonstrates a significant efficiency in thermal insulation, requiring little energy management to keep a comfortable temperature inside the habitat. For a more complete picture of the outpost, the radiation protection of lunar rovers and extravehicular mobility units is considered.
Collapse
|
13
|
Hafner L, Walsh L, Schneider U. Cancer incidence risks above and below 1 Gy for radiation protection in space. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:41-56. [PMID: 33612179 DOI: 10.1016/j.lssr.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
The risk assessment quantities called lifetime attributable risk (LAR) and risk of exposure-induced cancer (REIC) are used to calculate the cumulative cancer incidence risks for astronauts, attributable to radiation exposure accumulated during long term lunar and Mars missions. These risk quantities are based on the most recently published epidemiological data on the Life Span Study (LSS) of Japanese A-bomb survivors, who were exposed to γ-rays and neutrons. In order to analyze the impact of a different neutron RBE on the risk quantities, a model for the neutron relative biological effectiveness (RBE) relative to gammas in the LSS is developed based on an older dataset with less follow-up time. Since both risk quantities are based on uncertain quantities, such as survival curves, and REIC includes deterministic radiation induced non-cancer mortality risks, modelled with data based on the general population, the risks for astronauts may not be optimally estimated. The suitability of these risk assessment measures for the use of cancer risk calculation for astronauts is discussed. The work presented here shows that the use of a higher neutron RBE than the value of 10, traditionally used in the LSS risk models, can reduce the risks up to almost 50%. Additionally, including an excess absolute risk (EAR) baseline scaling also increases the risks by between 0.4% and 8.1% for the space missions considered in this study. Using just an EAR model instead of an equally weighted EAR and excess relative risk (ERR) model can decrease the cumulative risks for the considered missions by between 0.4% and 4.1% if no EAR baseline scaling is applied. If EAR baseline scaling is included, the calculated risks with the EAR- and the mixed model, as well as the risks calculated with just the ERR model are almost identical and only small differences in the uncertainties are visible.
Collapse
Affiliation(s)
- Luana Hafner
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland.
| | - Linda Walsh
- Department of Physics, Science Faculty, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Uwe Schneider
- Department of Physics, Science Faculty, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Radiotherapy Hirslanden, Witellikerstrasse 40, 8032 Zurich, Switzerland.
| |
Collapse
|
14
|
Additive effects of simulated microgravity and ionizing radiation in cell death, induction of ROS and expression of RAC2 in human bronchial epithelial cells. NPJ Microgravity 2020; 6:34. [PMID: 33298974 PMCID: PMC7645497 DOI: 10.1038/s41526-020-00123-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Radiation and microgravity are undoubtedly two major factors in space environment that pose a health threat to astronauts. However, the mechanistic study of their interactive biological effects is lacking. In this study, human lung bronchial epithelial Beas-2B cells were used to study the regulation of radiobiological effects by simulated microgravity (using a three-dimensional clinostat). It was found that simulated microgravity together with radiation induced drop of survival fraction, proliferation inhibition, apoptosis, and DNA double-strand break formation of Beas-2B cells additively. They also additively induced Ras-related C3 botulinum toxin substrate 2 (RAC2) upregulation, leading to increased NADPH oxidase activity and increased intracellular reactive oxygen species (ROS) yield. The findings indicated that simulated microgravity and ionizing radiation presented an additive effect on cell death of human bronchial epithelial cells, which was mediated by RAC2 to some extent. The study provides a new perspective for the better understanding of the compound biological effects of the space environmental factors.
Collapse
|
15
|
Blakely EA. The 20th Gray lecture 2019: health and heavy ions. Br J Radiol 2020; 93:20200172. [PMID: 33021811 PMCID: PMC8519642 DOI: 10.1259/bjr.20200172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Particle radiobiology has contributed new understanding of radiation safety and underlying mechanisms of action to radiation oncology for the treatment of cancer, and to planning of radiation protection for space travel. This manuscript will highlight the significance of precise physical and biologically effective dosimetry to this translational research for the benefit of human health.This review provides a brief snapshot of the evolving scientific basis for, and the complex current global status, and remaining challenges of hadron therapy for the treatment of cancer. The need for particle radiobiology for risk planning in return missions to the Moon, and exploratory deep-space missions to Mars and beyond are also discussed. METHODS Key lessons learned are summarized from an impressive collective literature published by an international cadre of multidisciplinary experts in particle physics, radiation chemistry, medical physics of imaging and treatment planning, molecular, cellular, tissue radiobiology, biology of microgravity and other stressors, theoretical modeling of biophysical data, and clinical results with accelerator-produced particle beams. RESULTS Research pioneers, many of whom were Nobel laureates, led the world in the discovery of ionizing radiations originating from the Earth and the Cosmos. Six radiation pioneers led the way to hadron therapy and the study of charged particles encountered in outer space travel. Worldwide about 250,000 patients have been treated for cancer, or other lesions such as arteriovenous malformations in the brain between 1954 and 2019 with charged particle radiotherapy, also known as hadron therapy. The majority of these patients (213,000) were treated with proton beams, but approximately 32,000 were treated with carbon ion radiotherapy. There are 3500 patients who have been treated with helium, pions, neon or other ions. There are currently 82 facilities operating to provide ion beam clinical treatments. Of these, only 13 facilities located in Asia and Europe are providing carbon ion beams for preclinical, clinical, and space research. There are also numerous particle physics accelerators worldwide capable of producing ion beams for research, but not currently focused on treating patients with ion beam therapy but are potentially available for preclinical and space research. Approximately, more than 550 individuals have traveled into Lower Earth Orbit (LEO) and beyond and returned to Earth. CONCLUSION Charged particle therapy with controlled beams of protons and carbon ions have significantly impacted targeted cancer therapy, eradicated tumors while sparing normal tissue toxicities, and reduced human suffering. These modalities still require further optimization and technical refinements to reduce cost but should be made available to everyone in need worldwide. The exploration of our Universe in space travel poses the potential risk of exposure to uncontrolled charged particles. However, approaches to shield and provide countermeasures to these potential radiation hazards in LEO have allowed an amazing number of discoveries currently without significant life-threatening medical consequences. More basic research with components of the Galactic Cosmic Radiation field are still required to assure safety involving space radiations and combined stressors with microgravity for exploratory deep space travel. ADVANCES IN KNOWLEDGE The collective knowledge garnered from the wealth of available published evidence obtained prior to particle radiation therapy, or to space flight, and the additional data gleaned from implementing both endeavors has provided many opportunities for heavy ions to promote human health.
Collapse
|
16
|
Khaksarighiri S, Guo J, Wimmer-Schweingruber R, Narici L, Lohf H. Calculation of dose distribution in a realistic brain structure and the indication of space radiation influence on human brains. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:33-48. [PMID: 34756228 DOI: 10.1016/j.lssr.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/13/2023]
Abstract
One of the most important steps in the near-future space age will be a crew mission returning to the Moon and even a manned mission to Mars. Unfortunately, such a mission will expose astronauts to unavoidable cosmic radiation in deep space and on the Martian or lunar surface. Thus, a better understanding of the radiation environment for such a mission and the consequent biological impacts on humans, in particular the human brains, is critical. The need for this better understanding is strongly suggested by investigations on animal models and on human patients who were undergoing irradiation for cancer therapy in the head. These have revealed unexpected alterations in the central nervous system behavior and sensitivity of mature neurons in the brain to charged particles. However, such experiments shall not be carried out realistically in space using humans. Therefore, to investigate the impact of cosmic radiation on human brains and the potential influence on the brain functions, we model and study the cosmic particle-induced radiation dose in a realistic head structure. Specifically speaking, 134 slices of computed tomography (CT) images of an actual human head have been used as a 3D phantom in Geant4 (GEometry ANd Tracking), which is a Monte Carlo tool for simulating energetic particles impinging into different parts of the brain and deliver radiation dose therein. As a first step, we compare the influence of different brain structures (e.g., with or without bones, with or without soft tissues) to the resulting dose therein to demonstrate the necessity of using a realistic brain structure for our investigation. Afterward, we calculate energy-dependent functions of dose distribution, for the most important (some of the most abundant and most biologically-relevant) particle types encountered during a deep space mission inside a spacecraft or habitat such as protons, helium ions, neutrons and some major heavier ions like carbon, nitrogen, and iron particles. Furthermore, two different scenarios have been modeled as a comparison: a human head without shielding protection and a human head with an aluminum shielding shell around (of varying thickness). These functions can then be used to fold with energetic cosmic-ray particle spectra of the ambient environment for obtaining the dose rate distribution at different lobes of the human brain. Our calculation of these functions can serve as a ready tool and a baseline for further evaluations of the radiation in the brain encountered during a space mission with different radiation fields, such as on the surface of the Moon or Mars.
Collapse
Affiliation(s)
- Salman Khaksarighiri
- Institute of Experimental and Applied Physics, University of Kiel, Kiel, DE24118, Germany
| | - Jingnan Guo
- Institute of Experimental and Applied Physics, University of Kiel, Kiel, DE24118, Germany; School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; CAS Center for Excellence in Comparative Planetology, USTC, Hefei, China.
| | | | - Livio Narici
- Departments of Physics, the University of Rome 'Tor Vergata', Rome, Italy; INFN sect Tor Vergata, Rome, Italy
| | - Henning Lohf
- Institute of Experimental and Applied Physics, University of Kiel, Kiel, DE24118, Germany
| |
Collapse
|
17
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
18
|
Patera V, Prezado Y, Azaiez F, Battistoni G, Bettoni D, Brandenburg S, Bugay A, Cuttone G, Dauvergne D, de France G, Graeff C, Haberer T, Inaniwa T, Incerti S, Nasonova E, Navin A, Pullia M, Rossi S, Vandevoorde C, Durante M. Biomedical Research Programs at Present and Future High-Energy Particle Accelerators. FRONTIERS IN PHYSICS 2020; 8:00380. [PMID: 33224942 PMCID: PMC7116397 DOI: 10.3389/fphy.2020.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biomedical applications at high-energy particle accelerators have always been an important section of the applied nuclear physics research. Several new facilities are now under constructions or undergoing major upgrades. While the main goal of these facilities is often basic research in nuclear physics, they acknowledge the importance of including biomedical research programs and of interacting with other medical accelerator facilities providing patient treatments. To harmonize the programs, avoid duplications, and foster collaboration and synergism, the International Biophysics Collaboration is providing a platform to several accelerator centers with interest in biomedical research. In this paper, we summarize the programs of various facilities in the running, upgrade, or construction phase.
Collapse
Affiliation(s)
- Vincenzo Patera
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria, University “La Sapienza”, Rome, Italy
| | | | | | | | | | | | | | | | - Denis Dauvergne
- Université Grenoble-Alpes, CNRS/IN2P3, UMR5821, LPSC, GDR MI2B, LabEx PRIMES, Grenoble, France
| | | | - Christian Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Sebastien Incerti
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d’Études Nucléaires de Bordeaux Gradignan, Gradignan, France
| | | | | | | | | | | | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany
- Correspondence: Marco Durante,
| |
Collapse
|
19
|
Fucic A, Druzhinin V, Aghajanyan A, Slijepcevic P, Bakanova M, Baranova E, Minina V, Golovina T, Kourdakov K, Timofeeva A, Titov V. Rogue versus chromothriptic cell as biomarker of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108299. [PMID: 32430100 DOI: 10.1016/j.mrrev.2020.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/30/2022]
Abstract
New molecular cytogenetic biomarkers may significantly contribute to biodosimetry, whose application is still globally diverse and not fully standardized. In 2011, a new term, chromothripsis, was introduced raising great interest among researchers and soon motivating further investigations of the phenomenon. Chromothripsis is described as a single event in which one or more chromosomes go through severe DNA damage very much resembling rogue cells (RC) described more than 50 years ago. In this review, we for the first time compare these two multi-aberrant cells types, RC versus chromothriptic cells, giving insight into the similarities of the mechanisms involved in their etiology. In order to make a better comparison, data on RC in 3366 subjects from studies on cancer patients, Chernobyl liquidators, child victims of the Chernobyl nuclear plant accident, residentially and occupationally exposed population have been summarized for the first time. Results of experimental and epidemiological analysis show that chromothriptic cells and RC may be caused by exposure to high LET ionizing radiation. Experience and knowledge collected on RC may be used in future for further investigations of chromothripsis, introducing a new class of cells which include both chromothriptic and RC, and better insight into the frequency of chromothriptic cell per subject, which is currently absent. Both cell types are relevant in investigations of cancer etiology, biomonitoring of accidentally exposed population to ionizing radiation and biomonitoring of astronauts due to their exposure to high LET ionizing radiation during interplanetary voyages.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Anna Aghajanyan
- Medical Institute Peoples' Friendship University of Russia (RUDN University), Moscow, Russia Federation
| | - Predrag Slijepcevic
- Brunel University London, Department of Life Sciences, College of Health and Life Sciences, Uxbridge, UK
| | | | | | | | | | | | | | - Victor Titov
- Kemerovo Regional Oncology Center, Kemerovo, Russian Federation
| |
Collapse
|
20
|
Walsh L, Ulanowski A, Kaiser JC, Woda C, Raskob W. Risk bases can complement dose bases for implementing and optimising a radiological protection strategy in urgent and transition emergency phases. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:539-552. [PMID: 31346699 PMCID: PMC6768908 DOI: 10.1007/s00411-019-00809-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/13/2019] [Indexed: 05/02/2023]
Abstract
Current radiological emergency response recommendations have been provided by the International Commission on Radiological Protection and adopted by the International Atomic Energy Agency in comprehensive Safety Standards. These standards provide dose-based guidance for decision making (e.g., on sheltering or relocation) via generic criteria in terms of effective dose in the range from 20 mSv per year, during transition from emergency to existing exposure situation, to 100 mSv, acute or annual, in the urgent phase of a nuclear accident. The purpose of this paper was to examine how such dose reference levels directly translate into radiation-related risks of the main stochastic detrimental health effects (cancer). Methodologies, provided by the World Health Organization after the Fukushima accident, for calculating the lifetime and 20 year cancer risks and for attributing relevant organ doses from effective doses, have been applied here for this purpose with new software, designed to be available for use immediately after a nuclear accident. A new feature in this software is a comprehensive accounting for uncertainty via simulation technique, so that the risks may now be presented with realistic confidence intervals. The types of cancer risks considered here are time-integrated over lifetime and the first 20 years after exposure for all solid cancers and either the most radiation-sensitive types of cancer, i.e., leukaemia and female breast cancer, or the most radiation-relevant type of cancer occurring early in life, i.e., thyroid. It is demonstrated here how reference dose levels translate differently into specific cancer risk levels (with varying confidence interval sizes), depending on age at exposure, gender, time-frame at-risk and type of cancer considered. This demonstration applies German population data and considers external exposures. Further work is required to comprehensively extend this methodology to internal exposures that are likely to be important in the early stages of a nuclear accident. A discussion is provided here on the potential for such risk-based information to be used by decision makers, in the urgent and transition phases of nuclear emergencies, to identify protective measures (e.g., sheltering, evacuation) in a differential way (i.e., for particularly susceptible sub-groups of a population).
Collapse
Affiliation(s)
- Linda Walsh
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - Alexander Ulanowski
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- IAEA Laboratories, International Atomic Energy Agency, 2444, Seibersdorf, Austria
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Clemens Woda
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Wolfgang Raskob
- Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
The Impact of Dose Rate on DNA Double-Strand Break Formation and Repair in Human Lymphocytes Exposed to Fast Neutron Irradiation. Int J Mol Sci 2019; 20:ijms20215350. [PMID: 31661782 PMCID: PMC6862539 DOI: 10.3390/ijms20215350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of information on how biological systems respond to low-dose and low dose-rate exposures makes it difficult to accurately assess the carcinogenic risks. This is of critical importance to space radiation, which remains a serious concern for long-term manned space exploration. In this study, the γ-H2AX foci assay was used to follow DNA double-strand break (DSB) induction and repair following exposure to neutron irradiation, which is produced as secondary radiation in the space environment. Human lymphocytes were exposed to high dose-rate (HDR: 0.400 Gy/min) and low dose-rate (LDR: 0.015 Gy/min) p(66)/Be(40) neutrons. DNA DSB induction was investigated 30 min post exposure to neutron doses ranging from 0.125 to 2 Gy. Repair kinetics was studied at different time points after a 1 Gy neutron dose. Our results indicated that γ-H2AX foci formation was 40% higher at HDR exposure compared to LDR exposure. The maximum γ-H2AX foci levels decreased gradually to 1.65 ± 0.64 foci/cell (LDR) and 1.29 ± 0.45 (HDR) at 24 h postirradiation, remaining significantly higher than background levels. This illustrates a significant effect of dose rate on neutron-induced DNA damage. While no significant difference was observed in residual DNA damage after 24 h, the DSB repair half-life of LDR exposure was slower than that of HDR exposure. The results give a first indication that the dose rate should be taken into account for cancer risk estimations related to neutrons.
Collapse
|