1
|
Salam H, Ahmed S, Bari MF, Bukhari U, Haider G, Najeeb S, Mughal N. Association of Kaiso and partner proteins in oral squamous cell carcinoma. J Taibah Univ Med Sci 2022; 18:802-811. [PMID: 36852243 PMCID: PMC9957818 DOI: 10.1016/j.jtumed.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives 1. Identification of protein expression and subcellular localization of E-cadherin (E-cad), p120 catenin (P120ctn), and Kaiso in oral cancer (OC). 2. To study the protein expression of cyclin D1 and c-Myc (Kaiso targets) and determine their relationship with the expression and localization of Kaiso. Methods Histological grading was performed in accordance with Broder's criteria. Expression and localization data for E-cad, p120ctn, Kaiso, cyclin D1, and c-Myc were acquired using immunohistochemistry. Data were analyzed using SPSS version 21. The chi-square test was used to measure the statistical significance of associations, with p < 0.05 as statistically significant. Results Of 47 OC cases, 36% showed low E-cad expression and 34% showed low p120ctn. Low Kaiso expression was recognized in 78% of tumor specimens. Aberrant cytoplasmic localization of p120ctn was seen in 80.8% cases. Cytoplasmic Kaiso localization was appreciated in 87% of tumor tissues, whereas 29.7% lacked any nuclear Kaiso. Kaiso expression was significantly associated with the expression of cyclin D1 but not with c-Myc. Conclusion The present study identified a change in the localization of Kaiso in OC. The significance of this in relation to OC and tumor prognosis needs to be investigated with further studies using larger sample sizes and more sensitive molecular tools.
Collapse
Key Words
- AJ, Adherens junction
- BTB/POZ, Broad complex
- ChIP, Chromatin immunoprecipitation
- DDRRL, Dow Diagnostic Research and Reference Laboratory
- DNA, Deoxyribonucleic acid
- DUHS, Dow University of Health Sciences
- E-cad, E-cadherin
- E-cadherin
- FFPE, Formalin-fixed paraffin embedded
- H&E, Hematoxylin and eosin
- HPV, Human papilloma virus
- IHC, Immunohistochemistry
- KBS, Kaiso-binding site
- Kaiso protein
- MBP, Methyl CpG DNA-binding proteins
- OC, Oral cancer
- Oral squamous cell carcinoma
- SES, Socioeconomic status
- TNM, Tumor
- Tramtrack, and Bric a brac/poxvirus and zinc finger
- ZBTB33 protein
- ZF, Zinc finger
- c-Myc, Cellular Myc proteins
- node, metastasis
- p120ctn, p120-catenin
- qPCR, Quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Hira Salam
- Department of Oral Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Pakistan,Corresponding address: Department of Oral Pathology, Dr Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Ojha campus, Pakistan.
| | - Shaheen Ahmed
- Department of Oral Surgery, Dow International Dental College, Dow University of Health Sciences, Pakistan
| | - Muhammad Furqan Bari
- Department of Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi
| | - Uzma Bukhari
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Pakistan
| | - Ghulam Haider
- Department of Biological and Biomedical Sciences, Agha Khan University, Pakistan
| | - Shariq Najeeb
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada,Department of Evidence Synthesis, Evidentia Dental Research, Calgary, Alberta, Canada
| | - Nouman Mughal
- Department of Surgery, Agha Khan University, Pakistan
| |
Collapse
|
2
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 676] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Sun Z, Cao Y, Hu G, Zhao J, Chen M, Wang S, Ye Z, Chen H, Wang W, Wang Y. Jinfu'an Decoction Inhibits Invasion and Metastasis in Human Lung Cancer Cells (H1650) via p120ctn-Mediated Induction and Kaiso. Med Sci Monit 2018; 24:2878-2886. [PMID: 29735970 PMCID: PMC5965019 DOI: 10.12659/msm.909748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous research showed that Jin-Fu-An decoction has a significant effect on lung cancer. However, it remains unclear whether p120ctn and its transcription factor Kaiso play a role in lung cancer cell proliferation, adhesion, migration, and metastasis. MATERIAL AND METHODS Proliferation inhibition was detected by CCK-8 assay. The migration and invasion were detected using Transwell assay. The location and expression of p120ctn and Kaiso were monitored by immunofluorescence staining. The expression changes of p120ctn, its isoform 1A, its S288 phosphorylation, and Kaiso were measured by Western blot assay. RESULTS The lung cancer cell line H1650 administered Jin-Fu-An decoction had significantly reduced the growth in dose-dependent and time-dependent manners. Migration and metastasis were significantly inhibited by application of Jin-Fu-An decoction in a dose-dependent manner. Additionally, Jin-Fu-An decoction decreased the expressions of p120ctn, its isoform 1A, and its S288 phosphorylation, but the protein level of Kaiso was elevated. CONCLUSIONS Jin-Fu-An decoction inhibits the proliferation, adhesion, migration, and metastasis though down-regulation of p120ctn or its isoform 1A expression, mediating the up-regulation of Kaiso. The underlying mechanism of Jin-Fu-An decoction might involve targeting the lower expression of p120ctn S288 phosphorylation, which suggests that Jin-Fu-An decoction may be a potential therapeutic measure as prevention and control of recurrence and metastasis of lung cancer.
Collapse
Affiliation(s)
- Zhe Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yang Cao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Guangyun Hu
- Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, P.R. China
| | - Jiuda Zhao
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, P.R. China
| | - Ming Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Sisi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zengjie Ye
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Hongyu Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Wenping Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Ya’nan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
4
|
Xue X, Zhang J, Lan H, Xu Y, Wang H. Kaiso protects human umbilical vein endothelial cells against apoptosis by differentially regulating the expression of B-cell CLL/lymphoma 2 family members. Sci Rep 2017; 7:7116. [PMID: 28769046 PMCID: PMC5540925 DOI: 10.1038/s41598-017-07559-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
Endothelial cell injury can promote the development of various cardiovascular diseases, thus, fully understanding the mechanisms underlying the maintenance of vascular endothelial cell homoeostasis may help prevent and treat cardiovascular disease. Kaiso, a zinc finger and BTB domain containing transcription factor, is key to embryonic development and cancer, but how Kaiso interacts with vascular endothelium is not fully understood. We report that Kaiso has an anti-apoptotic function in human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells (HMEC-1s). Overexpression of Kaiso significantly increased cell viability and inhibited hydrogen peroxide-induced apoptosis. Furthermore, Kaiso increased expression of B-cell CLL/lymphoma 2 (BCL2) and reduced expression of BCL2-associated X protein (BAX) and BCL2-interacting killer (BIK) by differentially regulating gene promoter activity. Methylated DNA and specific Kaiso binding site (KBS) contributed to gene regulatory activity of Kaiso. In addition, p120ctn functioned cooperatively in Kaiso-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China
| | - Huai Lan
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, 110016, China.
| |
Collapse
|
5
|
Zhang L, Gallup M, Zlock L, Feeling Chen YT, Finkbeiner WE, McNamara NA. Cigarette Smoke Mediates Nuclear to Cytoplasmic Trafficking of Transcriptional Inhibitor Kaiso through MUC1 and P120-Catenin. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3146-3159. [PMID: 27765636 DOI: 10.1016/j.ajpath.2016.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death, and 87% of these deaths are directly attributable to smoking. Using three-dimensional cultures of primary human bronchial epithelial cells, we demonstrated that loss of adherens junction protein, epithelial cadherin, and the aberrant interaction of its adherens junction binding partner, p120-catenin (p120ctn), with the cytoplasmic tail of apical mucin-1 (MUC1-CT) represent initiating steps in the epithelial-to-mesenchymal transition. Smoke provoked the rapid nuclear entry of p120ctn in complex with MUC1-CT that was inhibited using the MUC1-CT inhibitory peptides, PMIP and GO-201. Nuclear entry of p120ctn promoted its interaction with transcriptional repressor kaiso and the rapid shuttling of kaiso to the cytoplasm. Nuclear exit of kaiso permitted the up-regulation of oncogenic transcription factors Fos/phospho-Ser32 Fos, FosB, Fra1/phospho-Ser265 Fra1, which was inhibited through suppression of p120ctn's nuclear export using leptomycin-B. These data indicated that smoke-induced nuclear-to-cytoplasmic translocation of kaiso depends on the nuclear import of p120ctn in complex with MUC1-CT and the nuclear export of kaiso in complex with p120ctn. The presence of MUC1-CT/p120ctn and p120ctn/kaiso complexes in lung squamous cell carcinoma and adenocarcinoma specimens from human patients confirms the clinical relevance of these events. Thus, enhancing kaiso's suppressor role of protumor genes by sequestering kaiso in the nucleus of a smoker's airway epithelium may represent a novel approach of treating lung cancer.
Collapse
Affiliation(s)
- Lili Zhang
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California
| | - Marianne Gallup
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California
| | - Lorna Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Yu Ting Feeling Chen
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Nancy A McNamara
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California; Department of Anatomy and Ophthalmology, University of California, San Francisco, San Francisco, California; School of Optometry and Vision Science Graduate Program, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
6
|
Pozner A, Terooatea TW, Buck-Koehntop BA. Cell-specific Kaiso (ZBTB33) Regulation of Cell Cycle through Cyclin D1 and Cyclin E1. J Biol Chem 2016; 291:24538-24550. [PMID: 27694442 DOI: 10.1074/jbc.m116.746370] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Indexed: 12/11/2022] Open
Abstract
The correlation between aberrant DNA methylation with cancer promotion and progression has prompted an interest in discerning the associated regulatory mechanisms. Kaiso (ZBTB33) is a specialized transcription factor that selectively recognizes methylated CpG-containing sites as well as a sequence-specific DNA target. Increasing reports link ZBTB33 overexpression and transcriptional activities with metastatic potential and poor prognosis in cancer, although there is little mechanistic insight into how cells harness ZBTB33 transcriptional capabilities to promote and progress disease. Here we report mechanistic details for how ZBTB33 mediates cell-specific cell cycle regulation. By utilizing ZBTB33 depletion and overexpression studies, it was determined that in HeLa cells ZBTB33 directly occupies the promoters of cyclin D1 and cyclin E1, inducing proliferation by promoting retinoblastoma phosphorylation and allowing for E2F transcriptional activity that accelerates G1- to S-phase transition. Conversely, in HEK293 cells ZBTB33 indirectly regulates cyclin E abundance resulting in reduced retinoblastoma phosphorylation, decreased E2F activity, and decelerated G1 transition. Thus, we identified a novel mechanism by which ZBTB33 mediates the cyclin D1/cyclin E1/RB1/E2F pathway, controlling passage through the G1 restriction point and accelerating cancer cell proliferation.
Collapse
Affiliation(s)
- Amir Pozner
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Tommy W Terooatea
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | | |
Collapse
|
7
|
Koh DI, An H, Kim MY, Jeon BN, Choi SH, Hur SS, Hur MW. Transcriptional activation of APAF1 by KAISO (ZBTB33) and p53 is attenuated by RelA/p65. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1170-8. [DOI: 10.1016/j.bbagrm.2015.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 12/21/2022]
|
8
|
Pierre CC, Longo J, Mavor M, Milosavljevic SB, Chaudhary R, Gilbreath E, Yates C, Daniel JM. Kaiso overexpression promotes intestinal inflammation and potentiates intestinal tumorigenesis in Apc(Min/+) mice. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1846-55. [PMID: 26073433 DOI: 10.1016/j.bbadis.2015.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
Constitutive Wnt/β-catenin signaling is a key contributor to colorectal cancer (CRC). Although inactivation of the tumor suppressor adenomatous polyposis coli (APC) is recognized as an early event in CRC development, it is the accumulation of multiple subsequent oncogenic insults facilitates malignant transformation. One potential contributor to colorectal carcinogenesis is the POZ-ZF transcription factor Kaiso, whose depletion extends lifespan and delays polyp onset in the widely used Apc(Min/+) mouse model of intestinal cancer. These findings suggested that Kaiso potentiates intestinal tumorigenesis, but this was paradoxical as Kaiso was previously implicated as a negative regulator of Wnt/β-catenin signaling. To resolve Kaiso's role in intestinal tumorigenesis and canonical Wnt signaling, we generated a transgenic mouse model (Kaiso(Tg/+)) expressing an intestinal-specific myc-tagged Kaiso transgene. We then mated Kaiso(Tg/+) and Apc(Min/+) mice to generate Kaiso(Tg/+):Apc(Min/+) mice for further characterization. Kaiso(Tg/+):Apc(Min/+) mice exhibited reduced lifespan and increased polyp multiplicity compared to Apc(Min/+) mice. Consistent with this murine phenotype, we found increased Kaiso expression in human CRC tissue, supporting a role for Kaiso in human CRC. Interestingly, Wnt target gene expression was increased in Kaiso(Tg/+):Apc(Min/+) mice, suggesting that Kaiso's function as a negative regulator of canonical Wnt signaling, as seen in Xenopus, is not maintained in this context. Notably, Kaiso(Tg/+):Apc(Min/+) mice exhibited increased inflammation and activation of NFκB signaling compared to their Apc(Min/+) counterparts. This phenotype was consistent with our previous report that Kaiso(Tg/+) mice exhibit chronic intestinal inflammation. Together our findings highlight a role for Kaiso in promoting Wnt signaling, inflammation and tumorigenesis in the mammalian intestine.
Collapse
Affiliation(s)
- Christina C Pierre
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joseph Longo
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Meaghan Mavor
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | | - Roopali Chaudhary
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ebony Gilbreath
- College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL, USA
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
9
|
Qin S, Zhang B, Tian W, Gu L, Lu Z, Deng D. Kaiso mainly locates in the nucleus in vivo and binds to methylated, but not hydroxymethylated DNA. Chin J Cancer Res 2015; 27:148-55. [PMID: 25937776 DOI: 10.3978/j.issn.1000-9604.2015.04.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/23/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Kaiso is upregulated in many cancers and proposed to bind with both methylated- and unmethylated-DNA in the nucleus as a transcriptional repressor. The objective is to define its subcellular localization in vivo and exact binding DNA sequences in cells. METHODS Compartmentalization of exogenous Kaiso in cells was tracked with enhanced green fluorescence protein (EGFP) tag. The endogenous Kaiso expression in gastric carcinoma tissue was examined with immunohistochemical staining. Kaiso-DNA binding was tested using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). RESULTS Kaiso mainly localized in the nucleus of cancer and stromal cells in vivo, but remained in the cytoplasm of cultured cells. Most importantly, nuclear Kaiso can bind with the methylated-CGCG-containing sequence in the CDKN2A promoter, but not with the hydroxymethylated-CGCG sequence in HCT116 cells. CONCLUSIONS Kaiso locates mainly in the nucleus in vivo where it binds with the methylated-CGCG sequences, but does not bind with the hydroxymethylated-CGCG sequences.
Collapse
Affiliation(s)
- Sisi Qin
- Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Baozhen Zhang
- Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wei Tian
- Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liankun Gu
- Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zheming Lu
- Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Dajun Deng
- Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Cancer Etiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
10
|
Liyanage VRB, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease States. BIOLOGY 2014; 3:670-723. [PMID: 25340699 PMCID: PMC4280507 DOI: 10.3390/biology3040670] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
Epigenetics refers to a variety of processes that have heritable effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are chemical modifications to DNA, histone, and non-histone chromosomal proteins, which establish a complex regulatory network that controls genome function. Methylation of DNA at the fifth position of cytosine in CpG dinucleotides (5-methylcytosine, 5mC), which is carried out by DNA methyltransferases, is commonly associated with gene silencing. However, high resolution mapping of DNA methylation has revealed that 5mC is enriched in exonic nucleosomes and at intron-exon junctions, suggesting a role of DNA methylation in the relationship between elongation and RNA splicing. Recent studies have increased our knowledge of another modification of DNA, 5-hydroxymethylcytosine (5hmC), which is a product of the ten-eleven translocation (TET) proteins converting 5mC to 5hmC. In this review, we will highlight current studies on the role of 5mC and 5hmC in regulating gene expression (using some aspects of brain development as examples). Further the roles of these modifications in detection of pathological states (type 2 diabetes, Rett syndrome, fetal alcohol spectrum disorders and teratogen exposure) will be discussed.
Collapse
Affiliation(s)
- Vichithra R B Liyanage
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Nanditha Murugeshan
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
11
|
Shumskaya VS, Zhigalova NA, Prokhorchouk AV, Prokhorchouk EB. Distribution of Kaiso protein in mouse tissues. Histochem Cell Biol 2014; 143:29-43. [PMID: 25182933 DOI: 10.1007/s00418-014-1261-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
The Kaiso protein was originally described as a BTB/POZ zinc-finger transcription factor and a p120-catenin-binding partner. It is a DNA methylation-dependent transcriptional repressor, but its biological role in mice is still unknown. Here, we characterized a Kaiso-specific antibody by examining Kaiso protein distribution by immunofluorescence microscopy in the following tissues and cell types of adult mice: skin, small intestine, mammary glands, urinary bladder, and others. This study is the first to demonstrate that Kaiso is expressed in most of the examined tissues. Kaiso was localized to the nucleus in almost all tissues. However, it was primarily cytoplasmic in photoreceptor cells in the eye (rods and cones). Furthermore, Kaiso is expressed in a specific subset of male germ cells that are characterized by partly positive PLZF and Bmi-1 staining. In this study, we present the first confirmation of the reliability of expression data using Kaiso knockout mice.
Collapse
|
12
|
Liu Y, Dong QZ, Wang S, Xu HT, Miao Y, Wang L, Wang EH. Kaiso interacts with p120-catenin to regulate β-catenin expression at the transcriptional level. PLoS One 2014; 9:e87537. [PMID: 24498333 PMCID: PMC3911973 DOI: 10.1371/journal.pone.0087537] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/30/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We have reported that p120-catenin could regulate β-catenin transcription in lung cancer cells, but the specific mechanism is unclear. METHODS AND RESULTS In this study, bisulfite sequencing PCR showed that the β-catenin promoter region in SPC-A-1 and LTEP-a-2 lung cancer cell lines has Kaiso binding sites sequences and CpG islands which may combine with Kaiso. The demethylating reagent 5-Aza-2'-deoxycytidine significantly upregulated β-catenin mRNA expression in lung cancer cell lines, whereas expression was significantly reduced following transfection with Kaiso. However, the upregulation of β-catenin mRNA expression after treatment with 5-Aza-2'-deoxycytidine was not reduced by subsequent transfection with Kaiso cDNA. Chromatin immunoprecipitation showed that, in lung cancer cell lines, methylated CpG-dinucleotides sequences combined with Kaiso and the Kaiso binding sites sequence did not. The capacity of Kaiso to combine with p120-catenin isoforms was confirmed by immunoprecipitation. CONCLUSIONS Based on these results, we concluded that Kaiso participates in the regulation by p120ctn of β-catenin mRNA expression in the lung cancer cell lines.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Qian-Ze Dong
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Si Wang
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Hong-Tao Xu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Yuan Miao
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Liang Wang
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - En-Hua Wang
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
- * E-mail:
| |
Collapse
|
13
|
The POZ-ZF transcription factor Kaiso (ZBTB33) induces inflammation and progenitor cell differentiation in the murine intestine. PLoS One 2013; 8:e74160. [PMID: 24040197 PMCID: PMC3764064 DOI: 10.1371/journal.pone.0074160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023] Open
Abstract
Since its discovery, several studies have implicated the POZ-ZF protein Kaiso in both developmental and tumorigenic processes. However, most of the information regarding Kaiso’s function to date has been gleaned from studies in Xenopus laevis embryos and mammalian cultured cells. To examine Kaiso’s role in a relevant, mammalian organ-specific context, we generated and characterized a Kaiso transgenic mouse expressing a murine Kaiso transgene under the control of the intestine-specific villin promoter. Kaiso transgenic mice were viable and fertile but pathological examination of the small intestine revealed distinct morphological changes. Kaiso transgenics (KaisoTg/+) exhibited a crypt expansion phenotype that was accompanied by increased differentiation of epithelial progenitor cells into secretory cell lineages; this was evidenced by increased cell populations expressing Goblet, Paneth and enteroendocrine markers. Paradoxically however, enhanced differentiation in KaisoTg/+ was accompanied by reduced proliferation, a phenotype reminiscent of Notch inhibition. Indeed, expression of the Notch signalling target HES-1 was decreased in KaisoTg/+ animals. Finally, our Kaiso transgenics exhibited several hallmarks of inflammation, including increased neutrophil infiltration and activation, villi fusion and crypt hyperplasia. Interestingly, the Kaiso binding partner and emerging anti-inflammatory mediator p120ctn is recruited to the nucleus in KaisoTg/+ mice intestinal cells suggesting that Kaiso may elicit inflammation by antagonizing p120ctn function.
Collapse
|
14
|
Expression of P120 catenin, Kaiso, and metastasis tumor antigen-2 in thymomas. Tumour Biol 2012; 33:1871-9. [PMID: 22833212 DOI: 10.1007/s13277-012-0447-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022] Open
Abstract
Thymomas of the same histological subtype sometimes manifest different biological behaviors. Metastasis Tumor Antigen-2 (MTA2) is targeted by the transcriptional repressor Kaiso, the distribution which is thought to be modulated by p120catenin (p120ctn). It is currently unclear if expression of p120ctn, Kaiso, and MTA2 relates to the biological behavior of thymoma. P120ctn, Kaiso, and MTA2 expression were examined in 137 cases of thymoma, three cases of thymic carcinoma, and 18 paired autologous normal thymic tissues using immunohistochemistry, and correlation of these proteins with histological subtypes and clinical stages were analyzed. In normal thymic epithelial cells, p120ctn was expressed on the cell membrane but Kaiso and MTA2 were not detected. Membranous p120ctn expression was reduced in thymoma epithelial cells, while ectopic cytoplasmic expression was observed in 76.6 % (105/137) of the cases. Cytoplasmic Kaiso was detected in 69.3 % (95/137) and nuclear MTA2 was detected in 70.8 % (97/137) of the thymomas. There were good consistencies (Kappa = 0.559, 0.512, 0.652; all P < 0.001) and correlations (r = 0.733, 0.652, 0.708; all P < 0.001) between cytoplasmic p120ctn, cytoplasmic Kaiso, and nuclear MTA2 expression in thymomas. All three protein factors correlated with histological type and clinical stage in thymoma (P < 0.05). Specifically, cytoplasmic p120ctn and Kaiso expression and nuclear MTA2 expression were higher in high-risk (types B2 and B3) thymomas and Masaoka stage III/IV thymomas than low-risk (types A, AB, and B1) and stage I/II thymomas (both P < 0.001), respectively. Cytoplasmic p120ctn, cytoplasmic Kaiso, and nuclear MTA2 expression correlated directly with histological type and Masaoka stage and may thus be used as potential biomarkers to predict biological behavior of thymoma.
Collapse
|
15
|
Cofre J, Menezes JRL, Pizzatti L, Abdelhay E. Knock-down of Kaiso induces proliferation and blocks granulocytic differentiation in blast crisis of chronic myeloid leukemia. Cancer Cell Int 2012; 12:28. [PMID: 22709531 PMCID: PMC3461418 DOI: 10.1186/1475-2867-12-28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Kaiso protein has been identified as a new member of the POZ-ZF subfamily of transcription factors that are involved in development and cancer. There is consistent evidence of the role of Kaiso and its involvement in human tumorigenesis but there is no evidence about its role in hematopoietic differentiation or establishment of chronic myeloid leukemia (CML). We used, normal K562 cell line, established from a CML patient in blast crisis, and imatinib-resistant K562 cell line, to investigate the specific distribution of Kaiso and their contribution to the cell differentiation status of the blast crisis of CML (CML-BP). Results We found cytoplasmic expression of Kaiso, in K562 cells and patients, confirmed by immunofluorescence, immunohistochemistry and western blot of cytoplasmic protein fraction. Kaiso was weakly expressed in the imatinib-resistant K562 cell line confirmed by immunofluorescence and western blot. The cytoplasmic expression of Kaiso was not modified when the K562 cells were treated for 16 h with imatinib 0.1 and 1 μM. In our study, small interfering RNA (siRNA) was introduced to down regulate the expression of Kaiso and p120ctn in K562 cell line. Kaiso and p120ctn were down regulated individually (siRNA-Kaiso or siRNA-p120ctn) or in combination using a simultaneous co-transfection (siRNA-Kaiso/p120ctn). We next investigated whether knockdown either Kaiso or p120ctn alone or in combination affects the cell differentiation status in K562 cells. After down regulation we analyzed the expression of hematopoietic cell differentiation and proliferation genes: SCF, PU-1, c-MyB, C/EBPα, Gata-2 and maturation markers of hematopoietic cells expressed in the plasma membrane: CD15, CD11b, CD33, CD117. The levels of SCF and c-MyB were increased by 1000% and 65% respectively and PU-1, Gata-2 and C/EBPα were decreased by 66%, 50% and 80% respectively, when Kaiso levels were down regulated by siRNA. The results were similar when both Kaiso and p120ctn were down regulated by siRNA. The increased expression of SCF and decreased expression of GATA-2 could be responsible by the higher cell viability detected in K562 cells double knock-down of both Kaiso and p120ctn. Finally, we studied the effect of knock-down either Kaiso or p120ctn, alone or in combination on CD15, CD11b, CD33 and Cd117 expression. Using siRNA approach a reduction of 35%, 8% and 13% in CD15, CD33 and CD117 levels respectively, were achieved in all transfections, when compared to scrambled knock-down cells. Conclusion These results suggest that both Kaiso and p120ctn, contributes to maintaining the differentiated state of the K562 cells and similar to other cancers, cytoplasmic localization of Kaiso is related to a poor prognosis in CML-BP. By the broad and profound effects on the expression of genes and markers of hematopoietic differentiation produced by Kaiso knock-down, these findings reveal Kaiso as a potential target for selective therapy of CML.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, CEP 88040-900, Florianópolis, SC, Brazil.
| | | | | | | |
Collapse
|
16
|
N-terminal 1-54 amino acid sequence and Armadillo repeat domain are indispensable for P120-catenin isoform 1A in regulating E-cadherin. PLoS One 2012; 7:e37008. [PMID: 22615871 PMCID: PMC3353978 DOI: 10.1371/journal.pone.0037008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/11/2012] [Indexed: 01/20/2023] Open
Abstract
P120-catenin (p120ctn) exerts important roles in regulating E-cadherin and invasiveness in cancer cells. However, the mechanisms by which p120ctn isoforms 1 and 3 modulate E-cadherin expression are poorly understood. In the current study, HBE, H460, SPC and LTE cell lines were used to examine the effects of p120ctn isoforms 1A and 3A on E-cadherin expression and cell invasiveness. E-cadherin was localized on the cell membrane of HBE and H460 cells, while it was confined to the cytoplasm in SPC and LTE cells. Depletion of endogenous p120ctn resulted in reduced E-cadherin expression; however, p120ctn ablation showed opposite effects on invasiveness in the cell lines by decreasing invasiveness in SPC and LTE cells and increasing it in HBE and H460 cells. Restitution of 120ctn isoform 1A restored E-cadherin on the cell membrane and blocked cell invasiveness in H460 and HBE cells, while it restored cytoplasmic E-cadherin and enhanced cell invasiveness in SPC and LTE cells. P120ctn isoform 3A increased the invasiveness in all four cell lines despite the lack of effect on E-cadherin expression, suggesting a regulatory pathway independent of E-cadherin. Moreover, five p120ctn isoform 1A deletion mutants were constructed and expressed in H460 and SPC cells. The results showed that only the M4 mutant, which contains N-terminal 1–54 amino acids and the Armadillo repeat domain, was functional in regulating E-cadherin and cell invasiveness, as observed in p120ctn isoform 1A. In conclusion, the N-terminal 1–54 amino acid sequence and Armadillo repeat domain of p120ctn isoform 1A are indispensable for regulating E-cadherin protein. P120ctn isoform 1A exerts opposing effects on cell invasiveness, corresponding to the subcellular localization of E-cadherin.
Collapse
|
17
|
Liu SL, Han Y, Zhang Y, Xie CY, Wang EH, Miao Y, Li HY, Xu HT, Dai SD. Expression of metastasis-associated protein 2 (MTA2) might predict proliferation in non-small cell lung cancer. Target Oncol 2012; 7:135-43. [PMID: 22585429 DOI: 10.1007/s11523-012-0215-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
Metastatic tumor antigen 2 (MTA2) is a member of the MTA family that is closely associated with tumor progression and metastasis. In this study, the expression profile of MTA2 in 223 cases of non-small cell lung cancer (NSCLC) tissues and two lung cancer cell lines was investigated. Interestingly, we found MTA2, which was believed to have nuclear distribution only, was distributed in both nucleus and cytoplasm in normal and cancer cells. Nuclear MTA2 expression was detected in 148 cases of NSCLC (66.4%), and was correlated with advanced TNM stages (p=0.023), tumor size (p=0.036), and lymph node metastasis (p=0.004). Besides, the Ki-67 proliferation index was significantly higher in nuclear MTA2-positive tumors than in nuclear MTA2-negative tumors (r=0.538, p=0.006). However, there was no significant difference in cytoplasmic MTA2 status by age, gender, tumor stage, histology, grade, lymph node metastasis, and Ki-67 proliferation index. Univariate analysis revealed nuclear MTA2 expression was correlated with poor overall survival (p=0.035), whereas there was a nonsignificant trend in the same direction for cytoplasmic MTA2 (p=0.134). Multivariate Cox regression analysis revealed the overexpression of nuclear and cytoplasmic MTA2 not to be independent factors predictive of poor disease outcome. Our data suggested that MTA2 might play roles in both the nucleus and cytoplasm in the progression of NSCLC.
Collapse
Affiliation(s)
- Shu-Li Liu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jiang G, Wang Y, Dai S, Liu Y, Stoecker M, Wang E, Wang E. P120-catenin isoforms 1 and 3 regulate proliferation and cell cycle of lung cancer cells via β-catenin and Kaiso respectively. PLoS One 2012; 7:e30303. [PMID: 22276175 PMCID: PMC3262806 DOI: 10.1371/journal.pone.0030303] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022] Open
Abstract
Background The different mechanisms involved in p120-catenin (p120ctn) isoforms' 1/3 regulation of cell cycle progression are still not elucidated to date. Methods and Findings We found that both cyclin D1 and cyclin E could be effectively restored by restitution of p120ctn-1A or p120ctn-3A in p120ctn depleted lung cancer cells. When the expression of cyclin D1 was blocked by co-transfection with siRNA-cyclin D1 in p120ctn depleted cells restoring p120ctn-1A or 3A, the expression of cyclin E was slightly decreased, not increased, implying that p120ctn isoforms 1 and 3 cannot up-regulate cyclin E directly but may do so through up-regulation of cyclin D1. Interestingly, overexpression of p120ctn-1A increased β-catenin and cyclin D1 expression, while co-transfection with siRNA targeting β-catenin abolishes the effect of p120ctn-1A on up-regulation of cyclin D1, suggesting a role of β-catenin in mediating p120ctn-1A's regulatory function on cyclin D1 expression. On the other hand, overexpression of p120ctn isoform 3A reduced nuclear Kaiso localization, thus decreasing the binding of Kaiso to KBS on the cyclin D1 promoter and thereby enhancing the expression of cyclin D1 gene by relieving the repressor effect of Kaiso. Because overexpressing NLS-p120ctn-3A (p120ctn-3A nuclear target localization plasmids) or inhibiting nuclear export of p120ctn-3 by Leptomycin B (LMB) caused translocation of Kaiso to the nucleus, it is plausible that the nuclear export of Kaiso is p120ctn-3-dependent. Conclusions Our results suggest that p120ctn isoforms 1 and 3 up-regulate cyclin D1, and thereby cyclin E, resulting in the promotion of cell proliferation and cell cycle progression in lung cancer cells probably via different protein mediators, namely, β-catenin for isoform 1 and Kaiso, a negative transcriptional factor of cyclin D1, for isoform 3.
Collapse
Affiliation(s)
- Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yan Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shundong Dai
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Maggie Stoecker
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
19
|
Zhang S, Wang Y, Dai SD, Wang EH. Down-regulation of NKD1 increases the invasive potential of non-small-cell lung cancer and correlates with a poor prognosis. BMC Cancer 2011; 11:186. [PMID: 21599923 PMCID: PMC3118196 DOI: 10.1186/1471-2407-11-186] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/20/2011] [Indexed: 11/21/2022] Open
Abstract
Background As a negative modulator of the canonical Wnt signaling pathway, Naked1 (NKD1) is widely expressed in many normal tissues. However, the expression pattern and clinicopathological significance of NKD1 in patients with non-small-cell lung cancer (NSCLC) is still unclear. Methods Immunohistochemical studies were performed on 35 cases of normal lung tissues and 100 cases of NSCLC, including 66 cases with complete follow-up records. The NKD1 protein and mRNA expressions were detected by western blot and Real-time PCR, respectively. To examine the effect of NKD1 on the invasiveness of lung cancer cells, NKD1 was down-regulated by siRNA in lung cancer cell lines and the invasive ability was then evaluated by the Matrigel invasion assay. In addition, the expressions of Dishevelled-1 and β-catenin proteins, as well as MMP mRNA were also examined in NKD1 knockdown cells. Results In 35 fresh lung cancer tissues examined, 27(79%) of them exhibited lower levels of NKD1 protein in comparison with their corresponding normal tissue (P = 0.009). However, the NKD1 mRNA level was significantly higher in cancerous lung tissues, compared with the adjacent normal tissues. In 100 NSCLC tissues, NKD1 was significantly lower in 78 cases (78%) than in the normal specimens, determined by immunohistochemical staining. The reduced NKD1 expression was correlated with histological type (P = 0.003), poor differentiation (P = 0.004), lymph node metastasis (P = 0.013), TNM stage (P = 0.002) and poor survival (62.88 ± 3.23 versus 23.61 ± 2.18 months, P = 0.03). In addition, NKD1 knockdown could up-regulate Dishevelled-1 and β-catenin protein levels, as well as increased MMP-7 transcription and the invasive ability of lung cancer cells. Furthermore, when the NKD1-knockdown cells were treated with Dishevelled-1 antibody, their invasive potential was significantly reduced. Conclusion NKD1 protein is reduced but NKD1 mRNA is elevated in NSCLC. Reduced NKD1 protein expression correlates with a poor prognosis in NSCLC. NKD1 might inhibit the activity of the canonical Wnt pathway through Dishevelled-1.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
20
|
Dai SD, Wang Y, Zhang JY, Zhang D, Zhang PX, Jiang GY, Han Y, Zhang S, Cui QZ, Wang EH. Upregulation of δ-catenin is associated with poor prognosis and enhances transcriptional activity through Kaiso in non-small-cell lung cancer. Cancer Sci 2011; 102:95-103. [PMID: 21070476 PMCID: PMC11159058 DOI: 10.1111/j.1349-7006.2010.01766.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
δ-Catenin is the only member of the p120 catenin (p120ctn) subfamily that its primary expression is restricted to the brain. Since δ-catenin is upregulated in human lung cancer, the effects of δ-catenin overexpression in lung cancer still need to be clarified. Immunohistochemistry was performed to investigate the expression of δ-catenin and Kaiso, a δ-catenin-binding transcription factor, in 151 lung cancer specimens. A correlation between cytoplasmic δ-catenin and Kaiso expression was also associated with high TNM stage, lymph node metastases and poor prognosis. Co-immunoprecipitation assay confirmed the interactions of δ-catenin and Kaiso in lung cancer cells. In addition, gene transfection and RNAi technology were used to demonstrate that increased δ-catenin expression was promoted, whereas its knockdown suppressed its lung cancer invasive ability. In addition, methylation-specific PCR and ChIP assay demonstrated that δ-catenin could regulate MTA2 via Kaiso in a methylation-dependent manner, while it could regulate cyclin D1 and MMP7 expression through Kaiso in a sequence-specific manner. In conclusion, a δ-catenin/Kaiso pathway exists in lung cancer cells. Increased δ-catenin expression is critical for maintenance of the malignant phenotype of lung cancer, making δ-catenin a candidate target protein for future cancer therapeutics.
Collapse
Affiliation(s)
- Shun-Dong Dai
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang JY, Wang Y, Zhang D, Yang ZQ, Dong XJ, Jiang GY, Zhang PX, Dai SD, Dong QZ, Han Y, Zhang S, Cui QZ, Wang EH. delta-Catenin promotes malignant phenotype of non-small cell lung cancer by non-competitive binding to E-cadherin with p120ctn in cytoplasm. J Pathol 2010; 222:76-88. [PMID: 20593408 DOI: 10.1002/path.2742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a member of the catenin family, little is known about the clinical significance and possible mechanism of delta-catenin expression in numerous tumours. We examined the expression of delta-catenin by immunohistochemistry in 115 cases of non-small cell lung cancer (NSCLC) (including 65 cases with follow-up records and 50 cases with paired lymph node metastasis lesions). The mRNA and protein expression of delta-catenin was also detected in 30 cases of paired lung cancer tissues and normal lung tissues by RT-PCR and western blotting, respectively. Co-immunoprecipitation was used to examine whether delta-catenin competitively bound to E-cadherin with p120ctn in lung cancer cells or not. The effects of delta-catenin on the activity of small GTPases and the biological behaviour of lung cancer cells were explored by pull-down assay, flow cytometry, MTT, and Matrigel invasive assay. The results showed that the mRNA and protein expression of delta-catenin was increased in lung cancer tissues; the positive expression rate of delta-catenin was significantly increased in adenocarcinoma, stage III-IV, paired lymph node metastasis lesions, and primary tumours with lymph node metastasis (all p < 0.05); and the postoperative survival period of patients with delta-catenin-positive expression was shorter than that of patients with delta-catenin-negative expression (p < 0.05). No competition between delta-catenin and p120ctn for binding to E-cadherin in cytoplasm was found in two lung cancer cell lines. By regulating the activity of small GTPases and changing the cell cycle, delta-catenin could promote the proliferation and invasion of lung cancer cells. We conclude that delta-catenin is an oncoprotein overexpressed in NSCLC and that increased delta-catenin expression is critical for maintenance of the malignant phenotype of lung cancer.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Soubry A, Staes K, Parthoens E, Noppen S, Stove C, Bogaert P, van Hengel J, van Roy F. The transcriptional repressor Kaiso localizes at the mitotic spindle and is a constituent of the pericentriolar material. PLoS One 2010; 5:e9203. [PMID: 20169156 PMCID: PMC2821401 DOI: 10.1371/journal.pone.0009203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 01/26/2010] [Indexed: 11/18/2022] Open
Abstract
Kaiso is a BTB/POZ zinc finger protein known as a transcriptional repressor. It was originally identified through its in vitro association with the Armadillo protein p120ctn. Subcellular localization of Kaiso in cell lines and in normal and cancerous human tissues revealed that its expression is not restricted to the nucleus. In the present study we monitored Kaiso's subcellular localization during the cell cycle and found the following: (1) during interphase, Kaiso is located not only in the nucleus, but also on microtubular structures, including the centrosome; (2) at metaphase, it is present at the centrosomes and on the spindle microtubules; (3) during telophase, it accumulates at the midbody. We found that Kaiso is a genuine PCM component that belongs to a pericentrin molecular complex. We analyzed the functions of different domains of Kaiso by visualizing the subcellular distribution of GFP-tagged Kaiso fragments throughout the cell cycle. Our results indicate that two domains are responsible for targeting Kaiso to the centrosomes and microtubules. The first domain, designated SA1 for spindle-associated domain 1, is located in the center of the Kaiso protein and localizes at the spindle microtubules and centrosomes; the second domain, SA2, is an evolutionarily conserved domain situated just before the zinc finger domain and might be responsible for localizing Kaiso towards the centrosomal region. Constructs containing both SA domains and Kaiso's aminoterminal BTB/POZ domain triggered the formation of abnormal centrosomes. We also observed that overexpression of longer or full-length Kaiso constructs led to mitotic cell arrest and frequent cell death. Knockdown of Kaiso accelerated cell proliferation. Our data reveal a new target for Kaiso at the centrosomes and spindle microtubules during mitosis. They also strongly imply that Kaiso's function as a transcriptional regulator might be linked to the control of the cell cycle and to cell proliferation in cancer.
Collapse
Affiliation(s)
- Adelheid Soubry
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katrien Staes
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eef Parthoens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sam Noppen
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Stove
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Bogaert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|