1
|
Wright JC, Sharma S, Potter AS. Arrhythmia Challenges in Cardio-Oncology: High-Risk Therapies, Management, and Anticoagulation. Cardiol Clin 2025; 43:43-56. [PMID: 39551561 DOI: 10.1016/j.ccl.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cardiovascular disease and cancer are the leading cause of mortality in the United States. In 2021, there were 695,547 and 605,213 deaths due to heart disease and cancer, respectively. With novel oncologic and cardiac therapies, survival has improved leading to increased life-expectancy albeit with chronic illness burden. Arrhythmia management in patients with cancer, whether active or in remission, can be quite challenging. In this review, we will discuss high-risk oncological therapies, prevention, and management of Atrial fibrillation, Ventricular Arrhythmias, and Bradyarrhythmias.
Collapse
Affiliation(s)
- Jonathan C Wright
- Cardio-oncology Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Sneha Sharma
- Cardio-oncology Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Adam S Potter
- Cardio-oncology Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Torresan S, Bortolot M, De Carlo E, Bertoli E, Stanzione B, Del Conte A, Spina M, Bearz A. Matters of the Heart: Cardiotoxicity Related to Target Therapy in Oncogene-Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2025; 26:554. [PMID: 39859270 PMCID: PMC11765312 DOI: 10.3390/ijms26020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The treatment of Non Small Cell Lung Cancer (NSCLC) has been revolutionised by the introduction of targeted therapies. With the improvement of response and frequently of overall survival, however, a whole new set of adverse events emerged. In fact, due to the peculiar mechanism of action of each one of the tyrosine kinase inhibitors and other targeted therapies, every drug has its own specific safety profile. In addition, this safety profile could not fully emerge from clinical trials data, as patients in clinical practice usually have more comorbidities and frailties. Cardiotoxicity is a well-known and established adverse event of anti-cancer therapies. However, only recently it has become a central topic for targeted therapies in NSCLC, due to the unknown real range and frequency. Management of this toxicity begins with prevention, and must balance the need of continuing an effective anticancer treatment versus low risk of even fatal events and the preservation of long-term quality of life. The aim of this review is to summarise the current knowledge focusing on currently used targeted therapies in NSCLC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, 33081 Aviano, Italy
| |
Collapse
|
3
|
Leong DP, Waliany S, Abdel-Qadir H, Atkins KM, Neilan TG, Lang NN, Liu JE, Blaes AH, Mian HS, Moore HN, Hajjar LA, Morgans AK, Ellis PM, Dent S. Cardiovascular Considerations During Cancer Therapy: Gaps in Evidence and JACC: CardioOncology Expert Panel Recommendations. JACC CardioOncol 2024; 6:815-834. [PMID: 39801647 PMCID: PMC11711816 DOI: 10.1016/j.jaccao.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 01/03/2025] Open
Abstract
The administration of certain cancer therapies can be associated with the development of cardiovascular toxicity or complications. This spectrum of toxicities is broad and requires nuanced approaches for prevention, identification, and management. This expert panel summarizes the consensus of opinions of diverse health care professionals in several key areas: 1) cardioprotection involves strategies aimed at the primary prevention of cancer therapy-related cardiovascular toxicity; 2) surveillance entails monitoring for cancer therapy-related cardiovascular toxicity during cancer therapy; 3) permissive cardiotoxicity is the informed continuation of cancer therapy in the presence of cardiovascular toxicity, along with the implementation of mitigating cardiovascular treatments; and 4) special considerations include the invasive management of severe cardiovascular disease in patients receiving treatments for advanced cancer and the exploration of drug-drug interactions in cardio-oncology. In this expert panel, we also highlight gaps in evidence in an effort to continue to advance science in the cardiovascular care of our patients undergoing cancer therapy.
Collapse
Affiliation(s)
- Darryl P. Leong
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Waliany
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Husam Abdel-Qadir
- Women’s College Hospital, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario, Canada
| | - Katelyn M. Atkins
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomas G. Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ninian N. Lang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer E. Liu
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hira S. Mian
- Juravinski Cancer Center, Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Heather N. Moore
- Department of Pharmacy, Duke University Medical Center, Durham, North Carolina, USA
| | - Ludhmila A. Hajjar
- Cardio-Oncology Department, InCor, Universidade de São Paolo, São Paolo, Brazil
| | - Alicia K. Morgans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peter M. Ellis
- Juravinski Cancer Center, Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Susan Dent
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Flore F, Scacciavillani R, Iannaccone G, Narducci ML, Pinnacchio G, Bencardino G, Perna F, Spera FR, Comerci G, Camilli M, Lombardo A, Lanza GA, Crea F, Pelargonio G. Mechanisms, prevalence and management of cardiac arrhythmias in cancer patients: a comprehensive review. Future Cardiol 2023; 19:707-718. [PMID: 37929680 DOI: 10.2217/fca-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Recently, prognosis and survival of cancer patients has improved due to progression and refinement of cancer therapies; however, cardiovascular sequelae in this population augmented and now represent the second cause of death in oncological patients. Initially, the main issue was represented by heart failure and coronary artery disease, but a growing body of evidence has now shed light on the increased arrhythmic risk of this population, atrial fibrillation being the most frequently encountered. Awareness of arrhythmic complications of cancer and its treatments may help oncologists and cardiologists to develop targeted approaches for the management of arrhythmias in this population. In this review, we provide an updated overview of the mechanisms triggering cardiac arrhythmias in cancer patients, their prevalence and management.
Collapse
Affiliation(s)
- Francesco Flore
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Roberto Scacciavillani
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Lucia Narducci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Pinnacchio
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluigi Bencardino
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Perna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Gianluca Comerci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gemma Pelargonio
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Luo Y, Zhang Z, Guo X, Tang X, Li S, Gong G, Gao S, Zhang Y, Lin S. Comparative safety of anaplastic lymphoma kinase tyrosine kinase inhibitors in advanced anaplastic lymphoma kinase-mutated non-small cell lung cancer: Systematic review and network meta-analysis. Lung Cancer 2023; 184:107319. [PMID: 37597303 DOI: 10.1016/j.lungcan.2023.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Anaplastic lymphoma kinase-tyrosine kinase inhibitors (ALK-TKIs) are new treatment for advanced non-small cell lung cancer. Here, we quantified the toxicity profiles of different ALK-TKIs to guide clinical decision making. MATERIALS AND METHODS We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials. Data were analyzed using random effects and consistency models under the frequency framework. RESULTS Of 865 relevant studies, 13 RCTs (encompassing 3,353 patients) were finally included. A network meta-analysis of all-grade AEs, fatal AEs, and treatment discontinuation due to AEs revealed no significant differences among the six ALK-TKIs. The rates of grade 3-4 AEs were: alectinib (16.2%), crizotinib (46.4%), brigatinib (63.7%), ensartinib (75.6%), ceritinib (78.3%), and lorlatinib (91.6%). The toxicity spectra of ALK-TKIs were different. The most frequent AEs associated with crizotinib were gastrointestinal reactions, visual disorders, neutropenia, edema, fatigue, and elevated alanine aminotransferase (ALT) or aspartate aminotransferase (AST) levels, while those in the alectinib group were anemia and constipation. Diarrhea, hepatotoxicity, and increased serum creatinine were most common with ceritinib. The most frequent AEs in the brigatinib group were gastrointestinal reactions, hypertension, cough, headache, and elevated ALT or AST levels. The most significant toxicities of ensartinib were skin disorders, including pruritus and rash. Changes in lipid levels were the most frequent AEs associated with lorlatinib; weight gain, cognitive effects, and mood effects were lorlatinib-specific AEs. CONCLUSIONS The toxicity spectra of ALK-TKIs differed. Alectinib might be the safest ALK-TKI drug according to the combined evidence of grades 3-4 AEs and the combined incidence.
Collapse
Affiliation(s)
- Yuyao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhe Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - XuanZhu Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuemei Tang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sijie Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | - Shun Gao
- Southwest Medical University, Luzhou, China
| | - Yan Zhang
- Department of Oncology, Luzhou Municipal People's Hospital, Luzhou, China.
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Zhao J, Ma Z, Li H, Sun D, Hu Y, Zhang C, Zhang Y. Risks of cardiovascular toxicities associated with ALK tyrosine kinase inhibitors in patients with non-small-cell lung cancer: a meta-analysis of randomized control trials. Expert Opin Drug Saf 2023; 22:581-588. [PMID: 36803384 DOI: 10.1080/14740338.2023.2182284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/30/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND Anaplastic lymphoma kinases (ALK) tyrosine kinase inhibitors (TKIs) are effective and safe targeted therapies used in advanced ALK-positive non-small cell lung cancers (NSCLC). However, ALK-TKIs associated cardiovascular toxicities in patients with ALK-positive NSCLCremain incompletely characterized. We conducted the first meta-analysis to investigate this. RESEARCH DESIGN AND METHODS To determine the cardiovascular toxicities associated with these agents, we carried out a meta-analysis comparing ALK-TKIs with chemotherapy and a meta-analysis comparing crizotinib with other ALK-TKIs. Statistical analysis was conducted to calculate the RRs and 95% confidence intervals (CIs) by using either random effects or fixed-effect models according to the heterogeneity of the included studies. RESULTS A total of 11 studies (2855 patients) were included. ALK-TKIs ranked to have more severe cardiovascular toxicities than chemotherapy (RR 5.03, 95% CI 1.97-12.84, P = 0.0007) . Compared with other ALK-TKIs, increased risks of cardiac disorders and VTEs associated with crizotinib were found (cardiac disorders RR 1.75, 95% CI 1.07-2.86, P = 0.03; risk of VTEs RR 3.97, 95% CI 1.69-9.31, P = 0.002; respectively). CONCLUSION ALK-TKIs were associated with higher risks of cardiovascular toxicities. Special attention should be given to the risks of cardiac disorders and VTEs related to crizotinib therapy.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, Hebei, China
| | - Zhuo Ma
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, Hebei, China
| | - Hao Li
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, Hebei, China
| | - Dan Sun
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, Hebei, China
| | - Yi Hu
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, Hebei, China
| | - Chen Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, Hebei, China
| | - Yuhui Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing, Hebei, China
| |
Collapse
|
7
|
Wang F, Xu G, Wu X. Cardiac arrhythmias associated with anaplastic lymphoma kinase (ALK) inhibitors: an analysis of the FDA Adverse Event Reporting System (FAERS). Expert Opin Drug Saf 2023; 22:1127-1132. [PMID: 37428255 DOI: 10.1080/14740338.2023.2234279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/18/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) may provoke cardiac arrhythmias. We conducted this pharmacovigilance analysis to research cardiac arrhythmias associated with ALK-TKIs using the Food and Drug Administration Adverse Event Reporting System (FAERS). RESEARCH DESIGN AND METHODS The first ALK-TKI, named crizotinib, was approved by the Food and Drug Administration (FDA) on 26 August 2011 for the treatment of ALK-rearranged non-small cell lung cancer (NSCLC). We evaluated ALK-TKIs-induced cardiac arrhythmias, by using the reporting odds ratio (ROR) and information component (IC) for mining the adverse event report signals in the FAERS database between January 2016 and June 2022. RESULTS We identified a total of 362 ALK-TKIs-related cardiac arrhythmia reports which appeared to influence more men (64.44%) than women (30.76%), with a median age of 68 (interquartile range [IQR] 7-74) years. Compared with the full database, ALK-TKIs were detected with pharmacovigilance of cardiac arrhythmias (ROR025 = 1.26, IC025 = 0.26). Crizotinib and alectinib were found to be related to higher reporting of arrhythmias. The median time to onset (TTO) among five ALK-TKI therapies was significantly different (p = 0.044). CONCLUSION ALK-TKIs present different frequencies of cardiac arrhythmias reporting, with only crizotinib and alectinib producing positive signals in high-level group term (HLGT) level arrhythmia. The time interval between the initial of drug treatment to the onset of arrhythmia varies greatly and cannot be predicted.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Pharmacy, Hefei BOE Hospital, Hefei, P.R.China
| | - Guishui Xu
- Department of Orthopaedic, The First People's Hospital of Anqing, Anqing, P.R.China
| | - Xinan Wu
- Department of Pharmacy, Hefei BOE Hospital, Hefei, P.R.China
| |
Collapse
|
8
|
Wang M, Slatter S, Sussell J, Lin CW, Ogale S, Datta D, Butte AJ, Bazhenova L, Rudrapatna VA. ALK Inhibitor Treatment Patterns and Outcomes in Real-World Patients with ALK-Positive Non-Small-Cell Lung Cancer: A Retrospective Cohort Study. Target Oncol 2023:10.1007/s11523-023-00973-7. [PMID: 37341856 DOI: 10.1007/s11523-023-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Randomized trials have demonstrated that anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) can be safe and efficacious treatments for patients with ALK-positive advanced non-small-cell lung cancer (aNSCLC). However, their safety, tolerability, effectiveness, and patterns of use in real-world patients remain understudied. OBJECTIVE We sought to assess the overall treatment pattern characteristics, safety, and effectiveness outcomes of real-world patients with ALK-positive aNSCLC receiving ALK TKIs. PATIENTS AND METHODS This retrospective cohort study using electronic health record data included adult patients with ALK-positive aNSCLC receiving ALK TKIs between January 2012 and November 2021 at a large tertiary medical center, University of California, San Francisco (UCSF), with alectinib or crizotinib as the initial ALK TKI therapy. Our primary endpoints included the incidence of treatment changes (treatment dose adjustments, interruptions, and discontinuations) during the initial ALK TKI treatment, the count and type of subsequent treatments, rates of serious adverse events (sAEs), and major adverse events (mAEs) leading to any ALK TKI treatment changes. Secondary endpoints included the hazard ratios (HRs) for median mAE-free survival (mAEFS), real-world progression-free survival (rwPFS), and overall survival (OS) when comparing alectinib with crizotinib. RESULTS The cohort consisted of 117 adult patients (70 alectinib and 47 crizotinib) with ALK-positive aNSCLC, with 24.8%, 17.9%, and 6.0% experiencing treatment dose adjustments, interruptions, and discontinuation, respectively. Of the 73 patients whose ALK TKI treatments were discontinued, 68 received subsequent treatments including newer generations of ALK TKIs, immune checkpoint inhibitors, and chemotherapies. The most common mAEs were rash (9.9%) and bradycardia (7.0%) for alectinib and liver toxicity (19.1%) for crizotinib. The most common sAEs were pericardial effusion (5.6%) and pleural effusion (5.6%) for alectinib and pulmonary embolism (6.4%) for crizotinib. Patients receiving alectinib versus crizotinib as their first ALK TKI treatment experienced significantly prolonged median rwPFS (29.3 versus 10.4 months) with an HR of 0.38 (95% CI 0.21-0.67), while prolonged median mAEFS (not reached versus 91.3 months) and OS (54.1 versus 45.8 months) were observed in patients receiving alectinib versus crizotinib but did not reach statistical significance. Yet, it is worth noting that there was a high degree of cross-over post-progression, which could significantly confound the overall survival measures. CONCLUSIONS We found that ALK TKIs were highly tolerable, and alectinib was associated with favorable survival outcomes with longer time to adverse events (AE) requiring medical interventions, disease progression, and death, in the context of real-world use. Proactive monitoring for adverse events such as rash, bradycardia, and hepatotoxicity may help further promote the safe and optimal use of ALK TKIs in the treatment of patients with aNSCLC.
Collapse
Affiliation(s)
- Michelle Wang
- Bakar Computational Health Sciences Institute, University of California San Francisco, UCSF Valley Tower, Box 2933 Room 21E, 490 Illinois Street, Floor 2, San Francisco, CA, 94143, USA
| | - Shadera Slatter
- Bakar Computational Health Sciences Institute, University of California San Francisco, UCSF Valley Tower, Box 2933 Room 21E, 490 Illinois Street, Floor 2, San Francisco, CA, 94143, USA
| | - Jesse Sussell
- Evidence for Access, Genentech Inc., South San Francisco, CA, USA
| | - Chia-Wei Lin
- Evidence for Access, Genentech Inc., South San Francisco, CA, USA
| | - Sarika Ogale
- Evidence for Access, Genentech Inc., South San Francisco, CA, USA
| | - Debajyoti Datta
- Bakar Computational Health Sciences Institute, University of California San Francisco, UCSF Valley Tower, Box 2933 Room 21E, 490 Illinois Street, Floor 2, San Francisco, CA, 94143, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California San Francisco, UCSF Valley Tower, Box 2933 Room 21E, 490 Illinois Street, Floor 2, San Francisco, CA, 94143, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Lyudmila Bazhenova
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Vivek A Rudrapatna
- Bakar Computational Health Sciences Institute, University of California San Francisco, UCSF Valley Tower, Box 2933 Room 21E, 490 Illinois Street, Floor 2, San Francisco, CA, 94143, USA.
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Zhou Y, Yin Y, Xu J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. An update on Alectinib: a first line treatment for ALK-positive advanced lung cancer. Expert Opin Pharmacother 2023; 24:1361-1373. [PMID: 37278051 DOI: 10.1080/14656566.2023.2221786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Alectinib is a second-generation, anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) for the treatment of ALK+ non-small cell lung cancer (NSCLC) and is able to induce significant and durable CNS responses. However, long-term use of alectinib has been clinically reported to cause some serious and even life-threatening adverse events. There are currently no effective interventions for its adverse events, and this undoubtedly leads to delays in patient treatment and limits its long-term clinical use. AREAS COVERED Based on the clinical trials conducted so far, we summarize the efficacy and adverse events that occurred, especially those related to cardiovascular disorders, gastrointestinal disorders, hepatobiliary disorders, musculoskeletal and connective tissue disorders, skin and subcutaneous tissue disorders, and respiratory disorders. The factors that may influence alectinib selection are also described. Findings are based on a PubMed literature search of clinical and basic science research papers spanning 1998-2023. EXPERT OPINION The significant prolongation of patient survival compared with first-generation ALK inhibitor suggests its potential as a first-line treatment for the NSCLC, but the severe adverse events of alectinib limit its long-term clinical use. Future research should focus on the exact mechanisms of these toxicities, how to alleviate the adverse events caused by alectinib clinically, and the development of next-generation drugs with reduced toxicities.
Collapse
Affiliation(s)
- Yourong Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiangxin Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Kondapalli L, Camidge DR. Significance of Alectinib-Induced Bradycardia: Rhythm and Reversibility Matter More Than Rate. JACC CardioOncol 2023; 5:114-116. [PMID: 36875893 PMCID: PMC9982281 DOI: 10.1016/j.jaccao.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- Lavanya Kondapalli
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - D. Ross Camidge
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Pruis MA, Veerman GDM, Hassing HC, Lanser DAC, Paats MS, van Schaik RHN, Mathijssen RHJ, Manintveld O, Dingemans AMC. Cardiac Toxicity of Alectinib in Patients With ALK+ Lung Cancer: Outcomes of Cardio-Oncology Follow-Up. JACC CardioOncol 2023; 5:102-113. [PMID: 36875894 PMCID: PMC9982223 DOI: 10.1016/j.jaccao.2022.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/18/2023] Open
Abstract
Background Anaplastic lymphoma kinase (ALK) translocations in metastatic non-small cell lung cancer (3% to 7%) predict for response to ALK-inhibitors (eg, alectinib, first line), resulting in a 5-year survival rate of ∼60% and median progression-free survival of 34.8 months. Although the overall toxicity rate of alectinib is acceptable, unexplained adverse events, including edema and bradycardia, may indicate potential cardiac toxicity. Objectives This study's aim was to investigate the cardiotoxicity profile and exposure-toxicity relationship of alectinib. Methods Between April 2020 and September 2021, 53 patients with ALK-positive non-small cell lung cancer treated with alectinib were included. Patients starting with alectinib after April 2020 underwent a cardiac work-up at start, at 6 months and at 1 year at the cardio-oncology outpatients' clinic. Patients already receiving alectinib >6 months underwent 1 cardiac evaluation. Bradycardia, edema, and severe alectinib toxicity (grade ≥3 and grade ≥2 adverse events leading to dose modifications) data were collected. Alectinib steady-state trough concentrations were used for exposure-toxicity analyses. Results Left ventricular ejection fraction remained stable in all patients who underwent an on-treatment cardiac evaluation (n = 34; median 62%; IQR: 58%-64%). Twenty-two patients (42%) developed alectinib-related bradycardia (6 symptomatic bradycardia). One patient underwent a pacemaker implantation for severe symptomatic bradycardia. Severe toxicity was significantly associated with a 35% higher alectinib mean Ctrough (728 vs 539 ng/mL, SD = 83 ng/mL; 1-sided P = 0.015). Conclusions No patients showed signs of a diminished left ventricular ejection fraction. Alectinib caused more bradycardia than previously reported (42%) with some instances of severe symptomatic bradycardia. Patients with severe toxicity generally had an elevated exposure above the therapeutic threshold.
Collapse
Key Words
- AE, adverse event
- ALK, anaplastic lymphoma kinase
- CV, cardiovascular
- ECG, electrocardiogram
- IVC, inferior vena cava
- LVEF, left ventricular ejection fraction
- MET, mesenchymal epithelial transition
- NSCLC, non-small cell lung cancer
- OV, outpatient visit
- PK, pharmacokinetic
- TKI, tyrosine kinase inhibitor
- alectinib
- anaplastic lymphoma kinase
- bradycardia
- cardio-oncology
- non-small cell lung cancer
Collapse
Affiliation(s)
- Melinda A Pruis
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands.,Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - G D Marijn Veerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - H Carlijne Hassing
- Department of Cardiology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Daan A C Lanser
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Marthe S Paats
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Olivier Manintveld
- Department of Cardiology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Anne-Marie C Dingemans
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Leiva O, Bohart I, Ahuja T, Park D. Off-Target Effects of Cancer Therapy on Development of Therapy-Induced Arrhythmia: A Review. Cardiology 2023; 148:324-334. [PMID: 36702116 PMCID: PMC10614257 DOI: 10.1159/000529260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Advances in cancer therapeutics have improved overall survival and prognosis in this patient population; however, this has come at the expense of cardiotoxicity including arrhythmia. SUMMARY Cancer and its therapies are associated with cardiotoxicity via several mechanisms including inflammation, cardiomyopathy, and off-target effects. Among cancer therapies, anthracyclines and tyrosine kinase inhibitors (TKIs) are particularly known for their pro-arrhythmia effects. In addition to cardiomyopathy, anthracyclines may be pro-arrhythmogenic via reactive oxygen species (ROS) generation and altered calcium handling. TKIs may mediate their cardiotoxicity via inhibition of off-target tyrosine kinases. Ibrutinib-mediated inhibition of CSK may be responsible for the increased prevalence of atrial fibrillation. Further investigation is warranted to further elucidate the mechanisms behind arrhythmias in cancer therapies. KEY MESSAGES Arrhythmias are a common cardiotoxicity of cancer therapies. Cancer therapies may induce arrhythmias via off-target effects. Understanding the mechanisms underlying arrhythmogenesis associated with cancer therapies may help design cancer therapies that can avoid these toxicities.
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - Isaac Bohart
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - Tania Ahuja
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - David Park
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| |
Collapse
|
13
|
Yuan D, Zhu F, Zuo R, Wang Y, Huo G, Cui J, Yue P, Chen P. High incidence and reversible bradycardia events following alectinib initiation. Thorac Cancer 2022; 14:479-488. [PMID: 36535917 PMCID: PMC9925342 DOI: 10.1111/1759-7714.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With the widespread use of alectinib in patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC), its cardiotoxicity has gradually emerged, including new-onset sinus bradycardia (SB). However, the incidence, timing, severity, and risk factors of alectinib-induced bradycardia remain unknown. METHODS From January 2020 to June 2022, 93 patients with ALK-positive NSCLC treated with alectinib were enrolled in this retrospective analysis. These patients had heart rate (HR) recorded before and after alectinib administration. By reviewing electronic medical records and follow-up, the HR changes of patients during medication were recorded. The potential risk factors associated with alectinib-induced SB were explored. RESULTS According to an HR cut-off of 60 beats per minute (bpm), 47 patients (50.54%) experienced at least one recorded bradycardia. The mean HR of total participants before alectinib administration was 78.32 (standard deviation [SD], 9.48) and after was 64.88 (SD, 12.21). The median maximum change in HR (range) for all patients was 11 (-55, +4) bpm. For the bradycardia subgroup, the HR of most patients (76.60%) hovered around 50-60 bpm, and 61.70% of SB occurred within 3 months after alectinib administration. Multivariate analysis indicated that baseline HR (odds ratio [OR] 0.86, 95% confidence interval [CI] 0.79-0.93, p < 0.001) and history of hypertension (OR 13.71, 95% CI 2.49-76.38, p = 0.003) were independent risk factors for alectinib-related bradycardia. CONCLUSIONS Alectinib-induced bradycardia had a high incidence, appeared relatively early, and was reversible by dose reduction or withdrawal.
Collapse
Affiliation(s)
- Dongqi Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Fuyi Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Ran Zuo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Yu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Gengwei Huo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Jinfang Cui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Ping Yue
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Peng Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| |
Collapse
|
14
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022; 43:4229-4361. [PMID: 36017568 DOI: 10.1093/eurheartj/ehac244] [Citation(s) in RCA: 1218] [Impact Index Per Article: 406.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
15
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging 2022; 23:e333-e465. [PMID: 36017575 DOI: 10.1093/ehjci/jeac106] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
16
|
Mar PL, Horbal P, Chung MK, Dukes JW, Ezekowitz M, Lakkireddy D, Lip GYH, Miletello M, Noseworthy PA, Reiffel JA, Tisdale JE, Olshansky B, Gopinathannair R. Drug Interactions Affecting Antiarrhythmic Drug Use. Circ Arrhythm Electrophysiol 2022; 15:e007955. [PMID: 35491871 DOI: 10.1161/circep.121.007955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiarrhythmic drugs (AAD) play an important role in the management of arrhythmias. Drug interactions involving AAD are common in clinical practice. As AADs have a narrow therapeutic window, both pharmacokinetic as well as pharmacodynamic interactions involving AAD can result in serious adverse drug reactions ranging from arrhythmia recurrence, failure of device-based therapy, and heart failure, to death. Pharmacokinetic drug interactions frequently involve the inhibition of key metabolic pathways, resulting in accumulation of a substrate drug. Additionally, over the past 2 decades, the P-gp (permeability glycoprotein) has been increasingly cited as a significant source of drug interactions. Pharmacodynamic drug interactions involving AADs commonly involve additive QT prolongation. Amiodarone, quinidine, and dofetilide are AADs with numerous and clinically significant drug interactions. Recent studies have also demonstrated increased morbidity and mortality with the use of digoxin and other AAD which interact with P-gp. QT prolongation is an important pharmacodynamic interaction involving mainly Vaughan-Williams class III AAD as many commonly used drug classes, such as macrolide antibiotics, fluoroquinolone antibiotics, antipsychotics, and antiemetics prolong the QT interval. Whenever possible, serious drug-drug interactions involving AAD should be avoided. If unavoidable, patients will require closer monitoring and the concomitant use of interacting agents should be minimized. Increasing awareness of drug interactions among clinicians will significantly improve patient safety for patients with arrhythmias.
Collapse
Affiliation(s)
- Philip L Mar
- Department of Medicine, Division of Cardiology, St. Louis University, St. Louis, MO (P.L.M., P.H.)
| | - Piotr Horbal
- Department of Medicine, Division of Cardiology, St. Louis University, St. Louis, MO (P.L.M., P.H.)
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute (M.K.C.), Cleveland Clinic, OH
| | | | - Michael Ezekowitz
- Lankenau Heart Institute, Bryn Mawr Hospital & Sidney Kimmel Medical College (M.E.)
| | | | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, United Kingdom (G.Y.H.L.).,Department of Clinical Medicine, Aalborg, Denmark (G.Y.H.L.)
| | | | - Peter A Noseworthy
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (P.A.N.)
| | - James A Reiffel
- Division of Cardiology, Department of Medicine, Columbia University, New York, NY (J.A.R.)
| | - James E Tisdale
- College of Pharmacy, Purdue University (J.E.T.).,School of Medicine, Indiana University, Indianapolis (J.E.T.)
| | - Brian Olshansky
- Division of Cardiology, Department of Medicine, University of Iowa, Iowa City (B.O.)
| | | | | |
Collapse
|
17
|
Grela-Wojewoda A, Pacholczak-Madej R, Adamczyk A, Korman M, Püsküllüoğlu M. Cardiotoxicity Induced by Protein Kinase Inhibitors in Patients with Cancer. Int J Mol Sci 2022; 23:ijms23052815. [PMID: 35269958 PMCID: PMC8910876 DOI: 10.3390/ijms23052815] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Kinase inhibitors (KIs) represent a growing class of drugs directed at various protein kinases and used in the treatment of both solid tumors and hematologic malignancies. It is a heterogeneous group of compounds that are widely applied not only in different types of tumors but also in tumors that are positive for a specific predictive factor. This review summarizes common cardiotoxic effects of KIs, including hypertension, arrhythmias with bradycardia and QTc prolongation, and cardiomyopathy that can lead to heart failure, as well as less common effects such as fluid retention, ischemic heart disease, and elevated risk of thromboembolic events. The guidelines for cardiac monitoring and management of the most common cardiotoxic effects of protein KIs are discussed. Potential signaling pathways affected by KIs and likely contributing to cardiac damage are also described. Finally, the need for further research into the molecular mechanisms underlying the cardiovascular toxicity of these drugs is indicated.
Collapse
Affiliation(s)
- Aleksandra Grela-Wojewoda
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, 31-115 Kraków, Poland; (R.P.-M.); (M.P.)
- Correspondence: ; Tel.: +48-1263-48350
| | - Renata Pacholczak-Madej
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, 31-115 Kraków, Poland; (R.P.-M.); (M.P.)
- Department of Anatomy, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Agnieszka Adamczyk
- Department of Tumour Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, 31-115 Kraków, Poland;
| | - Michał Korman
- Faculty of Medicine, Jagiellonian University Medical College, 31-008 Kraków, Poland;
| | - Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, 31-115 Kraków, Poland; (R.P.-M.); (M.P.)
| |
Collapse
|