1
|
Ning J, Fu B, Tang X, Hao Y, Zhang Y, Wang X. Starch retrogradation in starch-based foods: Mechanisms, influencing factors, and mitigation strategies. Int J Biol Macromol 2025; 300:140354. [PMID: 39870278 DOI: 10.1016/j.ijbiomac.2025.140354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Starch-based foods are the most common foods in the daily diets. However, starch-based foods are prone to starch retrogradation, resulting in texture hardening, taste deterioration and nutrient loss. This paper reviewed the mechanisms and the influencing factors of starch retrogradation in starch-based foods, and the strategies to mitigate it. The core mechanisms and influencing factors of starch retrogradation are analyzed in depth, and various methods to alleviate it are summarized. Starch retrogradation is mainly caused by recrystallization of amylose and amylopectin, accompanied by moisture migration and rearrangement of starch molecules. The amylose to amylopectin ratio, moisture content, protein and lipids are intrinsic factors. At the same time, processing methods and storage temperatures are extrinsic conditions that significantly affect the rate and extent of starch retrogradation. Effective measures to alleviate starch retrogradation include the addition of food ingredients and exogenous substances, the optimization of processing methods and storage conditions, as well as the application of edible coatings. This review aims to summarize the latest progress in delaying aging of starch-based foods, enhance the understanding of starch retrogradation mechanisms, and promote the development of starch-based foods with longer shelf lives, thereby providing scientific basis and technical support for the food industry.
Collapse
Affiliation(s)
- Jiyang Ning
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; School of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Boqing Fu
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Tang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yuan Hao
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yanjun Zhang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China.
| | - Xu Wang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Sanya 572019, China.
| |
Collapse
|
2
|
Zang J, Yan B, Liu Z, Tang D, Liu Y, Chen J, Yin Z. Current state, challenges and future orientations of the applications of lactic acid bacteria exopolysaccharide in foods. Food Microbiol 2025; 126:104678. [PMID: 39638447 DOI: 10.1016/j.fm.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
In the quest for a balanced diet and better health, the global shift towards nutrient-dense foods highlights the multiple roles of lactic acid bacteria exopolysaccharides (LAB-EPS) in improving food quality and health. This paper offers a comprehensive survey of LAB-EPS, focusing on their classification, biosynthesis pathways and application in the food industry, from dairy products to bakery products and meat. It highlights the impact of LAB-EPS on the texture and sensory qualities of food. Despite their promising prospects, these polysaccharides face various application challenges in the food industry. These include variability in EPS production among LAB strains, complexity in structure-function relationships, and limited understanding of their health benefits. In order to address these issues, the review identifies and suggests future research directions to optimize the production of LAB-EPS, elucidating their health benefit mechanisms, and expanding their application scope. In summary, this review aims to contribute to advance innovation and progress in the food industry by developing healthier food options and deepening the understanding of LAB-EPS in promoting human health.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bingxu Yan
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou, 510610, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Sayadi M, Arianfar A, Mohamadi Sani A, Sheikholeslami Z. Effect of Incorporating Oat Flour and Sourdough on the Sensory and Technological Characteristics of Bread. Food Sci Nutr 2025; 13:e4693. [PMID: 39803240 PMCID: PMC11717015 DOI: 10.1002/fsn3.4693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
This study investigated the effects of different formulations on the technological and sensory properties of bread. The bread formulation included 9 variations of sourdough treatments and 4 variations of wheat flour and oat flour percentages. Results demonstrated that the highest increase in dough volume occurred in samples containing sourdough made from wheat, oat, Lactobacillus plantarum, and Saccharomyces cerevisiae at 64.5%-68%, and breads lacking yeast exhibited the lowest amount of porosity 2.3-7.2. Texture Profile Analysis (TPA) revealed that sourdoughs without Sc. cerevisiae exhibited significantly higher levels of hardness, chewiness, and cohesiveness. The stickiness of breads was most pronounced in those produced with wheat sourdough, Sc. cerevisiae, and Lb. plantarum. Conversely, samples containing wheat, oat, Lb. plantarum, and Sc. cerevisiae with varying wheat flour ratios (100%, 95%, and 85%) showed no stickiness. SEM analysis showed incorporating into bread with oat flour led to larger porosity. HunterLab measurements indicated that breads with sourdough of wheat, oat, Lb. plantrum, and Sc. cerevisiae had the highest values of parameters a*, b*, and ΔE, 11.2-11.7, 34.5-35.35, 0.52-0.58, respectively, while yeast-free breads exhibited the highest L* value 72.3-72.9. Sensory evaluations indicated that breads produced with sourdough of wheat, oat, Lb. plantarum, and Sc. cerevisiae received the highest overall scores for taste, aroma, texture, appearance, and total acceptance from evaluators. Conversely, samples lacking yeast received the lowest scores. Therefore, the optimal bread formulation involved using sourdough composed of wheat, oat, Lb. plantarum, and Sc. cerevisiae with up to a 10% replacement of wheat flour with oat flour.
Collapse
Affiliation(s)
- Masoome Sayadi
- Department of Food Science and Technology, Quchan BranchIslamic Azad UniversityQuchanIran
| | - Akram Arianfar
- Department of Food Science and Technology, Quchan BranchIslamic Azad UniversityQuchanIran
| | - Ali Mohamadi Sani
- Department of Food Science and Technology, Quchan BranchIslamic Azad UniversityQuchanIran
| | - Zahra Sheikholeslami
- Department of Agricultural Engineering Research, Khorasan Razavi Agricultural and Natural Resources, Research and Education CenterAREEOMashhadIslamic Republic of Iran
| |
Collapse
|
4
|
Ran J, Tang Y, Zhang Y, Jiao L, Zhang C, Li Y, Zhao R. Mixed fermentation of lactic acid bacteria and sourdough on quality and storage characteristics of steamed bun. Food Chem X 2024; 24:102035. [PMID: 39659685 PMCID: PMC11629583 DOI: 10.1016/j.fochx.2024.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
The effect of mixed fermentation with sourdough and lactic acid bacteria (Lactobacillus plantarum and Streptococcus thermophilus), the physicochemical indexes, storage characteristics of dough and bun were investigated. Compared with sourdough-only dough and bun, the mixed fermentation significantly increase the total phenol, flavonoid and hydrolyzed amino acid content of the dough, the specific volume and height-diameter ratio of mixed fermentation bun increased significantly by 18.3 % and 7.9 %, respectively (P < 0.05), along with a significant improvement in sensory quality (P < 0.05), and exhibited enhanced skin whiteness (by 2.0 %), with an increase in stomatal density and porosity by 2.6 % and 16.5 %, respectively. During a nine-day storage period, the moisture content near the skin and bun core of steamed bun decreased by 3.9 %, and 1.6 %, respectively, and the aging enthalpy values of mixed fermentation bun were significantly lower than sourdough-only bun (P < 0.05). Mixed fermentation providing a theoretical basis for the development of novel steamed bun starters.
Collapse
Affiliation(s)
- Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Yuhan Tang
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Yue Zhang
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Chao Zhang
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| | - Yongchao Li
- School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, Henan 453003, China
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, Henan 453003, China
| |
Collapse
|
5
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Hernández-Figueroa RH, Mani-López E, Ramírez-Corona N, López-Malo A. Optimizing Lactic Acid Bacteria Proportions in Sourdough to Enhance Antifungal Activity and Quality of Partially and Fully Baked Bread. Foods 2024; 13:2318. [PMID: 39123510 PMCID: PMC11311496 DOI: 10.3390/foods13152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The organic acids produced by lactic acid bacteria (LAB) during the fermentation of sourdoughs have the ability to reduce the growth of different molds. However, this ability depends on the LAB used. For this reason, in this study, the proportions of different LAB were optimized to obtain aqueous extracts (AEs) from sourdough to reduce fungal growth in vitro, control the acetic acid concentration, and obtain a specific lactic to acetic acid ratio. In addition, the optimized mixtures were used to formulate partially baked bread (PBB) and evaluate the mold growth and bread quality during refrigerated storage. Using a simplex-lattice mixture design, various combinations of Lactiplantibacillus plantarum, Lacticaseibacillus casei, and Lactobacillus acidophilus were evaluated for their ability to produce organic acids and inhibit mold growth. The mixture containing only Lpb. plantarum significantly reduced the growth rates and extended the lag time of Penicillium chrysogenum and P. corylophilum compared with the control. The AEs' pH values ranged from 3.50 to 3.04. Organic acid analysis revealed that using Lpb. plantarum yielded higher acetic acid concentrations than when using mixed LAB. This suggests that LAB-specific interactions significantly influence organic acid production during fermentation. The reduced radial growth rates and extended lag times for both molds compared to the control confirmed the antifungal properties of the AEs from the sourdoughs. Statistical analyses of the mixture design using polynomial models demonstrated a good fit for the analyzed responses. Two optimized LAB mixtures were identified that maximized mold lag time, targeted the desired acetic acid concentration, and balanced the lactic to acetic acid ratio. The addition of sourdough with optimized LAB mixtures to PBB resulted in a longer shelf life (21 days) and adequately maintained product quality characteristics during storage. PBB was subjected to complete baking and sensory evaluation. The overall acceptability was slightly higher in the control without sourdough (7.50), followed by bread formulated with the optimized sourdoughs (ranging from 6.78 to 7.10), but the difference was not statistically significant (p > 0.05). The sensory analysis results indicated that the optimization was used to successfully formulate a sourdough bread with a sensory profile closely resembling that of a nonsupplemented one. The designed LAB mixtures can effectively enhance sourdough bread's antifungal properties and quality, providing a promising approach for extending bread shelf life while maintaining desirable sensory attributes.
Collapse
Affiliation(s)
| | | | | | - Aurelio López-Malo
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico; (R.H.H.-F.); (E.M.-L.); (N.R.-C.)
| |
Collapse
|
7
|
Santos JG, de Souza EL, de Souza Couto MV, Rodrigues TZ, de Medeiros ARS, de Magalhães Cordeiro AMT, Lima MDS, de Oliveira MEG, da Costa Lima M, de Araújo NPR, Gonçalves ICD, Garcia EF. Exploring the Effects of Freeze-Dried Sourdoughs with Lactiplantibacillus pentosus 129 and Limosilactobacillus fermentum 139 on the Quality of Long-Fermentation Bread. Microorganisms 2024; 12:1199. [PMID: 38930581 PMCID: PMC11205311 DOI: 10.3390/microorganisms12061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sourdough production is a complex fermentation process. Natural sourdough fermentation without standardization causes great variability in microbial communities and derived products. Starter cultures have emerged as alternatives to natural fermentation processes, which could improve bakery quality and produce bioactive compounds. This study aimed to evaluate the impacts of freeze-drying on the production and viability of sourdoughs with Lactiplantibacillus pentosus 129 (Lp) and Limosilactobacillus fermentum 139 (Lf), as well as their effects on the quality of long-fermentation bread. These strains were selected based on their better performance considering acidification and exopolysaccharide production capacity. Sourdough with Lp and Lf were propagated until the 10th day, when physicochemical and microbiological parameters were determined. The produced sourdoughs were freeze-dried, and bread samples were produced. The freeze-drying process resulted in high survival rates and few impacts on the metabolic activity of Lp and Lf until 60 days of storage. Incorporating Lp and Lf improved the microbiological and physicochemical properties of sourdough and long-fermentation breads. Tested freeze-dried sourdoughs led to reduced bread aging (higher specific volume and decreased starch retrogradation) and increased digestibility. The results show the potential of the freeze-dried sourdoughs produced with Lp and Lf as innovative strategies for standardizing production protocols for the bakery industry, especially for producing long-term fermentation bread.
Collapse
Affiliation(s)
- Joanderson Gama Santos
- Graduate Program in Agro-Food Technology, Federal University of Paraíba, Bananeiras 58220-000, PB, Brazil; (J.G.S.); (A.R.S.d.M.)
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Marcus Vinícius de Souza Couto
- Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.V.d.S.C.); (T.Z.R.)
| | - Tatiana Zanella Rodrigues
- Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.V.d.S.C.); (T.Z.R.)
| | - Ana Regina Simplício de Medeiros
- Graduate Program in Agro-Food Technology, Federal University of Paraíba, Bananeiras 58220-000, PB, Brazil; (J.G.S.); (A.R.S.d.M.)
| | | | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina 56302-100, PE, Brazil;
| | | | - Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | | | | | - Estefânia Fernandes Garcia
- Department of Gastronomy, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (N.P.R.d.A.); (I.C.D.G.); (E.F.G.)
| |
Collapse
|
8
|
Sahin M, Ozgolet M, Cankurt H, Dertli E. Harnessing the Role of Three Lactic Acid Bacteria (LAB) Strains for Type II Sourdough Production and Influence of Sourdoughs on Bread Quality and Maillard Reaction Products. Foods 2024; 13:1801. [PMID: 38928743 PMCID: PMC11202766 DOI: 10.3390/foods13121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study tested the effect of Companilactobacillus paralimentarius E-106, Lactiplantibacillus paraplantarum N-15 and Lactiplantibacillus plantarum SC-9 on the amount of Maillard reaction and aroma profile in bread making with main bread quality parameters. The specific volumes of sourdough and control breads were in the range of 2.97-3.04 cm3/g, and the control II bread had the highest hardness values on all days. The FAST index value was determined to be between 40.48% and 81.22% in all breads. The FAST index value was found to be higher in the control breads than in the sourdough breads. In the volatile compounds analysis, 72 volatile compounds were detected. The variety of volatile compounds in the breads with sourdough addition was higher than the control breads. Among the tested strains, Companilactobacillus paralimentarius E-106 demonstrated superior properties for bread characteristics in comparison to other strains as a type II sourdough starter. In summary, improved aroma profile and decreased Maillard reaction products can be provided by sourdough addition without changing the bread quality, along with meeting consumer demand for less additive use.
Collapse
Affiliation(s)
- Mustafa Sahin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul 34210, Turkey; (M.S.); (E.D.)
| | - Muhammed Ozgolet
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul 34210, Turkey; (M.S.); (E.D.)
| | - Hasan Cankurt
- Food Technology Department, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38000, Turkey;
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul 34210, Turkey; (M.S.); (E.D.)
| |
Collapse
|
9
|
Dan H, Li H, Li C, Fang Z, Hu B, Chen H, Wang C, Chen S, Hui T, Wu W, Zeng Z, Liu Y. Application of sourdough in gluten-free bakery products. Crit Rev Food Sci Nutr 2024; 65:3048-3068. [PMID: 38783748 DOI: 10.1080/10408398.2024.2356256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACTSIn recent years, the demand for gluten-free (GF) bakery products has grown rapidly due to the remarkable rising number of celiac patients and the increasing health awareness of GF products. However, GF products generally suffer from defects such as poor sensorial level, low nutritional value, high prices and short shelf life. Sourdough is the important starter culture applied in bakery field, and it has been proven to be ideal for enhancing the overall quality of bakery products. This review aims to systematically reviewed the application of sourdough in GF bakery products and its improvement to GF bakery products in terms of texture, shelf life, nutrition and flavor. Its positive effects derive from the complex metabolic activities of sourdough microorganisms, such as acidification, proteolysis, production of exopolysaccharides (EPS), activation of endogenous enzymes, and production of antibacterial substances. Finally, researchers are encouraged to expand the use of sourdough in GF bakery products to increase the variety of GF products. And the technical and nutritional potential of sourdough should be developed more widely.
Collapse
Affiliation(s)
- Hangyan Dan
- College of Food Science, Sichuan Agricultural University, Yaan, China
- Sichuan Yaomazi Food Co., Ltd, Meishan, Sichuan, China
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Teng Hui
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Yaan, China
| |
Collapse
|
10
|
Yolcu Z, Demircan E, Mertdinç Z, Aydar EF, Özçelik B. Alternative Plant-Based Gluten-Free Sourdough Pastry Snack Production by Using Beetroot and Legumes: Characterization of Physical and Sensorial Attributes. ACS OMEGA 2024; 9:19451-19460. [PMID: 38708234 PMCID: PMC11064030 DOI: 10.1021/acsomega.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Objective of this study was to design a formula of a sourdough pastry snack by adding starter inoculum into the formulation which was obtained by the fermentation process through beetroot (Beta vulgaris) puree with black-eyed pea (Vigna unguiculata) and fava bean (Vicia faba). With this development process, it was aimed to review the functional impact of legumes as gluten replacement and emphasize the importance regarding physical and sensory attributes in a pastry snack product. First, a starter inoculum was developed based on modification of the shalgam fermentation process with legumes. An experimental design suggested by the response surface methodology was used to optimize its microbial properties and level of antioxidants with the factors of amounts of beetroot puree, fava bean/black-eyed pea ratio, and fermentation time. In the second part, this starter inoculum was mixed with fava bean flour to obtain a sourdough pastry snack (FBS) with improved physical and sensory attributes and compared to the wheat control sourdough (WCS) pastry snack after the baking process. According to the optimization results to produce starter inoculum with the optimum results of lactic acid bacteria 9.55 log cfu/mL, the level of antioxidant activity 91.86 μM TE/mL, and total yeast level 6.96 log cfu/mL; 75 mL of beetroot puree, 100% for fava bean, and fermentation for 24 h were obtained. Compared to WCS, FBS has approximately 16% higher hardness values. Also, a significant difference was observed for stiffness and springiness among samples. The retention of moisture was higher in the first 4 days following the storage for 8 days; the moisture content continuously decreased with the final moisture content of 12.6%. When compared with the results of textural profile analysis in terms of hardness, stiffness, and springiness, sensory results were correlated. Comparing the overall acceptability of the FBS to WCS, FBS was from moderate to higher scores, which indicated that it could be a promising alternative to chemically developed snack products and a preferred product for people suffering from celiac disease and other gluten intolerances.
Collapse
Affiliation(s)
- Zeynep Yolcu
- Department of Food Engineering,
Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkiye
| | - Evren Demircan
- Department of Food Engineering,
Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkiye
| | - Zehra Mertdinç
- Department of Food Engineering,
Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkiye
| | - Elif Feyza Aydar
- Department of Food Engineering,
Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkiye
| | | |
Collapse
|
11
|
Bojňanská T, Kolesárová A, Čech M, Tančinová D, Urminská D. Extracts with Nutritional Potential and Their Influence on the Rheological Properties of Dough and Quality Parameters of Bread. Foods 2024; 13:382. [PMID: 38338518 PMCID: PMC10855696 DOI: 10.3390/foods13030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Formulating basic food to improve its nutritional profile is one potential method for food innovation. One option in formulating basic food such as bread is to supplement flours with specified amounts of non-bakery raw materials with high nutritional benefits. In the research presented here, we studied the influence of the addition of curcumin and quercetin extracts in amounts of 2.5% and 5% to wheat flour (2.5:97.5; 5:95). The analysis of the rheological properties of dough was carried out using a Mixolab 2. A Rheofermentometer F4 was used to assess the dough's fermentation, and a Volscan was used to evaluate the baking trials. The effect of the extracts on the rheological properties of dough was measured and found to be statistically significant, with curcumin shortening both dough development time and dough stability. Doughs made with greater quantities of extract had a greater tendency to early starch retrogradation, which negatively affects the shelf life of the end products. The addition of extracts did not significantly affect either the ability to form gas during fermentation or its retention, which is important because this gas is prerequisite to forming a final product with the required volume and porosity of crumb. Less favourable results were found on sensory evaluation, wherein the trial bread was significantly worse than the control wheat bread. The panel's decision-making might have been influenced by the atypical colour of the bread made with additives, and in case of a trial bread made with quercetin, by a bitter taste. From the technological point of view, the results confirmed that the composite flours prepared with the addition of extracts of curcumin and quercetin in amounts of 2.5% and 5% can be processed according to standard procedures. The final product will be bread with improved nutritional profile and specific sensory properties, specifically an unconventional and attractive colour.
Collapse
Affiliation(s)
- Tatiana Bojňanská
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Anna Kolesárová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Matej Čech
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| |
Collapse
|
12
|
Nouska C, Hatzikamari M, Matsakidou A, Biliaderis CG, Lazaridou A. Enhancement of Textural and Sensory Characteristics of Wheat Bread Using a Chickpea Sourdough Fermented with a Selected Autochthonous Microorganism. Foods 2023; 12:3112. [PMID: 37628111 PMCID: PMC10453481 DOI: 10.3390/foods12163112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
A traditional Greek sourdough, based on the fermentation of chickpea flour by an autochthonous culture, was evaluated as a wheat bread improver. The dominant indigenous microflora (Clostridium perfringens isolates) was identified by 16S rDNA analysis, and a selected strain (C. perfringens CP8) was employed to ferment chickpea flour to obtain a standardized starter culture (sourdough) for breadmaking. In accordance with toxin-typed strain identification, all isolates lacked the cpe gene; thus, there is no concern for a health hazard. Loaf-specific volumes increased with the addition of liquid, freeze-dried, and freeze-dried/maltodextrin sourdoughs compared to control bread leavened by baker's yeast only. Following storage (4 days/25 °C), the amylopectin retrogradation and crumb hardness changes (texture profile analysis) revealed a lower degree of staling for the sourdough-fortified breads. Modifications in the protein secondary structure of fortified doughs and breads were revealed by FTIR analysis. High amounts of organic acids were also found in the sourdough-supplemented breads; butyric and isobutyric acids seemed to be responsible for the characteristic 'butter-like' flavor of these products (sensory analysis). Overall, the addition of liquid or freeze-dried chickpea sourdough in wheat bread formulations can improve the specific volume, textural characteristics, and sensorial properties of loaves, along with extending bread shelf life.
Collapse
Affiliation(s)
- Chrysanthi Nouska
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece; (M.H.); (A.M.); (C.G.B.); (A.L.)
| | | | | | | | | |
Collapse
|
13
|
Tan BL, Norhaizan ME, Chan LC. Rice Bran: From Waste to Nutritious Food Ingredients. Nutrients 2023; 15:nu15112503. [PMID: 37299466 DOI: 10.3390/nu15112503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Rice (Oryza sativa L.) is a principal food for more than half of the world's people. Rice is predominantly consumed as white rice, a refined grain that is produced during the rice milling process which removes the bran and germ and leaves the starchy endosperm. Rice bran is a by-product produced from the rice milling process, which contains many bioactive compounds, for instance, phenolic compounds, tocotrienols, tocopherols, and γ-oryzanol. These bioactive compounds are thought to protect against cancer, vascular disease, and type 2 diabetes. Extraction of rice bran oil also generates various by-products including rice bran wax, defatted rice bran, filtered cake, and rice acid oil, and some of them exert bioactive substances that could be utilized as functional food ingredients. However, rice bran is often utilized as animal feed or discarded as waste. Therefore, this review aimed to discuss the role of rice bran in metabolic ailments. The bioactive constituents and food product application of rice bran were also highlighted in this study. Collectively, a better understanding of the underlying molecular mechanism and the role of these bioactive compounds exerted in the rice bran would provide a useful approach for the food industry and prevent metabolic ailments.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Healthcare Professional, Faculty of Health and Life Sciences, Management and Science University, University Drive, Off Persiaran Olahraga, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra, Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lee Chin Chan
- Biovalence Sdn. Bhd., 22, Jalan SS25/34, Taman Mayang, 47301 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
14
|
Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application. Polymers (Basel) 2023; 15:1539. [PMID: 36987319 PMCID: PMC10058920 DOI: 10.3390/polym15061539] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Elena Corina Popescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Andreea Antonia Georgescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Siramona Maria Toma
- Doctoral School of University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
15
|
Tomić J, Dapčević-Hadnađev T, Škrobot D, Maravić N, Popović N, Stevanović D, Hadnađev M. Spontaneously fermented ancient wheat sourdoughs in breadmaking: Impact of flour quality on sourdough and bread physico-chemical properties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Abstract
The most consumed cereal-based product worldwide is bread. “Caaveiro”, an autochthonous variety with a recent growing interest, is one of the wheat varieties that fulfill the 25% local flour requirement in the PGI “Pan Galego” bread baking industry. The element content of the refined wheat flours used to make “Pan Galego” (‘‘Caaveiro’’, FCv; Castilla, FC; and a mixture of both, FM) was evaluated in ICP-MS. In addition, wholegrain flour (FWM) was included in the analysis. Loaves of bread were made with these flours (a, 100% FC; b, 100% FCv); and c, FM: 75% FC + 25% FCv) and their element content was analyzed. Wholegrain flour ranked the highest in almost all elements, highlighting the P (494.80 mg/100 g), while the FM and the FC presented the opposite behavior, with the highest Se values (14.4 and 15.8 mg/100 g, respectively). FCv was situated in an intermediate position regarding P, K, Mg, Mn, Zn, Fe and Na content, standing closer to FWM, although it presents the highest values for Cu (1076.3 µg/100 g). The differences observed in flour were maintained in bread. Hence, the local cultivar ‘‘Caaveiro’’ has an interesting nutritional profile from the point of view of the element content.
Collapse
|
17
|
Alkay Z, Yılmaz MT, Can AM, İspirli H, Dertli E. The effect of flours of different immature cereal grains on sourdough and sourdough bread: microbiological, rheological, textural and sugar profiles. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zühal Alkay
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
| | - Mustafa Tahsin Yılmaz
- Department of Industrial Engineering King Abdulaziz University, Faculty of Engineering Jeddah Saudi Arabia
| | - Aslı Muslu Can
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
- Department of Food Technology İstanbul Gelişim Vocational School, Gelişim University İstanbul Turkey
| | - Hümeyra İspirli
- Bayburt University, Central Research Laboratory Bayburt Turkey
| | - Enes Dertli
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University İstanbul Turkey
| |
Collapse
|
18
|
Potential of three different lactic acid Bacteria to use as starter culture for production of type II sourdough breadmaking. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
By-Product Revalorization: Cava Lees Can Improve the Fermentation Process and Change the Volatile Profile of Bread. Foods 2022; 11:foods11091361. [PMID: 35564084 PMCID: PMC9099486 DOI: 10.3390/foods11091361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Wine lees are a by-product that represents a 25% of the total winery waste. Although lees are rich in antioxidant compounds and dietary fiber, they have no added value and are considered a residue. The aim of this study was to evaluate the effect of Cava lees (0 and 5% w/w) on microbial populations during sourdough and bread fermentation and the volatile fraction of the final bread. The results showed that 5% Cava lees promoted the growth of both lactic acid bacteria (LAB) and yeast in short fermentations (bread) but did not improve microbial growth in long fermentations (sourdough). Regarding volatile compounds, the addition of Cava lees increased the concentration of volatiles typically found in those products. Also, some compounds reported in sparkling wines were also identified in samples with Cava lees adsorbed on their surface. To sum up, the addition of Cava lees to sourdough and, especially, bread formulation may be a new strategy to revalorize such by-product.
Collapse
|
20
|
Ataç F, Ertekin Filiz B, Guzel‐Seydim ZB. The use of yeast‐rich kefir grain as a starter culture in bread making. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fatma Ataç
- Department of Food Engineering Suleyman Demirel University Isparta Turkey
| | | | | |
Collapse
|
21
|
Litwinek D, Boreczek J, Gambuś H, Buksa K, Berski W, Kowalczyk M. Developing lactic acid bacteria starter cultures for wholemeal rye flour bread with improved functionality, nutritional value, taste, appearance and safety. PLoS One 2022; 17:e0261677. [PMID: 35030182 PMCID: PMC8759695 DOI: 10.1371/journal.pone.0261677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Abstract
Starter cultures composed of lactic acid bacteria (LAB) were developed based on the genotypic and phenotypic characterisation of isolates belonging to dominant groups of bacteria in spontaneous rye wholemeal sourdoughs. Combinations of strains have been evaluated on an industrial scale in the sourdough fermentation process. Wholemeal rye bread was prepared using sourdoughs obtained with 3 new starter cultures, and compared to bread made using the commercial culture (LV2). All newly developed cultures used for the preparation of wholemeal rye bread allowed to obtain better quality products as compared to the LV2 based bread. The best results were obtained when the culture containing Lactiplantibacillus plantarum 2MI8 and exopolysaccharide (EPS)-producing Weissella confusa/cibaria 6PI3 strains was applied. The addition of yeast during sourdough breads production, especially the one prepared from mentioned above starter culture, significantly improved their organoleptic properties, their volume and crumb moisture was increased, and also the crumb acidity and hardness was reduced. Fermentation of rye wholemeal dough, especially without the yeast addition, resulted in a significant reduction in the content of higher inositol phosphates as compared to the applied flour, which is associated with improved bioavailability of minerals. The results of this study prove that the investigated new starter cultures can be successfully applied in wholemeal rye bread production.
Collapse
Affiliation(s)
- Dorota Litwinek
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Jakub Boreczek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Halina Gambuś
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Krzysztof Buksa
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Wiktor Berski
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Muninathan C, Guruchandran S, Viswanath Kalyan AJ, Ganesan ND. Microbial exopolysaccharides: role in functional food engineering and gut‐health management. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Nandhini Devi Ganesan
- Centre for Food Technology Department of Biotechnology Anna University Chennai 600025 India
| |
Collapse
|
23
|
Karimi N, Zeynali F, Rezazad Bari M, Nikoo M, Mohtarami F, Kadivar M. Amaranth selective hydrolyzed protein influence on sourdough fermentation and wheat bread quality. Food Sci Nutr 2021; 9:6683-6691. [PMID: 34925798 PMCID: PMC8645750 DOI: 10.1002/fsn3.2618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Amaranth selective hydrolyzed protein (ASPH) may improve sourdough properties and bread quality. In this regard, this study focused on investigating the influence of protein hydrolysates on sourdough fermentation and bread properties. Based on the findings, ASPH further increased Lactobacillus plantarum and Saccharomyces cerevisiae growth in sourdough compared with amaranth protein isolates and amaranth flour. ASPH at 5 g/kg resulted in sourdough with higher pH and total titratable acidity (TTA) after 20 h of fermentation at 30°C. The prepared sourdough using APH (S-ASPH) at 3 g/kg increased the specific volume (4.57 ml/g) and TTA (4.76 ml) while decreasing water activity, hardness, cohesiveness, and chewiness of the bread (S-ASPH-B) compared with the control. Moreover, transition temperature and enthalpy reduced whereas sensory properties and shelf life represented an increase with S-ASPH addition. Overall, the obtained data indicated the improvement of bread quality by S-ASPH sourdough.
Collapse
Affiliation(s)
- Nayereh Karimi
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Fariba Zeynali
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mahmoud Rezazad Bari
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality ControlArtemia and Aquaculture Research InstituteUrmia UniversityUrmiaIran
| | - Forogh Mohtarami
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mahdi Kadivar
- Department of Food Science and TechnologyCollege of AgricultureIsfahan University of TechnologyIsfahanIran
| |
Collapse
|
24
|
Polak T, Mejaš R, Jamnik P, Kralj Cigić I, Poklar Ulrih N, Cigić B. Accumulation and Transformation of Biogenic Amines and Gamma-Aminobutyric Acid (GABA) in Chickpea Sourdough. Foods 2021; 10:foods10112840. [PMID: 34829121 PMCID: PMC8618307 DOI: 10.3390/foods10112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
In general, sourdough fermentation leads to an improvement in the technological, nutritional, and sensory properties of bakery products. The use of non-conventional flours with a specific autochthonous microbiota may lead to the formation of secondary metabolites, which may even have undesirable physiological and toxicological effects. Chickpea flours from different suppliers have been used to produce sourdoughs by spontaneous and inoculated fermentations. The content of nutritionally undesirable biogenic amines (BA) and beneficial gamma-aminobutyric acid (GABA) was determined by chromatography. Fenugreek sprouts, which are a rich source of amine oxidases, were used to reduce the BA content in the sourdoughs. Spontaneous fermentation resulted in a high accumulation of cadaverine, putrescine, and tyramine for certain flours. The use of commercial starter cultures was not effective in reducing the accumulation of BA in all sourdoughs. The addition of fenugreek sprouts to the suspension of sourdough with pH raised to 6.5 resulted in a significant reduction in BA contents. Enzymatic oxidation was less efficient during kneading. Baking resulted in only a partial degradation of BA and GABA in the crust and not in the crumb. Therefore, it could be suggested to give more importance to the control of sourdough fermentation with regard to the formation of nutritionally undesirable BA and to exploit the possibilities of their degradation.
Collapse
Affiliation(s)
- Tomaž Polak
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Rok Mejaš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Irena Kralj Cigić
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Blaž Cigić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
- Correspondence: ; Tel.: +386-1-320-37-84; Fax: +386-1-256-57-82
| |
Collapse
|
25
|
Ferreyra LS, Verdini RA, Soazo M, Piccirilli GN. Impact of whey protein addition on wheat bread fermented with a spontaneous sourdough. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Laura S. Ferreyra
- Área Bromatología y Nutrición Departamento de Ciencias de los Alimentos y del Medio Ambiente Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
| | - Roxana A. Verdini
- Área Bromatología y Nutrición Departamento de Ciencias de los Alimentos y del Medio Ambiente Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
- Instituto de Química Rosario (IQUIR, UNR‐CONICET) & Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
| | - Marina Soazo
- Área Bromatología y Nutrición Departamento de Ciencias de los Alimentos y del Medio Ambiente Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
- Instituto de Química Rosario (IQUIR, UNR‐CONICET) & Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
| | - Gisela N. Piccirilli
- Área Bromatología y Nutrición Departamento de Ciencias de los Alimentos y del Medio Ambiente Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
- Instituto de Química Rosario (IQUIR, UNR‐CONICET) & Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
| |
Collapse
|
26
|
Mota-Gutierrez J, Franciosa I, Ruggirello M, Dolci P. Technological, functional and safety properties of lactobacilli isolates from soft wheat sourdough and their potential use as antimould cultures. World J Microbiol Biotechnol 2021; 37:146. [PMID: 34363545 PMCID: PMC8349320 DOI: 10.1007/s11274-021-03114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Bakery products are a common medium for fungal growth due to their high-water activity and nutrients availability. The application of lactic acid bacteria (LAB) isolated from wheat bran or other cereals has shown great potential in controlling the growth of spoilage fungi, guarantee quality and prolong the shelf life of bakery products. This study outlines the antifungal, technological, functional and safety properties of autochthonous LAB microbiota isolated from type 0 soft wheat sourdough fermentation. Antifungal activity of 77 LAB belonging to Lactiplantibacillus plantarum and Lacticaseibacillus casei species isolated from spontaneous sourdough fermentation was tested in vitro against 16 spoilage fungi. Our findings demonstrated that the antifungal activity, enzymatic and safety properties of LAB isolates vary strain-dependently. Four LAB isolates (Lp. plantarum A16, A25, B11, and B15) showed the best traits, in particular strong antifungal activity and good capabilities to produce exopolysaccharides from different carbon sources in vitro. Care should be taken when using Lp. plantarum A310 and B18 and Lc. casei A23, as starter cultures, since these isolates exhibited a multiple antibiotic-resistance. Here we showed the promising potential of different LAB isolates as bio-preservative agents and to provide new insights regarding their prospective use as starter cultures to guarantee safety and palatability.
Collapse
Affiliation(s)
- Jatziri Mota-Gutierrez
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Irene Franciosa
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Marianna Ruggirello
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Paola Dolci
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
27
|
Lau SW, Chong AQ, Chin NL, Talib RA, Basha RK. Sourdough Microbiome Comparison and Benefits. Microorganisms 2021; 9:microorganisms9071355. [PMID: 34201420 PMCID: PMC8306212 DOI: 10.3390/microorganisms9071355] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sourdough is the oldest form of leavened bread used as early as 2000 BC by the ancient Egyptians. It may have been discovered by accident when wild yeast drifted into dough that had been left out resulting in fermentation of good microorganisms, which made bread with better flavour and texture. The discovery was continued where sourdough was produced as a means of reducing wastage with little known (at that point of time) beneficial effects to health. With the progress and advent of science and technology in nutrition, sourdough fermentation is now known to possess many desirable attributes in terms of health benefits. It has become the focus of attention and practice in modern healthy eating lifestyles when linked to the secret of good health. The sourdough starter is an excellent habitat where natural and wild yeast plus beneficial bacteria grow by ingesting only water and flour. As each sourdough starter is unique, with different activities, populations and interactions of yeast and bacteria due to different ingredients, environment, fermentation time and its carbohydrate fermentation pattern, there is no exact elucidation on the complete make-up of the sourdough microbiome. Some lactic acid bacteria (LAB) strains that are part of the sourdough starter are considered as probiotics which have great potential for improving gastrointestinal health. Hence, from a wide literature surveyed, this paper gives an overview of microbial communities found in different sourdough starters. This review also provides a systematic analysis that identifies, categorises and compares these microbes in the effort of linking them to specific functions, particularly to unlock their health benefits.
Collapse
Affiliation(s)
| | | | - Nyuk Ling Chin
- Correspondence: ; Tel.: +603-9769-6353; Fax: +603-9769-4440
| | | | | |
Collapse
|
28
|
Cao Y, Jiang L, Suo W, Deng Y, Zhang M, Dong S, Guo P, Chen S, Li H. Influence of emulsifiers and enzymes on dough rheological properties and quality characteristics of steamed bread enriched with potato pulp. Food Chem 2021; 360:130015. [PMID: 33993072 DOI: 10.1016/j.foodchem.2021.130015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate whether processing characteristics of steamed bread enriched with potato pulp could be improved through the addition of different emulsifiers (soy lecithin-Soy L, sodium stearoyl lactate and diacetyl tartaric esters of monoglyceride) and enzymes (glucose oxidase-GOX and transglutaminase). Results showed that separate addition of each emulsifier at 1% concentration or each enzyme at 1.5 U/g could increase the viscoelasticity and strength of potato pulp dough due to enhancement of gluten network. Fermentation properties of dough showed that Soy L and GOX significantly (P < 0.05) increased the maximum dough height and the gas retention capacity during fermentation which promoting dough expansion. Moreover, Soy L and GOX increased specific volume and improved crumb structure and softness of steamed bread, which were consistent with the results of sensory analysis. In conclusion, Soy L and GOX could be used as improvers of potato pulp steamed bread.
Collapse
Affiliation(s)
- Yanfei Cao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Min Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Shuang Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Peng Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China.
| |
Collapse
|
29
|
Reale A, Di Stasio L, Di Renzo T, De Caro S, Ferranti P, Picariello G, Addeo F, Mamone G. Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chem 2021; 359:129955. [PMID: 34010753 DOI: 10.1016/j.foodchem.2021.129955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the dynamics of proteolysis during dough fermentation started with different lactic acid bacteria species, through the identification of intermediate and small-sized peptides generated during fermentation. Single-strain cultures of Levilactobacillus brevis, Fructilactobacillus sanfranciscensis, Companilactobacillus alimentarius, and Leuconostoc pseudomesenteroides were assayed as sourdough starters. Assays were carried out at lab-scale for 48 h of fermentation, using both unstarted and yeast-leavened dough as controls. Physicochemical and microbiological analyses were combined with peptidomic and proteomic profiling, identifying several hundreds of peptides mainly released from the water-soluble wheat proteins, including β-amylase, triticin, and serpins. Both α- and γ-gliadins were hydrolyzed, though only at the N-terminal domain, while the central protein region - encrypting celiac disease epitopes- remained unaffected. The bacterial-mediated consumption of sugars and the concomitant hydrolysis of starch degrading β-amylase could underlie improved digestibility and several nutritionally beneficial effects of sourdough baked products.
Collapse
Affiliation(s)
- Anna Reale
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Salvatore De Caro
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Francesco Addeo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| |
Collapse
|
30
|
Taglieri I, Sanmartin C, Venturi F, Macaluso M, Bianchi A, Sgherri C, Quartacci MF, De Leo M, Pistelli L, Palla F, Flamini G, Zinnai A. Bread Fortified with Cooked Purple Potato Flour and Citrus Albedo: An Evaluation of Its Compositional and Sensorial Properties. Foods 2021; 10:942. [PMID: 33923099 PMCID: PMC8146928 DOI: 10.3390/foods10050942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
This research aimed to explore the feasibility of fortifying bread with cooked Vitelotte potato powder and Citrus albedo, comparing the use of baker's yeast or sourdough as leavening agents. Breads obtained were thus subjected to physico-chemical and sensory characterizations. The replacement of part of the wheat flour with purple potato and albedo determined a significant enhancement of the phenolic profile and antioxidant status of fortified breads, as well as a longer shelf life. Thanks to its acidity and antimicrobial activity, sourdough improved the levels of health-promoting compounds and stability. Both the fortification and the leavening agent deeply affected the organoleptic, expression, and the aroma profile, of the fortified bread. Interestingly, albedo addition, despite its effectiveness in boosting the phenolic profile, determined a higher perception of aftertaste and bitterness, irrespective of the leavening agent. Based on these results, the use of purple potatoes and Citrus albedo, if properly formulated, could represent a valuable strategy for the development of high-quality products, with longer shelf-life.
Collapse
Affiliation(s)
- Isabella Taglieri
- Department of Agriculture Food Environment, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; (I.T.); (C.S.); (M.M.); (A.B.); (C.S.); (M.F.Q.); (A.Z.)
| | - Chiara Sanmartin
- Department of Agriculture Food Environment, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; (I.T.); (C.S.); (M.M.); (A.B.); (C.S.); (M.F.Q.); (A.Z.)
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.D.L.); (L.P.); (G.F.)
| | - Francesca Venturi
- Department of Agriculture Food Environment, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; (I.T.); (C.S.); (M.M.); (A.B.); (C.S.); (M.F.Q.); (A.Z.)
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.D.L.); (L.P.); (G.F.)
- CISUP, Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture Food Environment, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; (I.T.); (C.S.); (M.M.); (A.B.); (C.S.); (M.F.Q.); (A.Z.)
| | - Alessandro Bianchi
- Department of Agriculture Food Environment, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; (I.T.); (C.S.); (M.M.); (A.B.); (C.S.); (M.F.Q.); (A.Z.)
| | - Cristina Sgherri
- Department of Agriculture Food Environment, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; (I.T.); (C.S.); (M.M.); (A.B.); (C.S.); (M.F.Q.); (A.Z.)
| | - Mike Frank Quartacci
- Department of Agriculture Food Environment, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; (I.T.); (C.S.); (M.M.); (A.B.); (C.S.); (M.F.Q.); (A.Z.)
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.D.L.); (L.P.); (G.F.)
| | - Marinella De Leo
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.D.L.); (L.P.); (G.F.)
- CISUP, Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Luisa Pistelli
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.D.L.); (L.P.); (G.F.)
- CISUP, Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Fabrizio Palla
- INFN, National Institute for Nuclear Physics, Largo Bruno Pontecorvo, 3, 56127 Pisa, Italy;
| | - Guido Flamini
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.D.L.); (L.P.); (G.F.)
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture Food Environment, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; (I.T.); (C.S.); (M.M.); (A.B.); (C.S.); (M.F.Q.); (A.Z.)
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (M.D.L.); (L.P.); (G.F.)
- CISUP, Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
31
|
Martín-Garcia A, Riu-Aumatell M, López-Tamames E. Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alba Martín-Garcia
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Montserrat Riu-Aumatell
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| | - Elvira López-Tamames
- Departament of Nutrition, Food Sciences and Gastronomy, Campus Torribera, Universitat de Barcelona (UB), Institut de Recerca En Nutrició I Seguretat Alimentària (INSA-UB), XaRTA, Santa Coloma De Gramenet, España
| |
Collapse
|
32
|
Taglieri I, Macaluso M, Bianchi A, Sanmartin C, Quartacci MF, Zinnai A, Venturi F. Overcoming bread quality decay concerns: main issues for bread shelf life as a function of biological leavening agents and different extra ingredients used in formulation. A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1732-1743. [PMID: 32914410 DOI: 10.1002/jsfa.10816] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
As is widely accepted, the quality decay of freshly baked bread that affects product shelf life is the result of a complex multifactorial process that involves physical staling, together with microbiological, chemical and sensorial spoilage. In this context, this paper provides a critical review of the recent literature about the main factors affecting shelf life of bread during post-baking. An overview of the recent findings about the mechanism of bread staling is firstly provided. Afterwards, the effect on staling induced by baker's yeasts and sourdough as well as by the extra ingredients commonly utilized for bread fortification is also addressed and discussed. As inclusion/exclusion criteria, only papers dealing with wheat bread and not with long-life bread or gluten-free bakery products are taken into consideration. Despite recent developments in international scientific literature, the whole mechanism that induces bread staling is far from being completely understood and the best analytical methods to be adopted to measure and/or describe in depth this process appear still debated. In this topic, the effects induced on bread shelf life by the use of biological leavening agents (baker's yeasts and sourdough) as well as by some extra ingredients included in the bread recipe have been individuated as two key issues to be addressed and discussed in terms of their influence on the kinetics of bread staling. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mike Frank Quartacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Menezes LAA, De Marco I, Neves Oliveira Dos Santos N, Costa Nunes C, Leite Cartabiano CE, Molognoni L, Pereira GVDM, Daguer H, De Dea Lindner J. Reducing FODMAPs and improving bread quality using type II sourdough with selected starter cultures. Int J Food Sci Nutr 2021; 72:912-922. [PMID: 33653200 DOI: 10.1080/09637486.2021.1892603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study focussed on lactic acid bacteria (LAB) screening for sourdough type II elaboration and evaluating the effects of sourdough fermentation in bread making, focussing mainly on reducing FODMAPs. After a technological performance screening, six strains (Levilactobacillus brevis, Weissella minor, Lactiplantibacillus plantarum, Leuconostoc citreum, Limosilactobacillus fermentum, and Companilactobacillus farciminis) were selected for sourdough preparation. Total titratable acidity, pH, specific volume, and enumeration of microorganisms were carried out on sourdoughs, doughs, and breads. Breads were subjected to texture profile and colour analysis, moulds and yeast enumeration, and total fructans (main group of FODMAPs) quantification. Breads produced with sourdough showed a significant reduction of fructans, greater acidity, volume, and better performance during storage when compared to fermentation using only baker's yeast. Including specific cultures as starters in sourdough reduced fructans content by >92%, thereby producing a low FODMAP bread suitable for Irritable Bowel Syndrome patients with improved nutritional and technological properties.
Collapse
Affiliation(s)
| | - Ivan De Marco
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | - Catharina Costa Nunes
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | - Luciano Molognoni
- Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina (SLAV/SC/LFDA/RS), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), São José, SC, Brazil.,Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC, Brazil
| | - Gilberto V de Melo Pereira
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Heitor Daguer
- Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina (SLAV/SC/LFDA/RS), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), São José, SC, Brazil
| | - Juliano De Dea Lindner
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
34
|
Caglar N, Ermis E, Durak MZ. Spray-dried and freeze-dried sourdough powders: Properties and evaluation of their use in breadmaking. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Volatile Organic Compounds in Breads Prepared with Different Sourdoughs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sourdough is an old example of a natural starter composed of a mixture of flour, water, and metabolites and is produced by naturally occurring lactic acid bacteria and yeasts that influence bread aroma. In this work, four types of sourdough were used to prepare bread: one sourdough with yeast beer and three with bacteria and yeasts. The physicochemical parameters (pH, moisture, water activity, and organic acids) of the bread and sourdoughs were assessed. Lactic, acetic, and succinic acids were found in considerable amounts in sourdoughs and the corresponding breads. The fermentation quotient (molar ratio between lactic and acetic acid) ranged from 0.39 to 3.4 in sourdoughs. Lactic acid was prevalent in all types of bread and showed the highest value in bread made from sourdough with a 1.5 bacteria/yeast ratio (8722.24 mg/kg). Moreover, volatile organic compounds were identified in bread samples. Alcohols, aldehydes, and acetic acid were mainly found. The alcohol concentration ranged from 140.88 to 401.20 ng/g. Aldehydes ranged from 185.01 to 454.95 ng/g, and acetic acid ranged from 91.40 to 173.81 ng/g. Bread prepared from sourdough with a 1.5 bacteria/yeast ratio showed a considerable amount of alcohols and acetic acid.
Collapse
|
36
|
Martins IE, Shittu TA, Onabanjo OO, Adesina AD, Soares AG, Okolie PI, Kupoluyi AO, Ojo OA, Obadina AO. Effect of packaging materials and storage conditions on the microbial quality of pearl millet sourdough bread. Journal of Food Science and Technology 2021; 58:52-61. [PMID: 33505051 DOI: 10.1007/s13197-020-04513-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
Abstract
Sourdough is one of the oldest methods of cereal fermentation applied mainly for the sole purpose of baking and has been proven to enhance the production of microbiologically safe products. This study investigated the effect of packaging materials and storage conditions on the microbial quality and some intrinsic parameters of the sourdough bread. Pearl millet flour was naturally fermented for 72 h to obtain sourdough which was used with pearl millet flour to produce sourdough bread while the control bread was produced with pearl millet flour and yeast. The bread samples were packaged in low density polyethylene and aluminium foil and stored at -5, 4, 6, 28 and 37 °C. The total bacteria count (log cfu/g) and total fungal count (spore/g) increased with an increase in storage temperature and storage days. Fungi colonies isolated from stored bread samples include species of Rhizopus, Aspergillus, Penicillium and Mucor. A significant increase (p ≤ 0.05) in the pH and decrease in the moisture content of the bread samples were observed as storage period and storage temperature increased. Sourdough fermentation improved the microbial qualities and extended the shelf life of bread.
Collapse
Affiliation(s)
| | - Toafik Akinyemi Shittu
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | | | | | | | | | - Oluwakemi Abosede Ojo
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | | |
Collapse
|
37
|
Ma M, Mu T, Zhou L. Identification of saprophytic microorganisms and analysis of changes in sensory, physicochemical, and nutritional characteristics of potato and wheat steamed bread during different storage periods. Food Chem 2020; 348:128927. [PMID: 33493845 DOI: 10.1016/j.foodchem.2020.128927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Due to its nutritional value and no gluten, potato flour has recently been used as a new type of material to make steamed bread. However, compared to traditional wheat steamed bread, its shelf life is considerably shorter, the dominant microorganisms and storage properties also differ. High-throughput sequencing combined with molecular biology assay revealed that Bacillus methylotrophic and Bacillus subtilis were the dominant bacteria in the crumb of potato and wheat steamed bread, respectively. Moreover, Meyerozyma, Penicillium chrysogenum, Penicillium citrinum, and Aspergillus parasiticus were the main fungi in the crusts. Ethanol was the most volatile compound in fresh potato and wheat steamed bread. Following storage for 48 h, 2,3-butanediol and 3-hydroxy-2-butanone were established as the most volatile compounds. Although decreased sourness was observed, the specific volume, brightness, and nutritional composition remained nearly unchanged. These findings provide a valuable theoretical basis for the development of potato and wheat steamed bread preservation technologies.
Collapse
Affiliation(s)
- Mengmei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China
| | - Taihua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| | - Liang Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China
| |
Collapse
|
38
|
Loeffler M, Hilbig J, Velasco L, Weiss J. Usage of in situ exopolysaccharide-forming lactic acid bacteria in food production: Meat products-A new field of application? Compr Rev Food Sci Food Saf 2020; 19:2932-2954. [PMID: 33337046 DOI: 10.1111/1541-4337.12615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/01/2022]
Abstract
In the meat industry, hydrocolloids and phosphates are used to improve the quality attributes of meat products. However, latest research results revealed that the usage of exopolysaccharide (EPS)-forming lactic acid bacteria (LAB), which are able to produce EPS in situ during processing could be an interesting alternative. The current review aims to give a better understanding of bacterial EPS production in food matrices with a special focus on meat products. This includes an introduction to microbial EPS production (homopolysaccharides as well as heteropolysaccharides) and an overview of parameters affecting EPS formation and yield depending on LAB used. This is followed by a summary of methods to detect and characterize EPS to facilitate a rational selection of starter cultures and fermentation conditions based on desired structure-function relationships in different food matrices. The mechanism of action of in situ generated EPS is then highlighted with an emphasis on different meat products. In the process, this review also highlights food additives currently used in meat production that could in the future be replaced by in situ EPS-forming LAB.
Collapse
Affiliation(s)
- Myriam Loeffler
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, Stuttgart, Germany
| | - Jonas Hilbig
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, Stuttgart, Germany
| | - Lina Velasco
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, Stuttgart, Germany
| |
Collapse
|
39
|
Gauchez H, Loiseau AL, Schlich P, Martin C. Impact of aging on the overall liking and sensory characteristics of sourdough breads and comparison of two methods to determine their sensory shelf life. J Food Sci 2020; 85:3517-3526. [PMID: 32940357 DOI: 10.1111/1750-3841.15410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
The objectives of the present work were to study the evolution of the sensory properties and overall liking of four sourdough breads over their lifespans and to determine their sensory shelf life (SSL). We also intended to identify the main sensory characteristics leading to a decrease in overall liking and the end of the consumption of the breads. Seventy-eight consumers evaluated different 1 kg sourdough breads at home. Two methods were used to describe the evolution of the sensory properties and overall liking: one based on ratings of descriptors' intensities and the other based on the magnitude of the changes observed since the previous consumption. As expected, the results showed that sensory properties and liking scores evolved over time. While the aroma and taste properties changed little, the texture deteriorated significantly. The overall liking scores decreased steadily over time, while the percentage of subjects who stopped eating bread increased. "Easiness to cut with the teeth," "easiness to chew," "crispness," and "softness" were the main characteristics positively correlated with the overall liking scores and negatively correlated with the percentage of rejection. In contrast, "dryness of the crumb" was negatively correlated with the liking scores and positively correlated with the percentage of rejection. A survival analysis determined that the SSL (50% rejection) of the breads was approximately 2.5 days. Interestingly, we highlighted that the average liking score corresponding to the SSL was just below the middle of the overall liking scale. PRACTICAL APPLICATION: The results of this work could be of interest to bread-making professionals who will be able to use the main conclusions to advise their clients and possibly adapt the bread format to their sensory shelf life. This work was also an opportunity to highlight sourdough bread, which offers more flexibility than French baguette in managing the consumption of the bread purchased. The alternative approach tested to measure the evolution of sensory characteristics and overall liking could interest the professionals of sensory analysis.
Collapse
Affiliation(s)
- Hélène Gauchez
- INRAE, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Anne-Laure Loiseau
- INRAE, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Pascal Schlich
- INRAE, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Christophe Martin
- INRAE, UMR1324 Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| |
Collapse
|
40
|
Karimi N, Nikoo M, Ahmadi Gavlighi H, Piri Gheshlaghi S, Regenstein JM, Xu X. Effect of pacific white shrimp (Litopenaeus vannamei) protein hydrolysates (SPH) and (−)-epigallocatechin gallate (EGCG) on sourdough and bread quality. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Limbad M, Gutierrez Maddox N, Hamid N, Kantono K. Sensory and Physicochemical Characterization of Sourdough Bread Prepared with a Coconut Water Kefir Starter. Foods 2020; 9:E1165. [PMID: 32847003 PMCID: PMC7554862 DOI: 10.3390/foods9091165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
There is a recognized need for formulating functional food products using selected lactic acid bacteria (LAB) starter cultures from various sources such as kefir, yoghurt or kombucha that have health benefits. The principle objective of this study was to investigate the use of a coconut water kefir-based fermentation starter culture using Lactobacillus fermentum and Lactobacillus plantarum to develop a sourdough bread. Check-all-that-apply (CATA) sensory profiling was used in this study to evaluate the sensory profile of sourdough breads that varied with culture type, culture concentrations, with and without added yeast, and with fermentation for 18 and 24 h. Based on correspondence analysis (CA) of the CATA results, bread samples with positive sensory attributes were chosen for further physicochemical analysis. Physicochemical analyses (texture, proximate composition, shelf life, carboxylic acid analysis and amino acid analysis) were carried out on breads formulated with starter culture concentrations of 8.30 log CFU/mL of L. fermentum, 4.90 log CFU/mL of L. fermentum and 9.60 log CFU/mL of L. plantarum, each fermented for 24 h without baker's yeast. The bread sample that was formulated with a coconut water kefir (CWK) starter culture containing 9.60 log CFU/mL of L. plantarum, without dry yeast and fermented for 24 h, had significantly higher values for almost all amino acids and a lower protein content compared to samples formulated using CWK cultures containing 8.30 log CFU/mL of L. fermentum and 4.90 log CFU/mL of L. fermentum, both without dry yeast and fermented for 24 h. The bread sample formulated with CWK starter culture containing 9.60 log CFU/mL of L. plantarum, without dry yeast and fermented for 24 h, also produced significant quantities of organic acids (pyruvic acid, acetic acid, lactic acid and succinic acid). These changes in the physicochemical properties can improve overall bread quality in terms of flavor, shelf life, texture and nutritional value.
Collapse
Affiliation(s)
- Mansi Limbad
- Department of Food Science and Microbiology, Auckland University of Technology, 34, Saint Paul Street, Auckland 1010, New Zealand; (N.G.M.); (N.H.); (K.K.)
| | | | | | | |
Collapse
|
42
|
Çakır E, Arıcı M, Durak MZ. Biodiversity and techno-functional properties of lactic acid bacteria in fermented hull-less barley sourdough. J Biosci Bioeng 2020; 130:450-456. [PMID: 32782196 DOI: 10.1016/j.jbiosc.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to characterize the biodiversity of lactic acid bacteria (LAB) isolated from spontaneously-fermented hull-less barley sourdough and to determine its technological properties. Biodiversity was investigated by analysis of colonies isolated from sourdough on four different agar media. Of the 80 isolates, 67 were rapidly pre-identified as LAB using Fourier transforms infrared spectroscopy (FTIR). As a result of cluster analysis, 32 lactic acid bacteria chosen from different branches were identified. According to the polymerase chain reaction (PCR) results, 9 different species were identified: Pediococcus (dominant species), Lactobacillus curvatus, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus musae, Lactobacillus paralimentarius, Leuconostoc mesenteroides and Lactobacillus equigenerosi. The most species and strain diversity among the media was determined in ModMRS environment. Unlike other studies about hull-less barley, Lactobacillus equigenerosi was identified in this study. LABs were identified with salt and acid tolerance. Generally, different levels of antibacterial activity in these species were shown against (rope spoilage) food borne pathogens. The greatest antimicrobial effect was observed for Pediococcus acidilactici SAB26, Lactobacillus plantarum SAB15 and Pediococcus acidilactici SAB13 compared to the other strains. Pediococcus species were found to have the highest antifungal effect against Penicillium carneum, Aspergillus flavus and A. niger. The phytase activity of LAB, which increases mineral bioavailability, was observed to be highest in Lactobacillus plantarum, Pediococcus pentosaceus, and Leuconostoc mesenteroides.
Collapse
Affiliation(s)
- Elif Çakır
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey.
| | - Muhammet Arıcı
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey
| | - Muhammed Zeki Durak
- Department of Food Engineering, Chemical and Metallurgical Faculty, Yıldız Technical University, Esenler, Istanbul 34210, Turkey
| |
Collapse
|
43
|
Effect of the Leavening Agent on the Compositional and Sensorial Characteristics of Bread Fortified with Flaxseed Cake. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Health and well-being improvement is currently driving innovation in bread, using a wide variety of value-added compounds as extra ingredients, including food industry by-products in a circular economy concept. In this context, this research aimed at evaluating the effect of the fortification of bread with different percentages of flaxseed cake, comparing two leavening agents: sourdough and baker’s yeast. Sensorial, physicochemical, and nutritional properties, including pH, the main fermentative metabolites, fatty acids, total phenols, antioxidant capacity, and volatile organic compounds were determined for fortified bread. The results showed a significant improvement of nutraceutical profile of the bread fortified with flaxseed cake in a dose-dependent manner. Regardless of the leavening agent, the fortification determined a decrease of n-6:n-3 ratio, reaching the recommended value (<3) already at the 7.5% level. Furthermore, under the same fortification level, sourdough breads showed a higher level of total phenols and antiradical activity than baker’s yeast breads. Sensory profiles were instead deeply influenced by both the fortification percentage and the leavening agents. In conclusion, considering both nutritional and sensory results, the best formulation as a function of leavening agent utilized was defined as 5% and 7.5% when sourdough and baker’s yeast were used, respectively.
Collapse
|
44
|
Boyaci‐Gunduz CP, Erten H. Predominant yeasts in the sourdoughs collected from some parts of Turkey. Yeast 2020; 37:449-466. [DOI: 10.1002/yea.3500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Cennet Pelin Boyaci‐Gunduz
- Faculty of Agriculture, Food Engineering Department Cukurova University Adana Turkey
- Faculty of Engineering, Food Engineering Department Adana Alparslan Turkes Science and Technology University Adana Turkey
| | - Huseyin Erten
- Faculty of Agriculture, Food Engineering Department Cukurova University Adana Turkey
| |
Collapse
|
45
|
Özülkü G, Sivri Özay D. IMPROVING THE BREAD QUALITY OF SUNI-BUG DAMAGED WHEAT FLOURS BY SOURDOUGH BREADMAKING AND LIQUID RYE SOUR. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The breadmaking quality of bug-damaged wheat flours with high protease activity (HPAWF) and low protease activity (LPAWF) was attempted to be improved by using sourdough (prepared by L. plantarum (SD1) and L. sanfrancissensis (SD2)) and liquid rye sour (LRS) in this study. The effects of sourdoughs (20 and 40%) and LRS (1 and 2%) on the protease activity of the HPAWF were determined by SDS-PAGE. Protease activity of HPAWF decreased with the addition of 40% SD1, 20% SD2, and both levels of LRS (1 and 2%) compared to a control sample. The HPAWF bread samples produced with LRS (1 and 2%) had higher volume (P<0.05) and bread quality as compared to sourdough applications. LPAWF bread sample was comparable with those of 40% SD2 added sample in terms of volume and hardness (N) values (P>0.05), while SD1 addition caused quality losses. The overall results suggested that addition of 2% LRS had promising results for improving bread quality flours that were damaged by suni-bug at low levels.
Collapse
Affiliation(s)
- G. Özülkü
- aDepartment of Food Engineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul. Turkey
| | - D. Sivri Özay
- bDepartment of Food Engineering, Engineering Faculty, Hacettepe University, Ankara. Turkey
| |
Collapse
|
46
|
Lee J, Bae J, Jeong H, Cho Y, Choi MJ. Saltiness enhancement in white pan bread supplemented withspray-dried salt-yeast complex. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Effect of microbial exopolysaccharide on wheat bran sourdough: Rheological, thermal and microstructural characteristics. Int J Biol Macromol 2020; 154:371-379. [PMID: 32194100 DOI: 10.1016/j.ijbiomac.2020.03.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
Rheological, thermal and microstructural properties of wheat bran sourdough (WBS) containing different levels of microbial exopolysaccharide (EPS) extracted from Lactobacillus plantarum were investigated. All sourdough samples showed pseudoplastic behavior and the highest apparent viscosity was achieved at 1.5% EPS. The values of consistency coefficient of 1 and 2.5% EPS were significantly lower than for the dough without EPS. Increasing EPS in WBS produced a decrease in the storage, loss, and complex moduli of the sourdough, except that made with 1.5% EPS. This can be attributed to the microbial EPS structure and its ability to bind with water. It can be concluded, due to high hygroscopicity of EPS, WBS containing EPS had a lower access to water and other dough constituents. Thermal and microstructural results showed that EPS strongly modified starch gelatinization by prohibiting water access to amorphous parts of the granules and stabilized crystalline regions of starch causing an increase of end set temperature.
Collapse
|
48
|
Effect of Short Fermentation Times with Lactobacillus paracasei in Rheological, Physical and Chemical Composition Parameters in Cassava Dough and Biscuits. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dough fermentation with lactic acid bacteria has been extensively studied due to the associated health benefits and its effects on physical and rheology parameters in dough and bread. However, most of the studies rely on long fermentation times. The aim of this study is to evaluate the effect of short fermentation times (0 to 8 h) with Lactobacillus paracasei in rheology, physical and chemical properties on cassava dough and biscuits. Both storage modulus and loss modulus decreased as the fermentation times increased, down to 54,206.67 ± 13,348 and 17,453.89 ± 3691 Pa, respectively. Fermentation with L. paracasei influenced biscuit’s hardness and chemical properties, and gas cell sizes were increased notably. These results suggest that short fermentation times could be used to improve dough’s rheological characteristics.
Collapse
|
49
|
Sanmartin C, Taglieri I, Venturi F, Macaluso M, Zinnai A, Tavarini S, Botto A, Serra A, Conte G, Flamini G, Angelini LG. Flaxseed Cake as a Tool for the Improvement of Nutraceutical and Sensorial Features of Sourdough Bread. Foods 2020; 9:E204. [PMID: 32079106 PMCID: PMC7074573 DOI: 10.3390/foods9020204] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
Flaxseed has been recently studied for the formulation of healthy functional foods that are also useful for the prevention of chronic diseases. In this context, the production of sourdough bread fortified with different percentages of flaxseed cake was performed and the interactions among the bioactive compounds derived from both sourdough and flaxseed cake were investigated. The organoleptic properties as well as nutraceutical and chemical characteristics regarding pH, ethanol, lactic and acetic acid content, fatty acids profile, the concentration of total polyphenols, antioxidant capacity, and aroma volatile organic compounds were determined to evaluate the efficacy of leavening in the different matrices in comparison with the traditional bread. The results obtained demonstrated that flaxseed cake-enriched sourdough bread can represent a potential vehicle for bioactive compounds with the possibility of obtaining high-quality products with improved nutritional profiles and desired health attributes. Furthermore, the bread obtained with the addition of 7.5% of flaxseed cake was individuated as the best formulation to produce sourdough bread fortified with flaxseed cake by the overlap between three series of information coming from physical-chemical, nutritional, and sensorial analyses. In conclusion, in the operating conditions adopted, the use of flaxseed cake could represent a viable alternative for the production of fortified bread based on sourdough technology.
Collapse
Affiliation(s)
- Chiara Sanmartin
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Isabella Taglieri
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
| | - Francesca Venturi
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Monica Macaluso
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
| | - Angela Zinnai
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Silvia Tavarini
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Asia Botto
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
| | - Andrea Serra
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Giuseppe Conte
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Guido Flamini
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Luciana G. Angelini
- Department of Agriculture Food Environment, University of Pisa, via Del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (M.M.); (A.Z.); (A.B.); (A.S.); (G.C.); (L.G.A.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| |
Collapse
|
50
|
Menezes L, Sardaro MS, Duarte R, Mazzon R, Neviani E, Gatti M, De Dea Lindner J. Sourdough bacterial dynamics revealed by metagenomic analysis in Brazil. Food Microbiol 2020; 85:103302. [DOI: 10.1016/j.fm.2019.103302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
|