1
|
Begh MZA, Khan J, Al Amin M, Sweilam SH, Dharmamoorthy G, Gupta JK, Sangeetha J, Lokeshvar R, Nafady MH, Ahmad I, Alshehri MA, Emran TB. Monoterpenoid synergy: a new frontier in biological applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:103-124. [PMID: 39105799 DOI: 10.1007/s00210-024-03342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - G Dharmamoorthy
- Department of Pharmaceutical Analysis, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - J Sangeetha
- Department of Pharmacognosy, Malla Reddy Institute of Pharmaceutical Sciences, Maisammaguda, Dhulapally, 500100, India
| | - R Lokeshvar
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
2
|
Di Maro M, Gargiulo L, Gomez d'Ayala G, Duraccio D. Exploring Antimicrobial Compounds from Agri-Food Wastes for Sustainable Applications. Int J Mol Sci 2024; 25:13171. [PMID: 39684881 DOI: 10.3390/ijms252313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Transforming agri-food wastes into valuable products is crucial due to their significant environmental impact, when discarded, including energy consumption, water use, and carbon emissions. This review aims to explore the current research on the recovery of bioactive molecules with antimicrobial properties from agri-food waste and by-products, and discusses future opportunities for promoting a circular economy in its production and processing. Mainly, antibacterial molecules extracted from agri-food wastes are phenolic compounds, essential oils, and saponins. Their extraction and antimicrobial activity against a wide spectrum of bacteria is analyzed in depth. Also, their possible mechanisms of activity are described and classified based on their effect on bacteria, such as the (i) alteration of the cell membrane, (ii) inhibition of energy metabolism and DNA synthesis, and iii) disruption of quorum sensing and biofilm formation. These bioactive molecules have a wide range of possible applications ranging from cosmetics to food packaging. However, despite their potential, the amount of wastes transformed into valuable compounds is very low, due to the high costs relating to their extraction, technical challenges in managing supply chain complexity, limited infrastructure, policy and regulatory barriers, and public perception. For these reasons, further research is needed to develop cost-effective, scalable technologies for biomass valorization.
Collapse
Affiliation(s)
- Mattia Di Maro
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luca Gargiulo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
3
|
Petretto GL, Mele A, Pintore G, Mannu A. The Impact of Selected Eutectic Solvents on the Volatile Composition of Citrus lemon Essential Oil. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5288. [PMID: 39517562 PMCID: PMC11547412 DOI: 10.3390/ma17215288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The development of new materials for the controlled release of molecules represents a topic of primary importance in medicine, as well as in food science. In recent years, eutectic solvents have been applied as releasing media due to their improved capacity to interact with specific molecules, offering a broad range of tunability. Nevertheless, their application in essential oil dissolution are rare and more data are needed to develop new generations of effective systems. Herein, three eutectic systems, respectively, composed of choline chloride and ethylene glycol (1:2 molar ratio), methyltriphenylphosphonium bromide and ethylene glycol (molar ratio 1:5), and choline chloride and glycerol (molar ratio 1:1.5) were tested as materials for the controlled release of an essential oil derived from Citrus lemon leaves. Through static headspace fractionation, followed by gas chromatographic analysis, the performances of the three systems were assessed. The specific composition of DESs was pivotal in determining the releasing polar molecules as aldehydes and alcohols. A sustainability ranking based on the EcoScale tool highlighted the superior characteristics of the choline chloride-glycerol DES.
Collapse
Affiliation(s)
- Giacomo Luigi Petretto
- Department of Medicine, Surgery and Farmacy, University of Sassari, 07100 Sassari, Italy;
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy;
| | - Giorgio Pintore
- Department of Medicine, Surgery and Farmacy, University of Sassari, 07100 Sassari, Italy;
| | - Alberto Mannu
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy;
| |
Collapse
|
4
|
Ben Selma W, Farouk A, Ban Z, Ferjeni M, Alsulami T, Ali H, Boukadida J. Thymus algeriensis essential oil: Phytochemical investigation, bactericidal activity, synergistic effect with colistin, molecular docking, and dynamics analysis against Gram-negative bacteria resistant to colistin. Heliyon 2024; 10:e38281. [PMID: 39386781 PMCID: PMC11461995 DOI: 10.1016/j.heliyon.2024.e38281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Due to the increasing resistance prevalence to the last line of antibiotics, such as colistin, and the rising threat of multi-drug resistant bacteria, it is crucial to find alternative therapeutic options. The current study focuses on evaluating antibacterial activities alone and in combination with colistin of Thymus algeriensis essential oil (TA-EO) against colistin-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli co-harboring mcr-1 gene. GC/MS was used to determine the chemical composition of TA-EO. Disc diffusion and microdilution techniques were used to evaluate the antimicrobial activities of TA-EO. Synergism between colistin and TA-EO was evaluated by checkerboard assay. The major compounds of TA-EO were docked with known enzymes involved in resistance to colistin, as well as the biosynthesis of peptidoglycan and amino acids. GC/MS revealed that TA-EO was of carvacrol chemotype (67.94 %). The TA-EO showed remarkable antibacterial activities against all Gram-negative bacterial strains, with the diameter of inhibition zones varied between 30 and 50 mm and a ratio MBC/MIC equal to 1 for the vast majority of bacterial isolates. Interestingly, the checkerboard showed synergism between TA-EO and colistin against colistin-resistant Escherichia coli co-harboring mcr-1 gene (FICI˂1) and reduced the MIC of colistin by 16- to 512-fold and those of TA-EO by 4- to 16-fold. The docking study demonstrated that carvacrol had high binding free energies against MCR-1, a phosphoethanolamine transferase extracellular domain, and its catalytic domain implicated in resistance to colistin, and undecaprenyl pyrophosphate synthase in complex with magnesium which is involved in bacterial peptidoglycan biosynthesis. The molecular dynamics study for 100-ns also revealed the stability of the MCR-1/carvacrol complex with a constant surface area over the simulation. These results support using carvacrol or TA-EO as a bactericidal agent, either alone or in combination with colistin, to treat infections caused by colistin-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Walid Ben Selma
- Laboratory of Biological and Genetic Markers Studying for Early Diagnosis and Follow-up of Neurological Diseases, Faculty of Medicine – Av. Ibn el Jazzar-4000, Sousse, LR18ES47, Tunisia
- Higher Institute of Applied Sciences and Technology, Mahdia, Tunisia
| | - Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Centre, Cairo, 12622, Egypt
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Mohamed Ferjeni
- Laboratory of Biological and Genetic Markers Studying for Early Diagnosis and Follow-up of Neurological Diseases, Faculty of Medicine – Av. Ibn el Jazzar-4000, Sousse, LR18ES47, Tunisia
| | - Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hatem Ali
- Food Technology Department, National Research Center, Cairo, 12622, Egypt
| | - Jalel Boukadida
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| |
Collapse
|
5
|
Posadino AM, Maccioccu P, Eid AH, Giordo R, Pintus G, Fenu G. Citrus limon var. pompia Camarda var. nova: A Comprehensive Review of Its Botanical Characteristics, Traditional Uses, Phytochemical Profile, and Potential Health Benefits. Nutrients 2024; 16:2619. [PMID: 39203756 PMCID: PMC11357429 DOI: 10.3390/nu16162619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Citrus limon var. pompia Camarda var. nova, commonly known as pompia, is a distinctive citrus ecotype native to Sardinia, notable for its unique botanical, phytochemical, and potential health benefits. It holds cultural significance as a traditional food product of Sardinia, recognized by the Italian Ministry of Agricultural Food and Forestry Policies. This comprehensive review examines pompia's traditional uses, taxonomic classification, pomological characteristics, phytochemical profile, and potential health benefits. Pompia phytochemical analyses reveal a rich composition of flavonoids and terpenoids, with notable concentrations of limonene, myrcene, and various oxygenated monoterpenes. Pompia essential oils are primarily extracted from its peel and leaves. Peel essential oils exhibit a high concentration of the monoterpene limonene (82%) and significantly lower quantities of myrcene (1.8%), geranial (1.7%), geraniol (1.5%), and neral (1.4%). In its rind extract, flavanones such as naringin (23.77 µg/mg), neoeriocitrin (46.53 µg/mg), and neohesperidin (44.57 µg/mg) have been found, along with gallic acid (128.3 µg/mg) and quinic acid (219.67 µg/mg). The main compounds detected in the essential oils from pompia leaves are oxygenated monoterpenes (53.5%), with limonene (28.64%), α-terpineol (41.18%), geranial (24.44%), (E)-β-ocimene (10.5%), linalool (0.56%), and neryl acetate (13.56%) being particularly prominent. In pompia juice, the presence of phenolic compounds has been discovered, with a composition more similar to lemon juice than orange juice. The primary flavonoid identified in pompia juice is chrysoeriol-6,8-di-C-glucoside (stellarin-2) (109.2 mg/L), which has not been found in other citrus juices. The compound rhoifolin-4-glucoside (17.5 mg/L) is unique to pompia juice, whereas its aglycone, rhoifolin, is found in lemon juice. Other flavonoids identified in pompia juice include diosmetin 6,8-C-diglucoside (54.5 mg/L) and isorhamnetin 3-O-rutinoside (79.4 mg/L). These findings support the potential of pompia in developing nutraceuticals and natural health products, further confirmed by its compounds' antioxidant, anti-inflammatory and antibacterial properties. Future research should focus on optimizing extraction methods, conducting clinical trials to evaluate efficacy and safety, and exploring sustainable cultivation practices. The potential applications of pompia extracts in food preservation, functional foods, and cosmetic formulations also warrant further investigation. Addressing these areas could significantly enhance pompia's contribution to natural medicine, food science, and biotechnology.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (A.M.P.); (P.M.); (G.F.)
| | - Paola Maccioccu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (A.M.P.); (P.M.); (G.F.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (A.M.P.); (P.M.); (G.F.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (A.M.P.); (P.M.); (G.F.)
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Grazia Fenu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (A.M.P.); (P.M.); (G.F.)
| |
Collapse
|
6
|
Boukhira S, Amrati FEZ, Chebaibi M, Grafov A, Mothana RA, Al-Yousef HM, Bousta D. The chemical composition and the preservative, antimicrobial, and antioxidant effects of Thymus broussonetii Boiss. essential oil: an in vitro and in silico approach. Front Chem 2024; 12:1402310. [PMID: 39027726 PMCID: PMC11254817 DOI: 10.3389/fchem.2024.1402310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/30/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction The aim of this study was to evaluate the antioxidant, antimicrobial, and preservative efficacy of Thymus broussonetii Boiss. essential oil (EO) in a topically applied formulation using a challenge test. Methods The essential oil was extracted from the aerial part of T. broussonetii using hydrodistillation, and the obtained EO was further analyzed by gas chromatography/mass spectrometry (GC/MS). The antioxidant effect of the EO was evaluated using three methods: the inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene-linoleic acid, and the ferric reducing antioxidant power (FRAP) methods. The antimicrobial activity and the minimum inhibitory concentration (MIC) of this EO were assayed by the disk-diffusion method and the broth microdilution method, respectively. The preservative efficacy of T. broussonetii EO was assayed at 1% and 2% (v/w) in a topical cream formulation using a challenge test against standard-specific microorganisms recommended by the European Pharmacopoeia. Furthermore, the identified phytochemical compounds were docked for their effect on nicotinamide adenine dinucleotide phosphate oxidase, human casein kinase 1 alpha 1 (CSNK1A1), glycogen synthase kinase 3, Staphylococcus aureus nucleoside diphosphate kinase, Escherichia coli beta-ketoacyl-[acyl-carrier protein] synthase, Pseudomonas aeruginosa LasR ligand-binding domain, and sterol 14-alpha demethylase (CYP51) from Candida albicans. The ADME/toxicity was predicted by analyzing the absorption, distribution, metabolism, and excretion parameters. Results and discussion chemical composition of the EO revealed the presence of thymol (63.09%), p-cymene (11%), and γ-terpinene (8.99%) as the major components. The antioxidant assays revealed that the essential oil exhibited strong antioxidant activity, as indicated by the minimum inhibitory concentration IC50 (IC50 = 210 ± 0.3 μg/mL for the DPPH assay, IC50 = 145 ± 0.1 μg/mL for the β-carotene assay, and IC50 = 84 ± 0.21 μg/mL for the FRAP assay) when compared to quercetin and butylated hydroxytoluene (BHT) as controls. The investigated essential oil exhibited important antimicrobial activity against all the tested microorganisms, and the MICs of the EO against bacteria and fungi were 0.02%-1%. Moreover, the EO of T. broussonetii evaluated at 2% (v/w) in a cream formulation succeeded in satisfying the A criteria for preservation efficacy against S. aureus, E. coli, and Aspergillus brasiliensis but exhibited less efficacy against P. aeruginosa (1.78 log reduction in the number of CFU/g after 7 days of evaluation) and C. albicans (1.09 log reduction in the number of CFU/g after 14 days of evaluation) when compared to the synthetic preservative phenoxyethanol 1% (v/w). In silico results showed that the antimicrobial activity of T. broussonetii EO is mostly attributed to thymol, terpinen-4-ol, and aromadendrene, while the antioxidant activity is attributed to thymol. These results indicate that the EO of T. broussonetii possesses important antimicrobial and antioxidant properties and can, therefore, be used as a natural preservative ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Smahane Boukhira
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Guelmim, Morocco
- National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Fatima Ez-Zahra Amrati
- Laboratory of Cell Biology and Molecular Genetics (LBCGM), Department of Biology, Faculty of Sciences, Faculty of Sciences, Ibn Zohr University, Agadir, Souss-Massa, Morocco
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
7
|
Siddiquee T, Bhaskaran NA, Nathani K, Sawarkar SP. Empowering lung cancer treatment: Harnessing the potential of natural phytoconstituent-loaded nanoparticles. Phytother Res 2024. [PMID: 38806412 DOI: 10.1002/ptr.8241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Lung cancer, the second leading cause of cancer-related deaths, accounts for a substantial portion, representing 18.4% of all cancer fatalities. Despite advances in treatment modalities such as chemotherapy, surgery, and immunotherapy, significant challenges persist, including chemoresistance, non-specific targeting, and adverse effects. Consequently, there is an urgent need for innovative therapeutic approaches to overcome these limitations. Natural compounds, particularly phytoconstituents, have emerged as promising candidates due to their potent anticancer properties and relatively low incidence of adverse effects compared to conventional treatments. However, inherent challenges such as poor solubility, rapid metabolism, and enzymatic degradation hinder their clinical utility. To address these obstacles, researchers have increasingly turned to nanotechnology-based drug delivery systems (DDS). Nanocarriers offer several advantages, including enhanced drug stability, prolonged circulation time, and targeted delivery to tumor sites, thereby minimizing off-target effects. By encapsulating phytoconstituents within nanocarriers, researchers aim to optimize their bioavailability and therapeutic efficacy while reducing systemic toxicity. Moreover, the integration of nanotechnology with phytoconstituents allows for a nuanced understanding of the intricate molecular pathways involved in lung cancer pathogenesis. This integrated approach holds promise for modulating key cellular processes implicated in tumor growth and progression. Additionally, by leveraging the synergistic effects of phytoconstituents and nanocarriers, researchers seek to develop tailored therapeutic strategies that maximize efficacy while minimizing adverse effects. In conclusion, the integration of phytoconstituents with nanocarriers represents a promising avenue for advancing lung cancer treatment. This synergistic approach has the potential to revolutionize current therapeutic paradigms by offering targeted, efficient, and minimally toxic interventions. Continued research in this field holds the promise of improving patient outcomes and addressing unmet clinical needs in lung cancer management.
Collapse
Affiliation(s)
- Taufique Siddiquee
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Khushali Nathani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| |
Collapse
|
8
|
El Harati R, Fancello F, Multineddu C, Zara G, Zara S. Screening and In Silico Analyses of the Yeast Saccharomyces cerevisiae Σ1278b Bank Mutants Using Citral as a Natural Antimicrobial. Foods 2024; 13:1457. [PMID: 38790757 PMCID: PMC11119076 DOI: 10.3390/foods13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The antimicrobial function of citral, one of the main compounds of the essential oils (EO) of the Citrus genus, and widely used by the food industry toward spoilage yeast, was previously proven. In this study, the possible mode of action of citral against yeast cells was evaluated by using a global deletome approach. Firstly, the suitability of Saccharomyces cerevisiae Σ1278b to serve as model yeast was assessed by determining its sensitivity to citral (MIC = 0.5 μL/mL). Subsequently, the complete library of Σ1278b haploid mutants deleted in 4019 non-essential genes was screened to identify potential molecular targets of citral. Finally, the deleted genes in the 590 mutants showing increased citral resistance was analyzed with an in-silico approach (Gene Ontology). The significantly enriched GO Terms were "cytoplasm", "vacuole", and "mitochondrion" (cellular components); "catalytic activity" (molecular function); "pseudohyphal growth" (biological process). For molecular function, resistant mutants were grouped into thiosulfate sulfur transferase activity, transferase activity, and oxidoreductase activity; for cellular components, resistant mutants were grouped as: cytoplasm, intracellular organelle, membrane-bounded organelle, mitochondrion, organelle membrane, and vacuole; and finally, with regard to biological process, deleted genes were grouped as: pseudohyphal growth, mitochondrion organization, lipid metabolic process, DNA recombination and repair, and proteolysis. Interestingly, many identified genes were associated with the cellular response to oxidative stress and ROS scavenging. These findings have important implications for the development of citral-based antimicrobials and the elucidation of its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Severino Zara
- Department di Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (R.E.H.); (F.F.); (C.M.); (G.Z.)
| |
Collapse
|
9
|
Mouhoub A, Boutachfaiti RE, Petit E, Molinié R, Guendouz A, El Alaoui-Talibi Z, Koraichi SI, Delattre C, Modafar CE. Chemical extraction, characterization, and inspection of the antimicrobial and antibiofilm activities of shrimp chitosan against foodborne fungi and bacteria. World J Microbiol Biotechnol 2023; 39:338. [PMID: 37821792 DOI: 10.1007/s11274-023-03798-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Nowadays, the exploitation of biopolymers in the industrial sector has become a trend. Chitosan is considered one of the most investigated biopolymers due to its abundance and antibacterial, antifungal, and antibiofilm activities. In this work, chitosan was chemically extracted from shrimp shells. Solutions of HCl 1 M, NaOH 4 M, and NaOH 15 M were used for the demineralization, deproteinization, and deacetylation process, respectively. The utilized methods of characterization (FTIR, 1 H NMR, 13 C NMR, and SEC-MALS) revealed that the obtained chitosan has a moderate degree of deacetylation and low molecular weight (DDA = 74% and Mw = 72.14 kDa). The microdilution method and inoculation of solid medium were carried out to assess the antibiofilm action of chitosan against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus hirae, Escherichia coli, Rhizopus sp., and Aspergillus sp. which are known as foodborne microorganisms. Results showed that the produced chitosan at 1 g/L inhibits between 63.44 and 99.75% of the microbial biofilm depending on the tested strains. These promising results confirm the potential deployment of the obtained chitosan in the food industry as a replacement for synthetic antimicrobial agents.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, Faculté des Sciences et Techniques, URL-CNRST 05), Université Cadi Ayyad, Marrakech, Morocco.
| | - Redouan El Boutachfaiti
- IUT d'Amiens, UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Emmanuel Petit
- IUT d'Amiens, UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Roland Molinié
- IUT d'Amiens, UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Amine Guendouz
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, Faculté des Sciences et Techniques, URL-CNRST 05), Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, Faculté des Sciences et Techniques, URL-CNRST 05), Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 7500, Paris, France
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, Faculté des Sciences et Techniques, URL-CNRST 05), Université Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
10
|
Liu S, Zhao C, Cao Y, Li Y, Zhang Z, Nie D, Tang W, Li Y. Comparison of Chemical Compositions and Antioxidant Activity of Essential Oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus. Molecules 2023; 28:5051. [PMID: 37446712 DOI: 10.3390/molecules28135051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to compare the antioxidant activity of litsea cubeba oil (LCO), cinnamon oil (CO), anise oil (AO), and eucalyptus oil (EUC) in vitro. The chemical compositions of the essential oils (EOs) were analyzed using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of the four EOs was evaluated through scavenging DPPH free radicals, chelating Fe2+, scavenging hydroxyl free radicals, and inhibiting yolk lipid peroxidation. The results showed that the major compounds found in LCO, CO, AO, and EUC are citral (64.29%), cinnamaldehyde (84.25%), anethole (78.51%), and 1,8-cineole (81.78%), respectively. The four EOs all had certain antioxidant activity. The ability to scavenge DPPH radical was ranked in the order of LCO > CO > AO > EUC. The hydroxyl radical scavenging ability was ranked in the order of EUC > CO > LCO > AO. The chelating Fe2+ capacity was ranked in the order of EUC > AO > CO > LCO. The yolk lipid peroxidation inhibition ability was ranked in the order of CO > AO > EUC > LCO. In different antioxidant activity assays, the antioxidant activity of the EOs was different. It was speculated that the total antioxidant activity of an EO may be the result of the joint action of different antioxidant capacities.
Collapse
Affiliation(s)
- Shutian Liu
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Chen Zhao
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yuwei Cao
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yan Li
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Zhuo Zhang
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Dechao Nie
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Weixuan Tang
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yanling Li
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| |
Collapse
|
11
|
Petretto GL, Vacca G, Addis R, Pintore G, Nieddu M, Piras F, Sogos V, Fancello F, Zara S, Rosa A. Waste Citrus limon Leaves as Source of Essential Oil Rich in Limonene and Citral: Chemical Characterization, Antimicrobial and Antioxidant Properties, and Effects on Cancer Cell Viability. Antioxidants (Basel) 2023; 12:1238. [PMID: 37371968 DOI: 10.3390/antiox12061238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated chemical composition, cytotoxicity in normal and cancer cells, and antimicrobial and antioxidant activity of the essential oil (EO) isolated by hydrodistillation from the discarded leaves of lemon (Citrus limon) plants cultivated in Sardinia (Italy). The volatile chemical composition of lemon leaf EO (LLEO) was analyzed with gas chromatography-mass spectrometry combined with flame ionization detection (GC/MS and GC/FID). The most abundant component of LLEO was limonene (260.7 mg/mL), followed by geranial (102.6 mg/mL) and neral (88.3 mg/mL). The antimicrobial activity of LLEO was tested using eight bacterial strains and two types of yeasts by a microdilution broth test. Candida albicans showed the greatest susceptibility (MIC = 0.625 μL/mL) and Listeria monocytogenes and Staphylococcus aureus were inhibited at low LLEO concentration (MIC values from 2.5 to 5 μL/mL). The C. limon leaf EO displayed radical scavenging ability (IC50 value of 10.24 mg/mL) in the 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) assay. Furthermore, the LLEO impact on cell viability was explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in cancer HeLa cells, A375 melanoma cell line, normal fibroblasts (3T3 cells), and keratinocytes (HaCaT cells). LLEO, at 24 h of incubation, significantly reduced viability from 25 μM in Hela cells (33% reduction) and A375 cells (27%), greatly affecting cell morphology, whereas this effect was found from 50 μM on 3T3 fibroblasts and keratinocytes. LLEO's pro-oxidant effect was also established in HeLa cells by 2',7'-dichlorodihydrofluorescein diacetate assay.
Collapse
Affiliation(s)
- Giacomo Luigi Petretto
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Giuseppe Vacca
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Roberta Addis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Giorgio Pintore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - Franca Piras
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - Francesco Fancello
- Department of Agriculture, University of Sassari, Viale Italia, 07100 Sassari, Italy
| | - Severino Zara
- Department of Agriculture, University of Sassari, Viale Italia, 07100 Sassari, Italy
| | - Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| |
Collapse
|
12
|
Silva BN, Bonilla-Luque OM, Possas A, Ezzaky Y, Elmoslih A, Teixeira JA, Achemchem F, Valero A, Cadavez V, Gonzales-Barron U. Meta-Analysis of In Vitro Antimicrobial Capacity of Extracts and Essential Oils of Syzygium aromaticum, Citrus L. and Origanum L.: Contrasting the Results of Different Antimicrobial Susceptibility Methods. Foods 2023; 12:foods12061265. [PMID: 36981191 PMCID: PMC10048651 DOI: 10.3390/foods12061265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Diffusion methods, including agar disk-diffusion and agar well-diffusion, as well as dilution methods such as broth and agar dilution, are frequently employed to evaluate the antimicrobial capacity of extracts and essential oils (EOs) derived from Origanum L., Syzygium aromaticum, and Citrus L. The results are reported as inhibition diameters (IDs) and minimum inhibitory concentrations (MICs), respectively. In order to investigate potential sources of variability in antimicrobial susceptibility testing results and to assess whether a correlation exists between ID and MIC measurements, meta-analytical regression models were built using in vitro data obtained through a systematic literature search. The pooled ID models revealed varied bacterial susceptibilities to the extracts and in some cases, the plant species and methodology utilised impacted the measurements obtained (p < 0.05). Lemon and orange extracts were found to be most effective against E. coli (24.4 ± 1.21 and 16.5 ± 0.84 mm, respectively), while oregano extracts exhibited the highest level of effectiveness against B. cereus (22.3 ± 1.73 mm). Clove extracts were observed to be most effective against B. cereus and demonstrated the general trend that the well-diffusion method tends to produce higher ID (20.5 ± 1.36 mm) than the disk-diffusion method (16.3 ± 1.40 mm). Although the plant species had an impact on MIC, there is no evidence to suggest that the methodology employed had an effect on MIC (p > 0.05). The ID–MIC model revealed an inverse correlation (R2 = 47.7%) and highlighted the fact that the extract dose highly modulated the relationship (p < 0.0001). The findings of this study encourage the use of extracts and EOs derived from Origanum, Syzygium aromaticum, and Citrus to prevent bacterial growth. Additionally, this study underscores several variables that can impact ID and MIC measurements and expose the correlation between the two types of results.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga María Bonilla-Luque
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Arícia Possas
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - Abdelkhaleq Elmoslih
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - José António Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Lab., Agadir Superior School of Technology, Ibn Zohr University, Agadir 80150, Morocco
| | - Antonio Valero
- Departamento de Bromatología y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.N.S.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: ; Tel.: +351-273-303-325
| |
Collapse
|
13
|
Ceccato-Antonini SR, Shirahigue LD, Varano A, da Silva BN, Brianti CS, de Azevedo FA. Citrus essential oil: would it be feasible as antimicrobial in the bioethanol industry? Biotechnol Lett 2023; 45:1-12. [PMID: 36333539 DOI: 10.1007/s10529-022-03320-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Essential oils (EOs) extracted from Citrus peels contain 85%-99% volatile components (a mixture of monoterpenes, sesquiterpenes, and their oxygenated derivatives) and 1%-15% non-volatile compounds. Citrus EOs have been long known for their antimicrobial properties, owing to which these EOs have a diverse range of applications. However, no studies have reported the applicability of Citrus EOs for the control of bacterial and yeast contaminants in the bioethanol industry. In this regard, the present review aimed to explore the feasibility of Citrus EOs in this industry. The Web of Science database was searched for reports that described the association of Citrus EOs with the most common microorganisms in the bioethanol industry to evaluate the efficacy of these EOs as antimicrobial agents in this context. The objective of the review was to suggest a novel antimicrobial that could replace sulfuric acid and antibiotics as the commonly used antimicrobial agents in the bioethanol industry. Citrus EOs exhibit antibacterial activity against Lactobacillus, which is the main bacterial genus that contaminates this fermentation process. The present report also confirms the selective action of these EOs on the contaminating yeasts and not/less on ethanol-producing yeast Saccharomyces cerevisiae, however further studies should be conducted to investigate the effects of Citrus EOs in yeast-bacterium co-culture.
Collapse
Affiliation(s)
- Sandra Regina Ceccato-Antonini
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil.
| | - Ligianne Din Shirahigue
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Amanda Varano
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Bianca Novaes da Silva
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Carina Sawaya Brianti
- Dept Tecnologia Agroindustrial e Socio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera Km 174, Araras, SP, 13600-970, Brasil
| | - Fernando Alves de Azevedo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Via Anhanguera Km 158, Cordeirópolis, SP, 13490-970, Brasil
| |
Collapse
|
14
|
Julaeha E, Nurzaman M, Wahyudi T, Nurjanah S, Permadi N, Anshori JA. The Development of the Antibacterial Microcapsules of Citrus Essential Oil for the Cosmetotextile Application: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228090. [PMID: 36432192 PMCID: PMC9693560 DOI: 10.3390/molecules27228090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
Essential oils (EOs) obtained from the Citrus genus were reported to exhibit good antimicrobial activity. Therefore, they can potentially be applied in daily necessities such as textile sectors as antibacterial functional fabric products. However, a packaging technique to retain such volatile and labile active substances is compulsory. In particular, microencapsulation was found to be a common coating technique employed to protect EOs from the effects of light, heat, humidity, stability, and controlled release of active substances. Various microencapsulation techniques have been introduced, but the most widely used method is complex coacervation, as it is simple, inexpensive, and capable of snaring high essential oils. Hence, this review focused on the microencapsulation of the most consumable citrus EOs with complex coacervation methods and their immobilization on commonly carried-out fabrics. In addition, it also discusses the isolation methods of the EOs, their chemical composition, and the mechanism of antibacterial action.
Collapse
Affiliation(s)
- Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Tatang Wahyudi
- National Research and Innovation Agency, Bandung 40272, Indonesia
| | - Sarifah Nurjanah
- Department of Agriculture Engineering, Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nandang Permadi
- Study Program of Biotechnology, Postgraduate School, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Jamaludin Al Anshori
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Correspondence:
| |
Collapse
|
15
|
Chemical characterization, antioxidant and cytotoxic activity of hydroalcoholic extract from the albedo and flavedo of Citrus limon var. pompia Camarda. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
AbstractDue to the high nutritional value as well as the appreciated sensory characteristic Citrus crop is one of the most popular fruits over the world. Albedo and flavedo are commonly discarded as waste and could represent an important by-product of food industry. In a circular economy contest we carried out a characterization of albedo and flavedo of Citrus limon var pompia (pompia) followed by the evaluation of antioxidant potential and cytotoxic activity. The chemical analysis showed the presence of several functional ingredients such as the flavanones, naringin, neohesperidin, nereriocitrin and hesperidin while quinic acid resulted the main phenolic acid detected. The flavedo extract exerted a complete inhibition of the cholesterol oxidative process from 25 μg of extract. Pompia extracts showed an inhibition of lipid oxidation in the β-carotene-linoleate system with an activity equivalent to about 0.31% (albedo) and 0.34% (flavedo) of the BHT activity, while the antiradical activity resulted equivalent to that of 62.90% (albedo) and 60.72% (flavedo) of the trolox activity. Finally, all extracts did not show any cytotoxic effect on differentiated Caco-2 cells by the AlamarBlue assay while exhibited, by MTT assay, a significant decrease in colon cancer Caco-2 cell viability.
Collapse
|
16
|
Li Y, Liu S, Zhao C, Zhang Z, Nie D, Tang W, Li Y. The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules 2022; 27:molecules27207044. [PMID: 36296637 PMCID: PMC9607008 DOI: 10.3390/molecules27207044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing concerns over the use of antimicrobial growth promoters in animal production has prompted the need to explore the use of natural alternatives such as phytogenic compounds and probiotics. Citrus EOs have the potential to be used as an alternative to antibiotics in animals. The purpose of this research was to study the antibacterial and antioxidant activities of five citrus EOs, grapefruit essential oil (GEO), sweet orange EO (SEO), bergamot EO (BEO), lemon EO (LEO) and their active component d-limonene EO (DLEO). The chemical composition of EOs was analyzed by gas chromatography–mass spectrometry (GC-MS). The antibacterial activities of the EOs on three bacteria (Escherichia coli, Salmonella and Lactobacillus acidophilus) were tested by measuring the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and inhibition zone diameter (IZD). The antioxidant activities of EOs were evaluated by measuring the free radical scavenging activities of DPPH and ABTS. We found that the active components of the five citrus EOs were mainly terpenes, and the content of d-limonene was the highest. The antibacterial test showed that citrus EOs had selective antibacterial activity, and the LEO had the best selective antibacterial activity. Similarly, the LEO had the best scavenging ability for DPPH radicals, and DLEO had the best scavenging ability for ABTS. Although the main compound of the five citrus EOs was d-limonene, the selective antibacterial and antioxidant activity of them might not be primarily attributed to the d-limonene, but some other compounds’ combined action.
Collapse
|
17
|
Li X, Chen F, Wang X, Xiong Y, Liu Z, Lin Y, Ni K, Yang F. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. BIORESOURCE TECHNOLOGY 2022; 360:127429. [PMID: 35667532 DOI: 10.1016/j.biortech.2022.127429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In order to increase the utilization of herbal residues, realize efficient utilization of resources, the bacterial community and anaerobic fermentation characteristics of alfalfa ensiling treated with 36 kinds of herbal residues were studied. All the herbal residues improved the anaerobic fermentation quality in different degrees, indicated by lower pH, NH3-N and butyric acid concentrations. However, the contents of lactic and acetic acids varied widely in silage with different herbal residues. Pearson's correlation analysis showed that the improved fermentation quality was closely associated with the variation of lactic acid bacteria community. Consequently, the herbal residues could improve anaerobic fermentation quality by stimulating desirable Lactobacillus species and inhibiting undesirable microbes. This study provides new insights for efficient utilization of herbal residues.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fei Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xuekai Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Liu
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
18
|
Mouhoub A, Guendouz A, Belkamel A, El Alaoui Talibi Z, Ibnsouda Koraichi S, El Modafar C, Delattre C. Assessment of the antioxidant, antimicrobial and antibiofilm activities of essential oils for potential application of active chitosan films in food preservation. World J Microbiol Biotechnol 2022; 38:179. [PMID: 35941332 DOI: 10.1007/s11274-022-03363-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
In the food industry, the development of microbial biofilms is a serious problem that leads to the contamination and deterioration of food products. To overcome that, our aim consists of searching for natural antimicrobial and non-toxic compounds (essential oils EOs), which might be used alone or adsorbed on natural biopolymer films (chitosan). In this work, the antioxidant activity of eight EOs was evaluated by DPPH radical-scavenging method while their antibacterial activity was determined by diffusion on agar and microdilution methods. Among all tested EOs, Eugenia caryophyllus, Cinnamomum zeylanicum Blume and Thymus satureioides Cosson showed high antioxidant activities at the concentration of 25.6 mg/mL, with respective values of (86.26%, 81.75%, and 76%), and strong antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Enterococcus hirae, with (MIC) values ≤ 4 µL/mL. At the concentration of 1 µL/mL, these EOs tested alone, showed values of antibiofilm-forming activity ranging from 79.43 to 99.33% and from 44.18 to 94.17%, when they are adsorbed onto chitosan film. These promising results confirm that these three EOs have a good potential for an eventual application in the food industry, as antimicrobial and antioxidant agents, or as active biodegradable food packaging, if combined with chitosan.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Amine Guendouz
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Abdeljalil Belkamel
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France. .,Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
19
|
Characterization, microstructure, and spectroscopic study of optimized sodium caseinate–sorbitol active biofilms with citral microencapsulate. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04345-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Borotová P, Galovičová L, Vukovic NL, Vukic M, Kunová S, Hanus P, Kowalczewski PŁ, Bakay L, Kačániová M. Role of Litsea cubeba Essential Oil in Agricultural Products Safety: Antioxidant and Antimicrobial Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:1504. [PMID: 35684278 PMCID: PMC9182909 DOI: 10.3390/plants11111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The essential oil from Litsea cubeba (LCEO) has good antioxidant, antimicrobial, anti-insect properties, which gives it the potential for use as a natural additive to food resources and food products in order to prevent spoilage and extend shelf life. In this study the biological activity related to food preservation was observed. The main volatile organic compounds were geranial (39.4%), neral (29.5%), and limonene (14.3%). Antioxidant activity was 30.9%, which was equal to 167.94 µg of Trolox per mL of sample. Antimicrobial activity showed the strongest inhibition against Serratia marcescens by disk diffusion method and minimum inhibitory concentrations MIC 50 and MIC 90 were the lowest for Micrococcus luteus with values 1.46 and 3.52 µL/mL, respectively. Antimicrobial activity of the LCEO vapor phase showed strong inhibition of microorganisms on apples, pears, potatoes, and kohlrabies. Over 50% of gram-positive and gram-negative bacteria and yeasts were inhibited by a concentration of 500 µL/mL. The inhibition of microorganisms was concentration dependent. Anti-insect activity was also strong, with 100% lethality of Pyrrhocoris apterus at a concentration of 25%. These results suggest that LCEO could be potentially used as a food preservative.
Collapse
Affiliation(s)
- Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lucia Galovičová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Simona Kunová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Paweł Hanus
- Department of Food Technology and Human Nutrition, Institute of Food and Nutrition Technology, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznan, Poland;
| | - Ladislav Bakay
- Department of Planting Design and Maintenance, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza, 35601 Rzeszow, Poland
| |
Collapse
|
21
|
Tagnaout I, Zerkani H, Hadi N, El Moumen B, El Makhoukhi F, Bouhrim M, Al-Salahi R, Nasr FA, Mechchate H, Zair T. Chemical Composition, Antioxidant and Antibacterial Activities of Thymus broussonetii Boiss and Thymus capitatus (L.) Hoffmann and Link Essential Oils. PLANTS 2022; 11:plants11070954. [PMID: 35406936 PMCID: PMC9003487 DOI: 10.3390/plants11070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
Thymus capitatus and Thymus broussonnetii are two Moroccan endemic medicinal plants used traditionally by the local population. The present study aims to investigate their essential oil chemical composition, antioxidant and antibacterial activities. The chemical composition of the essential oils was determined using the GC-MS analysis, the antioxidant activity assessed using DPPH and FRAP methods while the antimicrobial activity was evaluated against nine bacteria species tested (Enterococcus faecalis, Serratia fonticola, Acinetobacter baumannii, Klebsiella oxytoca, sensitive Klebsiella pneumoniae, sensitive Escherichia coli, resistant Escherichia coli, resistant Staphylococcus aureus and Enterobacter aerogenes). The major identified compounds of T. capitatus essential oil where carvacrol (75%) and p-cymene (10.58%) while carvacrol (60.79%), thymol (12.9%), p-cymene (6.21%) and γ-terpinene (4.47%) are the main compounds in T. broussonnetii essential oil. The bioactivity of the essential oils of the two species of thyme was explained by their richness in oxygenated monoterpenes known for their great effectiveness with an IC50 of 3.48 ± 0.05 and 4.88 ± 0.04 μL/mL and EC50 of 0.12 ± 0.01 and 0.20 ± 0.02 μL/mL in the DPPH and FRAP assays, respectively, with an important antibacterial activity. These results encourage the use of these plants as a source of natural antioxidants, and antibacterial additives, to protect food from oxidative damage and to eliminate bacteria that are responsible for nosocomial infections.
Collapse
Affiliation(s)
- Imane Tagnaout
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (H.Z.); (N.H.); (B.E.M.); (F.E.M.); (M.B.); (T.Z.)
- Correspondence: (I.T.); (H.M.)
| | - Hannou Zerkani
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (H.Z.); (N.H.); (B.E.M.); (F.E.M.); (M.B.); (T.Z.)
| | - Nadia Hadi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (H.Z.); (N.H.); (B.E.M.); (F.E.M.); (M.B.); (T.Z.)
| | - Bouchra El Moumen
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (H.Z.); (N.H.); (B.E.M.); (F.E.M.); (M.B.); (T.Z.)
| | - Fadoua El Makhoukhi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (H.Z.); (N.H.); (B.E.M.); (F.E.M.); (M.B.); (T.Z.)
- Laboratoire Centre Eau, Ressources Naturelles, Environnement Et Développement Durable, Faculty of Sciences, University Mohammed V, Rabat B.P. 8007, Rabat 10000, Morocco
| | - Mohamed Bouhrim
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (H.Z.); (N.H.); (B.E.M.); (F.E.M.); (M.B.); (T.Z.)
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fahd A. Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hamza Mechchate
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Correspondence: (I.T.); (H.M.)
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco; (H.Z.); (N.H.); (B.E.M.); (F.E.M.); (M.B.); (T.Z.)
| |
Collapse
|
22
|
Varano A, Shirahigue LD, Azevedo FA, Altenhofen da Silva M, Ceccato-Antonini SR. Mandarin essential oil as an antimicrobial in ethanolic fermentation: Effects on Limosilactobacillus fermentum and Saccharomyces cerevisiae. Lett Appl Microbiol 2022; 74:981-991. [PMID: 35247276 DOI: 10.1111/lam.13690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
The antibacterial activity of citrus essential oils (EOs) in the context of combating Limosilactobacillus fermentum, one of the most important bacterial contaminants in the bioethanol production industry, has never been explored previously. Industrial processes usually utilize sulfuric acid for cell treatment to decrease bacterial contamination. However, due to the hazardous nature of sulfuric acid, an alternative to it is highly desirable. Therefore, in the present study, the efficacy of Fremont IAC 543 mandarin EO against a strain of L. fermentum (ATCC® 9338™) was evaluated under proliferative/non-proliferative conditions, in both pure culture and co-culture with an industrial strain of Saccharomyces cerevisiae. The mandarin EO exhibited higher effectiveness against L. fermentum compared to that against S. cerevisiae under non-proliferative conditions (added to water rather than to culture medium). At the concentration of 0.05%, the EO was as effective as the acid solution with pH 2.0 in reducing the count of L. fermentum almost 5 log CFU mL-1 cycles, while the concentration of 0.1% led to the complete loss of bacterial culturability. When L. fermentum was co-cultured with S. cerevisiae, the efficacy of the EO against the bacterial strain was reduced. However, despite this reduced efficacy in co-culture, mandarin EO may be considered effective in combating L. fermentum and could be applied in processes where this bacterium proves to be unfavorable and does not interact with S. cerevisiae.
Collapse
Affiliation(s)
- A Varano
- Dept. Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera km 174, 13600-970, Araras, SP, Brasil
| | - L D Shirahigue
- Dept. Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera km 174, 13600-970, Araras, SP, Brasil
| | - F A Azevedo
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Via Anhanguera km 158, 13490-970, Cordeirópolis, SP, Brasil
| | - M Altenhofen da Silva
- Dept. Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera km 174, 13600-970, Araras, SP, Brasil
| | - S R Ceccato-Antonini
- Dept. Tecnologia Agroindustrial e Socioeconomia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Campus de Araras, Via Anhanguera km 174, 13600-970, Araras, SP, Brasil
| |
Collapse
|
23
|
Li X, Chen F, Xu J, Guo L, Xiong Y, Lin Y, Ni K, Yang F. Exploring the Addition of Herbal Residues on Fermentation Quality, Bacterial Communities, and Ruminal Greenhouse Gas Emissions of Paper Mulberry Silage. Front Microbiol 2022; 12:820011. [PMID: 35222315 PMCID: PMC8874217 DOI: 10.3389/fmicb.2021.820011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
This study aimed to investigate the influence of herbal residues on the fermentation quality and ruminal fermentation of paper mulberry silage. Clove, mint, and purple perilla residues were used as additives. Silage treatments were designed as control (no additives), 5% of clove, 5% of mint, and 5% of purple perilla. After 21 and 75 days of fermentation, the fermentation characteristics, bacterial communities, and ruminal greenhouse gas emissions in vitro incubation of paper mulberry were analyzed. The results showed that the used herbal residues could reduce the protein losses in paper mulberry silage based on the lower contents of ammoniacal nitrogen and nonprotein nitrogen. Compared with control, higher lactic acid and propionic acid contents were observed in the silages treated with mint and purple perilla but with a higher acetic acid content in clove treatment. Real-time sequencing technology (single-molecule real-time) revealed that Lactobacillus was the dominant bacteria in all silages at the genus level, whereas the bacterial abundance in the treated silages differed greatly from control at the species level. Lactobacillus hammesii abundance was the highest in control, whereas Lactobacillus acetotolerans was the first predominant in the treated silages. All the additives enhanced the digestibility of in vitro dry matter significantly. However, purple perilla decreased the production of total gas, methane, and carbon dioxide. The findings discussed earlier suggested that herbal residues have potential effects in improving fermentation quality, reducing protein loss, and modulating greenhouse gas emissions in the rumen of paper mulberry silage by shifting bacterial community composition.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fei Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Jingjing Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Linna Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Beijing Sure Academy of Biosciences, Beijing, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Kuikui Ni,
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Fuyu Yang,
| |
Collapse
|
24
|
Clery RA, Armendi A, Franco V, Furrer S, Genereux JC, Kahn TL, Koshiro K. Chemical Diversity of Citrus Leaf Essential Oils. Chem Biodivers 2022; 19:e202100963. [DOI: 10.1002/cbdv.202100963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Robin A Clery
- Givaudan Schweiz AG: Givaudan Suisse SA Science & Technology Kemptpark 50 8310 Kemptthal SWITZERLAND
| | - Anjo Armendi
- University of California Riverside Chemistry 501 Big Springs Road 92521 Riverside UNITED STATES
| | - Veronica Franco
- University of California Riverside Chemistry 501 Big Springs Road 92521 Riverside UNITED STATES
| | - Stefan Furrer
- Givaudan Flavors Corp Cincinnati Science & Technology 1199 Edison Drive 45216 Cincinnati UNITED STATES
| | - Joseph C. Genereux
- University of California Riverside Chemistry 501 Big Springs Road 92521 Riverside UNITED STATES
| | - Tracy L. Kahn
- University of California Riverside Department of Botany and Plant Sciences Department of Botany and Plant SciencesUniversity of California at Riverside 92521 Riverside UNITED STATES
| | - Kevin Koshiro
- University of California Riverside Chemistry 501 Big Springs Road 92521 Riverside UNITED STATES
| |
Collapse
|
25
|
De-Montijo-Prieto S, Razola-Díaz MDC, Gómez-Caravaca AM, Guerra-Hernandez EJ, Jiménez-Valera M, Garcia-Villanova B, Ruiz-Bravo A, Verardo V. Essential Oils from Fruit and Vegetables, Aromatic Herbs, and Spices: Composition, Antioxidant, and Antimicrobial Activities. BIOLOGY 2021; 10:1091. [PMID: 34827085 PMCID: PMC8615279 DOI: 10.3390/biology10111091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022]
Abstract
In the field of food preservation, encapsulated Essential Oils (EOs) could be the best non-toxic and eco-friendly tool for food preservative applications substituting the chemicals ones that have several disadvantages for the environment and health. Thirteen commercial EOs from plants, fruits, and vegetables were characterized by GC-MS. The antioxidant activity was measured by DPPH and ABTS techniques. Antimicrobial activity was assessed by agar well-diffusion method and the Minimum Inhibitory Concentration (MIC) by agar dilution method against six bacteria, Candida albicans, and Botrytis cinerea. All the EOs tested have demonstrated antioxidant activity in the range of IC50 0.01-105.32 mg/mL. Between them, cinnamon EOs were the best, followed by oregano and thyme EOs. Fennel EO showed the lowest radical scavenging. MIC values ranged from 0.14 to 9 mg/mL. C. cassia, thyme, and oregano EOs were the most effective against the bacterial species tested, and the yeast C. albicans. On the contrary, citric fruit EOs showed low or no inhibition against most bacterial strains. The percentages of inhibition of mycelia growth of B. cinerea ranged from 3.4 to 98.5%. Thyme, oregano, mint, and fennel EOs showed the highest inhibition.
Collapse
Affiliation(s)
- Soumi De-Montijo-Prieto
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n., 18071 Granada, Spain
| | - Eduardo Jesús Guerra-Hernandez
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
| | - María Jiménez-Valera
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - Belén Garcia-Villanova
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (S.D.-M.-P.); (M.J.-V.); (A.R.-B.)
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (M.d.C.R.-D.); (E.J.G.-H.); (B.G.-V.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| |
Collapse
|
26
|
Wu K, Jin R, Bao X, Yu G, Yi F. Potential roles of essential oils from the flower, fruit and leaf of Citrus medica L. var. sarcodactylis in preventing spoilage of Chinese steamed bread. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Takahashi H, Nakamura A, Fujino N, Sawaguchi Y, Sato M, Kuda T, Kimura B. Evaluation of the antibacterial activity of allyl isothiocyanate, clove oil, eugenol and carvacrol against spoilage lactic acid bacteria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.653420] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food industries are facing a great challenge due to contamination of food products with different microbes such as bacteria, fungi, viruses, parasites, etc. These microbes deteriorate food items by producing different toxins during pre- and postharvest processing. Mycotoxins are one of the most potent and well-studied toxic food contaminants of fungal origin, causing a severe health hazard to humans. The application of synthetic chemicals as food preservatives poses a real scourge in the present scenario due to their bio-incompatibility, non-biodegradability, and environmental non-sustainability. Therefore, plant-based antimicrobials, including essential oils, have developed cumulative interest as a potential alternative to synthetic preservatives because of their ecofriendly nature and generally recognized as safe status. However, the practical utilization of essential oils as an efficient antimicrobial in the food industry is challenging due to their volatile nature, less solubility, and high instability. The recent application of different delivery strategies viz. nanoencapsulation, active packaging, and polymer-based coating effectively addressed these challenges and improved the bioefficacy and controlled release of essential oils. This article provides an overview of essential oils for the preservation of stored foods against bacteria, fungi, and mycotoxins, along with the specialized mechanism of action and technological advancement by using different delivery systems for their effective application in food and agricultural industries smart green preservative.
Collapse
|
29
|
Ambrosio CMS, Diaz-Arenas GL, Agudelo LPA, Stashenko E, Contreras-Castillo CJ, da Gloria EM. Chemical Composition and Antibacterial and Antioxidant Activity of a Citrus Essential Oil and Its Fractions. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102888. [PMID: 34068115 PMCID: PMC8152727 DOI: 10.3390/molecules26102888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022]
Abstract
Essential oils (EOs) from Citrus are the main by-product of Citrus-processing industries. In addition to food/beverage and cosmetic applications, citrus EOs could also potentially be used as an alternative to antibiotics in food-producing animals. A commercial citrus EO—Brazilian Orange Terpenes (BOT)—was fractionated by vacuum fractional distillation to separate BOT into various fractions: F1, F2, F3, and F4. Next, the chemical composition and biological activities of BOT and its fractions were characterized. Results showed the three first fractions had a high relative amount of limonene (≥10.86), even higher than the whole BOT. Conversely, F4 presented a larger relative amount of BOT’s minor compounds (carvone, cis-carveol, trans-carveol, cis-p-Mentha-2,8-dien-1-ol, and trans-p-Mentha-2,8-dien-1-ol) and a very low relative amount of limonene (0.08–0.13). Antibacterial activity results showed F4 was the only fraction exhibiting this activity, which was selective and higher activity on a pathogenic bacterium (E. coli) than on a beneficial bacterium (Lactobacillus sp.). However, F4 activity was lower than BOT. Similarly, F4 displayed the highest antioxidant activity among fractions (equivalent to BOT). These results indicated that probably those minor compounds that detected in F4 would be more involved in conferring the biological activities for this fraction and consequently for the whole BOT, instead of the major compound, limonene, playing this role exclusively.
Collapse
Affiliation(s)
- Carmen M. S. Ambrosio
- Dirección de Investigación y Desarrollo, Universidad Privada del Norte (UPN), 13001 Trujillo, Peru
- Correspondence: (C.M.S.A.); (E.M.d.G.)
| | - Gloria L. Diaz-Arenas
- Research Center of Excellence CENIVAM, CIBIMOL, Industrial University of Santander, 680002 Bucaramanga, Colombia; (G.L.D.-A.); (E.S.)
| | | | - Elena Stashenko
- Research Center of Excellence CENIVAM, CIBIMOL, Industrial University of Santander, 680002 Bucaramanga, Colombia; (G.L.D.-A.); (E.S.)
| | - Carmen J. Contreras-Castillo
- Department of Agri-Food Industry, Food and Nutrition, ESALQ, University of São Paulo, Piracicaba, 13418-900 São Paulo, Brazil;
| | - Eduardo M. da Gloria
- Department of Biological Science, Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, 13418-900 São Paulo, Brazil
- Correspondence: (C.M.S.A.); (E.M.d.G.)
| |
Collapse
|
30
|
Yoplac I, Vargas L, Robert P, Hidalgo A. Characterization and antimicrobial activity of microencapsulated citral with dextrin by spray drying. Heliyon 2021; 7:e06737. [PMID: 33898839 PMCID: PMC8056413 DOI: 10.1016/j.heliyon.2021.e06737] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Aim of this work was to evaluate the antimicrobial activity and physical characteristics of citral microencapsulated with dextrin (Dx) by spray drying. The encapsulation was optimized using response surface methodology (RSM), maximizing yield and efficiency, considering as independent variables the citral:Dx ratio (1:5 and 1:20) and the inlet air temperature (120 and 200 °C). Yield and efficiency under optimal conditions were 71.9% and 99.9%, respectively. Antimicrobial activity against Escherichia coli, Salmonella enterica, Staphylococcus aureus and Bacillus cereus of the citral microparticles obtained under optimal conditions and of free citral was evaluated using the disk diffusion methodology. Both compounds showed a broad spectrum inhibitory effect, being Escherichia coli and Bacillus cereus the most sensitive microorganisms. The inhibition ratio varied between 55 and 75%, and the antibacterial activity was maintained after microencapsulation. The minimum inhibitory concentrations of free citral were above 0.8 mg/mL. The optimal citral microparticles showed acceptable physicochemical characteristics and broad-spectrum antimicrobial activity. Polymer and emulsifier used in microencapsulation protected the functional activity of citral, thus suggesting that these microparticles could be used in the design of antimicrobial food systems to extend the shelf life of perishable foods.
Collapse
Affiliation(s)
- Ives Yoplac
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru.,Escuela de Posgrado, Programa Doctoral en Ciencia de Alimentos, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| | - Luis Vargas
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 12, Peru
| | - Paz Robert
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 133, Santiago, Chile
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
31
|
Antimicrobial Activity and Chemical Characterization of a Non-Polar Extract of Saffron Stamens in Food Matrix. Foods 2021; 10:foods10040703. [PMID: 33810285 PMCID: PMC8066818 DOI: 10.3390/foods10040703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
The production of saffron spice generates large quantities of plant by-products: over 90% of the plant material collected is discarded, and a consideration fraction of this waste is plant stamens. This work investigated the chemical composition and the antimicrobial activities of the non-polar fraction extracted from four different saffron flower stamens. The chemical composition of ethereal extracts of the saffron stamens was qualitatively assessed by means of gas-chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. These analyses revealed ethereal extracts to possess a high polyunsaturated fatty acid content. In vitro antibacterial activity of stamen extracts showed no large differences between Gram-positive and Gram-negative bacteria in terms of minimal inhibitory concentration (MIC). In food matrix microbial analysis of the bacterial strains belonging to the main foodborne pathogen species, including Staphylococcus aureus DSM 20231, Escherichia coli DSM 30083, and Listeria monocytogenes DSM 20600, using low-fat UHT milk, revealed a statistically significant reduction in the number of cells (particularly for E. coli and S. aureus with a complete elimination of the population of the two target bacteria following incubation in diethyl ether extracts of saffron stamen (DES) at high concentrations tested, both at 37 °C and 6 °C (for 48 h and 7 days, respectively). A synergic effect was observed when the pathogens were incubated at 6 °C with DES. This work shows these by-products to be excellent sources of bioactive compounds, which could be exploited in high-added-value products, such as food, cosmetics, and drugs.
Collapse
|
32
|
Entrapment of Citrus limon var. pompia Essential Oil or Pure Citral in Liposomes Tailored as Mouthwash for the Treatment of Oral Cavity Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090216. [PMID: 32872140 PMCID: PMC7557837 DOI: 10.3390/ph13090216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
This work aimed at developing a mouthwash based on liposomes loading Citrus limon var. pompia essential oil or citral to treat oropharyngeal diseases. Vesicles were prepared by dispersing phosphatidylcholine and pompia essential oil or citral at increasing amounts (12, 25 and 50 mg/mL) in water. Transparent vesicle dispersions were obtained by direct sonication avoiding the use of organic solvents. Cryogenic transmission electron microscopy (cryo-TEM) confirmed the formation of unilamellar, spherical and regularly shaped vesicles. Essential oil and citral loaded liposomes were small in size (~110 and ~100 nm, respectively) and negatively charged. Liposomes, especially those loading citral, were highly stable as their physico-chemical properties did not change during storage. The formulations were highly biocompatible against keratinocytes, were able to counteract the damages induced in cells by using hydrogen peroxide, and able to increase the rate of skin repair. In addition, liposomes loading citral at higher concentrations inhibited the proliferation of cariogenic bacterium.
Collapse
|
33
|
Denaro M, Smeriglio A, Xiao J, Cornara L, Burlando B, Trombetta D. New insights into
Citrus
genus: From ancient fruits to new hybrids. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (ChiBioFarAm) University of Messina Messina Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (ChiBioFarAm) University of Messina Messina Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Taipa Macau
| | - Laura Cornara
- Department of Earth, Environment, and Life Sciences (DISTAV) University of Genova Genova Italy
| | - Bruno Burlando
- Department of Pharmacy (DIFAR) University of Genova Genova Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (ChiBioFarAm) University of Messina Messina Italy
| |
Collapse
|
34
|
Barberis A, Deiana M, Spissu Y, Azara E, Fadda A, Serra PA, D’hallewin G, Pisano M, Serreli G, Orrù G, Scano A, Steri D, Sanjust E. Antioxidant, Antimicrobial, and Other Biological Properties of Pompia Juice. Molecules 2020; 25:molecules25143186. [PMID: 32668641 PMCID: PMC7397052 DOI: 10.3390/molecules25143186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pompia is a Citrus species belonging to Sardinian endemic biodiversity. Health benefits were attributed to its flavedo rind extracts and essential oils while the juice qualities have never been investigated. In this paper, the antioxidant, antimicrobial, and other biological properties of Pompia juice were studied. A combined LCMS/electrochemical/biological approach was used to clarify a still debated phylogeny of this species and to explain the role of its juice phenolic compounds. A closer phylogenetic relationship with lemon and citron, rather than oranges was suggested. Sensors-based electrochemical measures, together with LCMS qualitative and quantitative analyses, revealed a high contribution of ascorbic acid and phenolics with low redox potential, isorhamnetin 3-O-rutinoside, diosmin, and diosmetin 6,8-diglucoside, to antioxidant capacity. The biological assays demonstrated a marked effect of low concentration of Pompia juice against reactive oxygen species (ROS) starting from 50 µg mL−1, and a moderate capacity to reduce ROS damages on cell membrane. Treatments with Pompia juice also resulted in a significant reduction (20%) of the metabolic activity of SW48 colon cancer cells. Lastly, MIC, MBC, and MBIC antimicrobial assays demonstrated that Pompia and lemon juices have inhibitory and antibiofilm effects against the pathogenic bacteria Pseudomonas aeruginosa, Streptococcus aureus, and Enterococcus faecalis.
Collapse
Affiliation(s)
- Antonio Barberis
- Institute of Sciences of Food Production, National Research Council, 07100 Sassari, Italy; (Y.S.); (A.F.); (P.A.S.); (G.D.); (G.O.)
- Correspondence: (A.B.); (E.S.); Tel.: +39-079-2841710 (A.B.)
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.D.); (G.S.)
| | - Ylenia Spissu
- Institute of Sciences of Food Production, National Research Council, 07100 Sassari, Italy; (Y.S.); (A.F.); (P.A.S.); (G.D.); (G.O.)
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, 07100 Sassari, Italy; (E.A.); (M.P.)
| | - Angela Fadda
- Institute of Sciences of Food Production, National Research Council, 07100 Sassari, Italy; (Y.S.); (A.F.); (P.A.S.); (G.D.); (G.O.)
| | - Pier Andrea Serra
- Institute of Sciences of Food Production, National Research Council, 07100 Sassari, Italy; (Y.S.); (A.F.); (P.A.S.); (G.D.); (G.O.)
- Department of Medical, Surgical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy
| | - Guy D’hallewin
- Institute of Sciences of Food Production, National Research Council, 07100 Sassari, Italy; (Y.S.); (A.F.); (P.A.S.); (G.D.); (G.O.)
| | - Marina Pisano
- Institute of Biomolecular Chemistry, National Research Council, 07100 Sassari, Italy; (E.A.); (M.P.)
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.D.); (G.S.)
| | - Germano Orrù
- Institute of Sciences of Food Production, National Research Council, 07100 Sassari, Italy; (Y.S.); (A.F.); (P.A.S.); (G.D.); (G.O.)
- Department of Surgical Sciences, Molecular Biology Service, University of Cagliari, 09100 Cagliari, Italy;
| | - Alessandra Scano
- Department of Surgical Sciences, Molecular Biology Service, University of Cagliari, 09100 Cagliari, Italy;
| | | | - Enrico Sanjust
- Department of Biomedical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.D.); (G.S.)
- Correspondence: (A.B.); (E.S.); Tel.: +39-079-2841710 (A.B.)
| |
Collapse
|
35
|
Danzi D, Ladu G, Veltkamp Prieto C, Garitas Bullon A, Petretto GL, Fancello F, Venditti T. Effectiveness of essential oil extracted from pompia leaves against Penicillium digitatum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3639-3647. [PMID: 32201953 DOI: 10.1002/jsfa.10394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/24/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND In recent years, interest in the use of natural compounds as possible substitutes for chemicals, to prevent microbial food spoilage has grown. The antimicrobial activity of the essential oils (EOs) is well known and nowadays there is renewed interest in their application as natural preservatives in postharvest management. The aims of this study were to characterize the EO extracted from pompia leaves and to evaluate its effectiveness for the control of the postharvest decay agent Penicillium digitatum, when applied as vapor contact in new airtight boxes, supplied with a heating system. RESULTS Fumigation was performed in vitro and on food using two concentrations of the EO, heated at controlled temperature. The headspace analysis revealed that the heating of the EO favored the evaporation of the volatile compounds, without altering their functionality. The treatments reduced the pathogen growth in vitro and rot on inoculated food by about 50%. CONCLUSION The chemical analysis of the vapor composition demonstrated that heating the oil did not alter the components and thus the antimicrobial effect of the oil. The treatment by vapor contact with the EO was effective in controlling the pathogen growth in vitro but, above all, it was successful in halving rot in vivo. Due to their bioactivity in the vapor phase, EOs could be delivered as fumigants during postharvest protection; however, the techniques commonly employed are not ideal for simulating real pre-treatment conditions. The new device allows real large-scale conditions to be reproduced. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Donatella Danzi
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Gianfranca Ladu
- Institute of Sciences of Food Production, National Research Council, Sassari, Italy
| | | | - Amada Garitas Bullon
- Institute of Sciences of Food Production, National Research Council, Sassari, Italy
| | - Giacomo L Petretto
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Tullio Venditti
- Institute of Sciences of Food Production, National Research Council, Sassari, Italy
| |
Collapse
|
36
|
Encapsulated Limonene: A Pleasant Lemon-Like Aroma with Promising Application in the Agri-Food Industry. A Review. Molecules 2020; 25:molecules25112598. [PMID: 32503168 PMCID: PMC7321087 DOI: 10.3390/molecules25112598] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
Limonene, mainly found as a major component in Citrus spp., has been proven to possess a valuable potential as sustainable replacement to synthetic pesticides and food preservatives. This review intends to give a clear overview of the principal emerging applications of limonene in the agri-food industry as antimicrobial, herbicidal and antioxidant agent. To successfully use limonene in a greener agri-food industry, its preservation had become a top concern for manufacturers. In order to elucidate the most efficient and sustainable manner to encapsulate limonene, the different techniques and materials tested up to the present are also reviewed. In general, encapsulation conserves and protects limonene from outside aggressions, but also allows its controlled release as well as enhances its low water solubility, which can be critical for the discussed applications. Other parameters such as scalability, low cost and availability of equipment will need to be taken into account. Further efforts would likely be oriented to the elucidation of encapsulating sustainable systems obtained by cost-efficient elaboration processes, which can deliver effective concentrations of limonene without affecting crops and food products.
Collapse
|
37
|
Usach I, Margarucci E, Manca ML, Caddeo C, Aroffu M, Petretto GL, Manconi M, Peris JE. Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections. NANOMATERIALS 2020; 10:nano10020286. [PMID: 32046201 PMCID: PMC7075235 DOI: 10.3390/nano10020286] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/04/2023]
Abstract
Citrus species extracts are well known sources of bio-functional compounds with health-promoting effects. In particular, essential oils are known for their antibacterial activity due to the high content of terpenes. In this work, the steam-distilled essential oil from the leaves of Citrus limon var. pompia was loaded in phospholipid vesicles. The physico-chemical characteristics of the essential oil loaded vesicles were compared with those of vesicles that were loaded with citral, which is one of the most abundant terpenes of Citrus essential oils. The biocompatibility of the vesicles was assessed in vitro in human keratinocytes. Furthermore, the antimicrobial activity of the vesicles was tested while using different bacterial strains and a yeast: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans, respectively. The vesicles were small in size (~140 nm), slightly polydispersed (PI ~ 0.31), highly negatively charged (~ −73 mV), and able to incorporate high amounts of essential oil or citral (E% ~ 86%). Pompia essential oil and citral exhibited antimicrobial activity against all of the assayed microorganisms, with P. aeruginosa being the least sensitive. Citral was slightly more effective than pompia essential oil against E. coli, S. aureus, and C. albicans. The incorporation of citral in vesicles improved its antifungal activity against C. albicans.
Collapse
Affiliation(s)
- Iris Usach
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Avda. V. Andrés Estellés, s/n Burjassot, Valencia 46100, Spain; (I.U.); (E.M.)
| | - Elisabetta Margarucci
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Avda. V. Andrés Estellés, s/n Burjassot, Valencia 46100, Spain; (I.U.); (E.M.)
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - Carla Caddeo
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - Matteo Aroffu
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - Giacomo L. Petretto
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy;
| | - Maria Manconi
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, Via Ospedale 72, Cagliari 09124, Italy; (M.L.M.); (C.C.); (M.A.); (M.M.)
| | - José-Esteban Peris
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Avda. V. Andrés Estellés, s/n Burjassot, Valencia 46100, Spain; (I.U.); (E.M.)
- Correspondence: ; Tel.: +34-963-543-353; Fax: +34-963-544-911
| |
Collapse
|
38
|
Fancello F, El Beyrouthy M, Iriti M, El Khoury M, Bou Zeidan M, Zara S. Chemical composition and antimicrobial activity against food‐related microorganisms of different essential oils from Lebanon. J Food Saf 2019. [DOI: 10.1111/jfs.12688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Marc El Beyrouthy
- Faculty of Agricultural and Food SciencesHoly Spirit University of Kaslik Jounieh Lebanon
| | - Marcello Iriti
- Department of Agriculture and Environmental SciencesMilan State University Milan Italy
| | - Madona El Khoury
- Faculty of Agricultural and Food SciencesHoly Spirit University of Kaslik Jounieh Lebanon
| | - Marc Bou Zeidan
- Faculty of Agricultural and Food SciencesHoly Spirit University of Kaslik Jounieh Lebanon
| | - Severino Zara
- Department of AgricultureUniversity of Sassari Sassari Italy
| |
Collapse
|
39
|
Ambrosio CMS, Ikeda NY, Miano AC, Saldaña E, Moreno AM, Stashenko E, Contreras-Castillo CJ, Da Gloria EM. Unraveling the selective antibacterial activity and chemical composition of citrus essential oils. Sci Rep 2019; 9:17719. [PMID: 31776388 PMCID: PMC6881395 DOI: 10.1038/s41598-019-54084-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023] Open
Abstract
Post-weaning diarrhea (PWD) is an often disease affecting piglets. It is caused mainly by enterotoxigenic Escherichia coli (ETEC) colonization in pig gut. Antibiotics has been used to prevent, combat and control PWD and its negative impact on the productivity of pig breeding sector. Nonetheless, antibiotics due to their wide antibacterial spectrum also can reach beneficial gut bacteria, such as Lactobacillus. Lately, essential oils (EOs) have emerged as a potential alternative to using antibiotics in animal breeding because of their effect on bacterial growth. Commonly, citrus EOs are by-products of food industry and the availability of these EOs in the worldwide market is huge. Thus, six commercials citrus EOs were evaluated on ETEC strains, as model of pathogenic bacteria, and on Lactobacillus species, as models of beneficial bacteria. In overall, citrus EOs exhibited a selective antibacterial activity with higher effect on pathogenic bacteria (ETECs) than beneficial bacteria (Lactobacillus). Brazilian orange terpenes (BOT) oil presented the highest selective performance and caused higher disturbances on the normal growth kinetic of ETEC than on Lactobacillus rhamnosus. The action was dose-dependent on the maximal culture density (A) and the lag phase duration (λ) of the ETEC. The highest sub-inhibitory concentration (0.925 mg/mL) extended the λ duration to ETEC eight times (14.6 h) and reduced A in 55.9%. For L. rhamnosus, the λ duration was only extended 1.6 times. Despite the fact that limonene was detected as the major compound, the selective antibacterial activity of the citrus EOs could not be exclusively attributed to limonene since the presence of minor compounds could be implicated in conferring this feature.
Collapse
Affiliation(s)
- Carmen M S Ambrosio
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, SP, Brazil.
| | - Natália Y Ikeda
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, SP, Brazil
| | - Alberto C Miano
- Facultad de Ingeniería, Universidad Privada del Norte (UNP), Trujillo, Perú
| | - Erick Saldaña
- Facultad de Ingeniería Agroindustrial, Universidad Nacional de Moquegua (UNAM), Moquegua, Perú
| | - Andrea M Moreno
- School of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil
| | - Elena Stashenko
- Research Center of Excellence CENIVAM, CIBIMOL, Industrial University of Santander, Bucaramanga, Colombia
| | - Carmen J Contreras-Castillo
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, SP, Brazil
| | - Eduardo M Da Gloria
- Department of Biological Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Antimicrobial activity of gaseous Citrus limon var pompia leaf essential oil against Listeria monocytogenes on ricotta salata cheese. Food Microbiol 2019; 87:103386. [PMID: 31948627 DOI: 10.1016/j.fm.2019.103386] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/03/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
Contamination by Listeria monocytogenes is a particularly challenging problem in the food industry due to the ability of the bacterium to develop under conditions normally used for food preservation. Here, we show that the gaseous phase of Citrus limon var pompia leaf essential oil (hereafter PLEO) exerts specific anti-Listeria activity on ricotta salata cheese stored at 5 °C. The synergic effect of gaseous PLEO treatment and refrigeration was first confirmed in vitro on L. monocytogenes strains treated for 3 h with gaseous PLEO and then stored at 5 °C. Ricotta cheese was then inoculated with L. monocytogenes strains and subjected to hurdle technology with different concentrations of gaseous PLEO. Cell counts revealed gaseous PLEO to exert a bactericidal effect on L. monocytogenes 20600 DSMZ and a bacteriostatic effect on a mix of L. monocytogenes strains. Scanning and transmission electron microscopy analyses of L. monocytogenes cells suggested that gaseous PLEO targets the bacterial cell wall and plasma membrane. Chemical analyses of the liquid and vapor phases of PLEO indicated linalyl acetate to be the predominant compound, followed by limonene and the two isomers of citral, whereas EO composition analysis, although generally in line with previous findings, showed the presence of linalyl acetate for the first time. Solid-phase microextraction coupled with gas chromatography confirmed the presence of all crude oil components in the headspace of the box.
Collapse
|
41
|
Yoplac I, Avila-George H, Vargas L, Robert P, Castro W. Determination of the superficial citral content on microparticles: An application of NIR spectroscopy coupled with chemometric tools. Heliyon 2019; 5:e02122. [PMID: 31388576 PMCID: PMC6675954 DOI: 10.1016/j.heliyon.2019.e02122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
This work evaluates near-infrared (NIR) spectroscopy coupled with chemometric tools for determining the superficial content of citral (SCCt) on microparticles. To perform this evaluation, using spray drying, citral was encapsulated in a matrix of dextrin using twelve combinations of citral:dextrin ratios (CDR) and inlet air temperatures (IAT). From each treatment, six samples were extracted, and their SCCt and NIR absorption spectral profiles were measured. Then, the spectral profiles, pretreated and randomly divided into modeling and validation datasets, were used to build the following prediction models: principal component analysis-multilinear regression (PCA-MLR), principal component analysis-artificial neural network (PCA-ANN), partial least squares regression (PLSR) and an artificial neural network (ANN). During the validation stage, the models showed R2 values from 0.73 to 0.96 and a root mean squared error (RMSE) range of [0.061–0.140]. Moreover, when the models were compared, the full and optimized ANN models showed the best fits. According to this study, NIR coupled with chemometric tools has the potential for application in determining SCCt on microparticles, particularly when using ANN models.
Collapse
Affiliation(s)
- Ives Yoplac
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- Escuela de Posgrado, Programa Doctoral en Ciencia de Alimentos, Universidad Nacional Agraria La Molina, Lima, Peru
- Corresponding author at: Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru.
| | - Himer Avila-George
- Departamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Ameca, Jalisco 46600, Mexico
| | - Luis Vargas
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Paz Robert
- Departamento de Ciencia de Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Wilson Castro
- Facultad de Ingeniería, Universidad Privada del Norte, Cajamarca 06002, Peru
| |
Collapse
|
42
|
Rosa A, Nieddu M, Petretto GL, Sarais G. Chemical composition and in vitro bioactivity of essential oil obtained from the flavedo of ‘Pompia’, an ancient Sardinian fruit. JOURNAL OF ESSENTIAL OIL RESEARCH 2019. [DOI: 10.1080/10412905.2019.1606740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | | | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
43
|
Lamine M, Rahali FZ, Hammami M, Mliki A. Correlative metabolite profiling approach to understand antioxidant and antimicrobial activities from citrus essential oils. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myriam Lamine
- Laboratory of Plant Molecular Physiology Biotechnology Center of Borj‐Cedria BP 901 2050 Hammam‐Lif Tunisia
| | - Fatma Zohra Rahali
- Laboratory of Medicinal and Aromatic Plants Biotechnology Center of Borj‐Cedria BP 901 2050 Hammam‐Lif Tunisia
| | - Majdi Hammami
- Laboratory of Medicinal and Aromatic Plants Biotechnology Center of Borj‐Cedria BP 901 2050 Hammam‐Lif Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology Biotechnology Center of Borj‐Cedria BP 901 2050 Hammam‐Lif Tunisia
| |
Collapse
|
44
|
Bugatti V, Vertuccio L, Zara S, Fancello F, Scanu B, Gorrasi G. Green pesticides based on cinnamate anion incorporated in layered double hydroxides and dispersed in pectin matrix. Carbohydr Polym 2019; 209:356-362. [DOI: 10.1016/j.carbpol.2019.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
|
45
|
Viglietti G, Galla G, Porceddu A, Barcaccia G, Curk F, Luro F, Scarpa GM. Karyological Analysis and DNA Barcoding of Pompia Citron: A First Step toward the Identification of Its Relatives. PLANTS 2019; 8:plants8040083. [PMID: 30935148 PMCID: PMC6524030 DOI: 10.3390/plants8040083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 12/04/2022]
Abstract
Pompia is a citrus fruit endemic of Sardinia, Italy, with an essential oil profile showing outstanding anti-inflammatory and anti-microbic properties. Despite its remarkable pharmaceutical potential, little taxonomic and genetic information is available for this species. We applied flow cytometry and classical cytogenetic techniques to assess the DNA content and to reconstruct the karyotype of several Pompia accessions. Molecular data from plastid DNA barcoding and nuclear DNA sequencing were used to study the genetic distance between Pompia and other citrus species. Flow cytometric estimates of DNA content and somatic chromosome counts suggest that Pompia is a regular diploid Citrus species. DNA polymorphisms of nuclear and chloroplast markers allowed us to investigate the genetic relationships between Pompia accessions and other Citrus species. Based on DNA polymorphism data we propose that Pompia is a very recent interspecific hybrid generated by a cross between C. aurantium (as seed bearer) and C. medica (as pollen donor). Our findings pave the way for further and more specific investigations of local Pompia germplasm resources that may help the preservation and valorisation of this valuable citrus fruit tree.
Collapse
Affiliation(s)
- Grazia Viglietti
- Dipartimento di AGRARIA Research Unit SACEG, University of Sassari, 07100 Sassari, Italy.
| | - Giulio Galla
- Laboratory of Genomics, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Padova, Italy.
| | - Andrea Porceddu
- Dipartimento di AGRARIA Research Unit SACEG, University of Sassari, 07100 Sassari, Italy.
| | - Gianni Barcaccia
- Laboratory of Genomics, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Padova, Italy.
| | - Frank Curk
- Unite Mixte de Recherche Amelioration Genetique et Adaptation des Plantes (UMR Agap), Institut National de la Recherche Agronomique (INRA), F-20230 San Giuliano, France.
| | - Francois Luro
- Unite Mixte de Recherche Amelioration Genetique et Adaptation des Plantes (UMR Agap), Institut National de la Recherche Agronomique (INRA), F-20230 San Giuliano, France.
| | - Grazia Maria Scarpa
- Dipartimento di AGRARIA Research Unit SACEG, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
46
|
Flamini G, Pistelli L, Nardoni S, Ebani VV, Zinnai A, Mancianti F, Ascrizzi R, Pistelli L. Essential Oil Composition and Biological Activity of "Pompia", a Sardinian Citrus Ecotype. Molecules 2019; 24:E908. [PMID: 30841559 PMCID: PMC6429368 DOI: 10.3390/molecules24050908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/02/2022] Open
Abstract
Pompia is a Sardinian citrus ecotype whose botanical classification is still being debated. In the present study, the composition of Pompia peel essential oil (EO) is reported for the first time, along with that of the leaf EO, as a phytochemical contribution to the classification of this ecotype. The peel EO was tested for its antioxidant ability (with both the 2,2-diphenyl-1-picarylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays). Moreover, its antimicrobial activities were tested for the first time on dermatophytes (Microsporum canis, Microsporum gypseum, and Trichophyton mentagrophytes), on potentially toxigenic fungi (Fusarium solani, Aspergillus flavus, and Aspergillus niger) as well on bacteria (Escherichia coli, Staphylococcus aureus, and Staphylococcus pseudointermedius). The dominant abundance of limonene in the peel EO seems to distinguish Pompia from the Citrus spp. to which it had previously been associated. It lacks γ-terpinene, relevant in Citrus medica EO. Its relative content of α- and β-pinene is lower than 0.5%, in contrast to Citrus limon peel EO. Pompia peel and leaf EOs did not show significant amounts of linalool and linalyl acetate, which are typically found in Citrus aurantium. Pompia peel EO antioxidant activity was weak, possibly because of its lack of γ-terpinene. Moreover, it did not exert any antimicrobial effects either towards the tested bacteria strains, or to dermatophytes and environmental fungi.
Collapse
Affiliation(s)
- Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Laura Pistelli
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Simona Nardoni
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | - Valentina Virginia Ebani
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | - Angela Zinnai
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Dipartimento di Scienze Agrarie, Alimentari e Agro-alimentari, Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Francesca Mancianti
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Luisa Pistelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
47
|
González-Mas MC, Rambla JL, López-Gresa MP, Blázquez MA, Granell A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2019; 10:12. [PMID: 30804951 PMCID: PMC6370709 DOI: 10.3389/fpls.2019.00012] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 05/09/2023]
Abstract
The essential oil fraction obtained from the rind of Citrus spp. is rich in chemical compounds of interest for the food and perfume industries, and therefore has been extensively studied during the last decades. In this manuscript, we provide a comprehensive review of the volatile composition of this oil fraction and rind extracts for the 10 most studied Citrus species: C. sinensis (sweet orange), C. reticulata (mandarin), C. paradisi (grapefruit), C. grandis (pummelo), C. limon (lemon), C. medica (citron), C. aurantifolia (lime), C. aurantium (bitter orange), C. bergamia (bergamot orange), and C. junos (yuzu). Forty-nine volatile organic compounds have been reported in all 10 species, most of them terpenoid (90%), although about half of the volatile compounds identified in Citrus peel are non-terpenoid. Over 400 volatiles of different chemical nature have been exclusively described in only one of these species and some of them could be useful as species biomarkers. A hierarchical cluster analysis based on volatile composition arranges these Citrus species in three clusters which essentially mirrors those obtained with genetic information. The first cluster is comprised by C. reticulata, C. grandis, C. sinensis, C. paradisi and C. aurantium, and is mainly characterized by the presence of a larger abundance of non-terpenoid ester and aldehyde compounds than in the other species reviewed. The second cluster is comprised by C. junos, C. medica, C. aurantifolia, and C. bergamia, and is characterized by the prevalence of mono- and sesquiterpene hydrocarbons. Finally, C. limon shows a particular volatile profile with some sulfur monoterpenoids and non-terpenoid esters and aldehydes as part of its main differential peculiarities. A systematic description of the rind volatile composition in each of the species is provided together with a general comparison with those in leaves and blossoms. Additionally, the most widely used techniques for the extraction and analysis of volatile Citrus compounds are also described.
Collapse
Affiliation(s)
- M. Carmen González-Mas
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| |
Collapse
|
48
|
Pacheco MT, Moreno FJ, Villamiel M. Chemical and physicochemical characterization of orange by-products derived from industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:868-876. [PMID: 30009444 DOI: 10.1002/jsfa.9257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Industrial extraction of orange juice produces a large amount of waste that affects the environment and gives rise to important economic losses; at the same time, information about the composition of the waste is still limited. The present study carried out an exhaustive chemical and physicochemical characterization of the residues in the waste, aiming to increase their potential application for the extraction of functional ingredients. RESULTS Four different products (three solids and one liqueur) were provided by the industry. The overall characterization indicated that carbohydrates comprised the main components. During processing, carbohydrate derivatives were formed such as those corresponding to the initial steps of the Maillard reaction. In this sense, furosine was demonstrated to be a suitable indicator with respect to the control of the process. Although the phenolic content substantially decreased (by up to 57%) as the processing proceeded, the antioxidant capacity was affected to a much lesser extent (∼10%). Dehydrated products were rich in galacturonic acid and hardly any change was detected during their elaboration. The liqueur by-product was found to have a much higher level of fructose than glucose and sucrose. CONCLUSION Orange juice waste obtained industrially under the conditions described in the present study could be used as a source of pectic derivatives or fructose in the case of solid or liquid by-products, respectively. The results reported here could diversify the present application of these products as a source of food ingredients, contributing to an improvement in their utilization. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- M Teresa Pacheco
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), CEI (CSIC+UAM), Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), CEI (CSIC+UAM), Madrid, Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), CEI (CSIC+UAM), Madrid, Spain
| |
Collapse
|
49
|
Silva-Flores PG, Pérez-López LA, Rivas-Galindo VM, Paniagua-Vega D, Galindo-Rodríguez SA, Álvarez-Román R. Simultaneous GC-FID Quantification of Main Components of Rosmarinus officinalis L. and Lavandula dentata Essential Oils in Polymeric Nanocapsules for Antioxidant Application. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:2837406. [PMID: 30881726 PMCID: PMC6387723 DOI: 10.1155/2019/2837406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 05/05/2023]
Abstract
The essential oils (EO) of R. officinalis and L. dentata have been widely used due to their antioxidant activity. However, due to their high volatility, the loading of EO into polymeric nanocapsules (NC) represents an efficient way of retaining their effect in future topical administration. In this way, the quantitative determination of EO incorporated into NC is necessary for simultaneous monitoring of the main components of the EO during the nanoencapsulation process as well as for precise and exact dosing of the components used during the performance of in vitro and in vivo biological tests. In this study, EO were isolated by hydrodistillation in a Clevenger-type apparatus and characterized by GC-MS and GC-FID analyses. The major constituents of EO-R. officinalis were camphor (39.46%) and 1,8-cineole (14.63%), and for EO-L. dentata were 1,8-cineole (68.59%) and β-pinene (11.53%). A new analytical method based on GC-FID for quantification of free and encapsulated EO was developed and validated according to ICH. Linearity, limit of detection and quantification, and intra- and interday precision parameters were determined. The methods were linear and precise for the quantification of the main components of EO. The EO were encapsulated by nanoprecipitation and were analyzed by the GC-FID method validated for their direct quantification. The NC size was 200 nm with homogeneous size distribution. The quantification of the incorporated EO within a NC is an important step in NC characterization. In this way, an encapsulation efficiency of at least 59.03% and 41.15% of total EO-R. officinalis and EO-L. dentata, respectively, was obtained. Simple, repeatable, and reproducible methods were developed as an analytical tool for the simultaneous quantification of the main components of EO loaded in polymeric nanocapsules as well as their monitoring in biological assays.
Collapse
Affiliation(s)
- Perla Giovanna Silva-Flores
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| | - Luis Alejandro Pérez-López
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| | - Verónica Mayela Rivas-Galindo
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| | - David Paniagua-Vega
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
- Cátedras CONACYT-UANL, Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| | - Sergio Arturo Galindo-Rodríguez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Rocío Álvarez-Román
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Fco. I. Madero y Dr. E. Aguirre Pequeño S/N, 64460 Monterrey, Nuevo León, Mexico
| |
Collapse
|
50
|
Guo JJ, Gao ZP, Xia JL, Ritenour MA, Li GY, Shan Y. Comparative analysis of chemical composition, antimicrobial and antioxidant activity of citrus essential oils from the main cultivated varieties in China. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|