1
|
Krümmel A, Pagno CH, Malheiros PDS. Active Films of Cassava Starch Incorporated with Carvacrol Nanocapsules. Foods 2024; 13:1141. [PMID: 38672814 PMCID: PMC11049105 DOI: 10.3390/foods13081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The synthesis of active films with natural antimicrobials from renewable sources offers an alternative to conventional non-biodegradable packaging and synthetic additives. This study aimed to develop cassava starch films with antimicrobial activity by incorporating either free carvacrol or chia mucilage nanocapsules loaded with carvacrol (CMNC) and assess their impact on the physical, mechanical, and barrier properties of the films, as well as their efficacy against foodborne pathogens. The addition of free carvacrol led to a reduction in mechanical properties due to its hydrophobic nature and limited interaction with the polymeric matrix. Conversely, CMNC enhanced elongation at break and reduced light transmission, with a more uniform distribution in the polymeric matrix. Films containing 8% carvacrol exhibited inhibitory effects against Salmonella and Listeria monocytogenes, further potentiated when encapsulated in chia mucilage nanocapsules. These findings suggest that such films hold promise as active packaging materials to inhibit bacterial growth, ensuring food safety and extending shelf life.
Collapse
Affiliation(s)
- Aline Krümmel
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Carlos Henrique Pagno
- Laboratory of Phenolic Compounds, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| | - Patrícia da Silva Malheiros
- Laboratory of Microbiology and Food Hygiene, Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil;
| |
Collapse
|
2
|
Such A, Wisła-Świder A, Węsierska E, Nowak E, Szatkowski P, Kopcińska J, Koronowicz A. Edible chitosan-alginate based coatings enriched with turmeric and oregano additives: Formulation, antimicrobial and non-cytotoxic properties. Food Chem 2023; 426:136662. [PMID: 37356247 DOI: 10.1016/j.foodchem.2023.136662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
In our study we developed the edible chitosan and alginate coatings with turmeric or oregano additives. The objective of the research was to evaluate the dose-dependent cytotoxicity of films. In cell line studies on HepG2 and BJ cells, they were shown to be non-cytotoxic materials (IC50% was not reached). For HepG2 increase in cell proliferation was observed for 3, 4, and 7 mg/mL of OS3 (124,79±9,21; 162,4±10,46; 165,37±18,44) after 72 h. In BJ cells, no significant decrease in proliferation was noted after 24- and 48-hour exposure to OS0 and OS1 (1-7 mg/ml). The addition of oregano (1% v/v) resulted in films with higher elongation at break and 40% higher tensile strength compared to the base (OS0) film. Use of additives significantly increased the thermal stability of the complexes (by an average of 10 °C). Coatings were tested on tofu and had proven potent antimicrobial properties.
Collapse
Affiliation(s)
- Aleksandra Such
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, Krakow 30-149, Poland.
| | - Anna Wisła-Świder
- Department of Chemistry, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, Krakow 30-149, Poland.
| | - Ewelina Węsierska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, Krakow 30-149, Poland.
| | - Ewelina Nowak
- Department of Chemistry, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, Krakow 30-149, Poland.
| | - Piotr Szatkowski
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH - University of Science and Technology, Al. Mickiewcza 30, Krakow 30-059, Poland.
| | - Joanna Kopcińska
- Department of Applied Mathematics, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Balicka 253c, Kraków 30-198, Poland.
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, Krakow 30-149, Poland.
| |
Collapse
|
3
|
Cho B, Charoensri K, Doh H, Park HJ. Preparation of Colorimetric Sensor Array System to Evaluate the Effects of Alginate Edible Coating on Boiled-Dried Anchovy. Foods 2023; 12:foods12030638. [PMID: 36766165 PMCID: PMC9913907 DOI: 10.3390/foods12030638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
The colorimetric sensor array (CSA) is a simple, rapid, and cost-effective system widely used in food science to assess food quality by identifying undesirable volatile organic compounds. As a prospective alternative to conventional techniques such as total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance analysis, the CSA system has garnered significant attention. This study evaluated the quality of edible-coated food products using both conventional and CSA methods in order to demonstrate that the CSA approach is a feasible alternative to conventional methods. Boiled-dried anchovies (BDA) were selected as the model food product, and the sample's quality was assessed as a function of storage temperature and incubation period using conventional techniques and the CSA system. The surface of BDA was coated with an edible alginate film to form the surface-modified food product. The conventional methods revealed that an increase in storage temperature and incubation time accelerated the lipid oxidation process, with the uncoated BDA undergoing lipid oxidation at a faster rate than the coated BDA. Utilizing multivariate statistical analysis, the CSA approach essentially yielded the same results. In addition, the partial least square regression technique revealed a strong correlation between the CSA system and conventional methods, indicating that the CSA system may be a feasible alternative to existing methods for evaluating the quality of food products with surface modifications.
Collapse
Affiliation(s)
- Byungchan Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Korakot Charoensri
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hansol Doh
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
- Correspondence: (H.D.); (H.j.P.); Tel.: +82-2-3277-3104 (H.D.); +82-2-3290-3450 (H.j.P.)
| | - Hyun jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Correspondence: (H.D.); (H.j.P.); Tel.: +82-2-3277-3104 (H.D.); +82-2-3290-3450 (H.j.P.)
| |
Collapse
|
4
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Hancornia speciosa: An overview focused on phytochemical properties, recent achievements, applications, and future perspectives. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Characterization and Antifungal Activity of Pullulan Edible Films Enriched with Propolis Extract for Active Packaging. Foods 2022; 11:foods11152319. [PMID: 35954086 PMCID: PMC9368179 DOI: 10.3390/foods11152319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Active pullulan films with the addition of 3, 5 or 10% propolis extract produced by the casting method were tested in the study. Propolis extracts from Bochnia County, Siedlce County and Ełk County (Poland) were used. The appearance of the films was characterized, as well as physical parameters (thickness, moisture content, water solubility), tensile strength (TS), elongation at break (EB), optical characteristics (light transparency, UV barrier, color) and antifungal properties. The antifungal activity of the films was tested by the disc diffusion method against yeast (Candida albicans, C. krusei, Saccharomyces cerevisiae, Rhodotorula mucilaginosa) and mold (Alternaria solani, Fusarium solani, Rhizopus stolonifer, Colletotrichum gloeosporioides, C. cladosporioides, Aspergillus niger, A. ochraceus, Mucor mucedo, Penicillium expansum, P. chrysogenum). The origin of propolis influenced the color and water solubility of the films. The addition of increasing concentrations of propolis extract increased the film thickness and the intensity of the yellow color, extended the water dissolution time of the film and reduced the values of TS and EB. The addition of propolis extract in the pullulan film improved UV radiation protection but decreased light transparency. The antifungal activity increased significantly with the increasing concentration of propolis extract in the film, regardless of the origin of propolis. Molds showed greater sensitivity to pullulan films containing propolis extract than yeasts. In general, films made of pullulan with the addition of propolis extract can be considered as natural active packaging to protect against the growth of fungi in food.
Collapse
|
7
|
Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: A sustainable path. Food Res Int 2022; 155:111096. [DOI: 10.1016/j.foodres.2022.111096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
8
|
Braich AK, Kaur G, Singh A, Dar B. Amla
essential oil‐based nano‐coatings of Amla fruit: Analysis of morphological, physiochemical, enzymatic parameters and shelflife extension. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Gurkirat Kaur
- Electron Microscopy and Nanoscience Lab Punjab Agricultural University Ludhiana
| | - Arashdeep Singh
- Dept of Food Science and Technology Punjab Agricultural University Ludhiana
| | - B.N. Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora Srinagar
| |
Collapse
|
9
|
Mukarram M, Choudhary S, Khan MA, Poltronieri P, Khan MMA, Ali J, Kurjak D, Shahid M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants (Basel) 2021; 11:20. [PMID: 35052524 PMCID: PMC8773226 DOI: 10.3390/antiox11010020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Mo Ahamad Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, ISPA-CNR, National Research Council of Italy, Via Monteroni km 7, 73100 Lecce, Italy
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Newcastle ST5 5BG, UK;
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Mohd Shahid
- Department of Microbiology, Immunology & Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Road 2904 Building 293 Manama, 329, Bahrain;
| |
Collapse
|
10
|
Das S, Ghosh A, Mukherjee A. Nanoencapsulation-Based Edible Coating of Essential Oils as a Novel Green Strategy Against Fungal Spoilage, Mycotoxin Contamination, and Quality Deterioration of Stored Fruits: An Overview. Front Microbiol 2021; 12:768414. [PMID: 34899650 PMCID: PMC8663763 DOI: 10.3389/fmicb.2021.768414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Currently, applications of essential oils for protection of postharvest fruits against fungal infestation and mycotoxin contamination are of immense interest and research hot spot in view of their natural origin and possibly being an alternative to hazardous synthetic preservatives. However, the practical applications of essential oils in broad-scale industrial sectors have some limitations due to their volatility, less solubility, hydrophobic nature, and easy oxidation in environmental conditions. Implementation of nanotechnology for efficient incorporation of essential oils into polymeric matrices is an emerging and novel strategy to extend its applicability by controlled release and to overcome its major limitations. Moreover, different nano-engineered structures (nanoemulsion, suspension, colloidal dispersion, and nanoparticles) developed by applying a variety of nanoencapsulation processes improved essential oil efficacy along with targeted delivery, maintaining the characteristics of food ingredients. Nanoemulsion-based edible coating of essential oils in fruits poses an innovative green alternative against fungal infestation and mycotoxin contamination. Encapsulation-based coating of essential oils also improves antifungal, antimycotoxigenic, and antioxidant properties, a prerequisite for long-term enhancement of fruit shelf life. Furthermore, emulsion-based coating of essential oil is also efficient in the protection of physicochemical characteristics, viz., firmness, titrable acidity, pH, weight loss, respiration rate, and total phenolic contents, along with maintenance of organoleptic attributes and nutritional qualities of stored fruits. Based on this scenario, the present article deals with the advancement in nanoencapsulation-based edible coating of essential oil with efficient utilization as a novel safe green preservative and develops a green insight into sustainable protection of fruits against fungal- and mycotoxin-mediated quality deterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Abhinanda Ghosh
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Delshadi R, Bahrami A, Assadpour E, Williams L, Jafari SM. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Choo KW, Lin M, Mustapha A. Chitosan/acetylated starch composite films incorporated with essential oils: Physiochemical and antimicrobial properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Bizymis AP, Tzia C. Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 2021; 62:8777-8792. [PMID: 34098828 DOI: 10.1080/10408398.2021.1934652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Edible films and coatings, despite their practical applications, have only entered the food industry in the last decade. Their main functions are to protect the food products from mechanical damage and from physical, chemical and microbiological deteriorative changes. The ingredients used for their formation are polysaccharides, proteins and lipids, in individual or combined formulations. The edible films and coatings have already been applied on various food products, such as fruits, vegetables, meat products, seafood products, cheese, baked products and deep fat fried products. The techniques for their application on foods are of particular interest. Nowadays, composite edible films and coatings are also being studied, based on combinations of the properties of individual components. In addition to conventional materials, new ones, such as nanomaterials, are being investigated, aiming to enhance the resulting properties. However, before the incorporation of new materials to films and coatings, they must be thoroughly checked according to the legislation, to assure their lawful use. This review covers the recent developments on the edible films and coatings area in terms of the contribution of novel constituting materials to the improvement of their properties.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
14
|
Salimi F, Moradi M, Tajik H, Molaei R. Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (Morus alba L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3439-3447. [PMID: 33289129 DOI: 10.1002/jsfa.10974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Carbon dots (C-dots) with antimicrobial activity were synthesized from the white mulberry extract with the aim of fabricating anti-listeria nanopaper using bacterial nanocellulose (BNC). Highly dispersed synthesized C-dots with a size smaller than 10 nm (approximately 4.9 nm) were impregnated into BNC by an ex situ coating method and then mechanical, morphological, UV-protectant and antibacterial activity were assessed. Randomized response surface methodology using a central composite design was applied to investigate the optimized concentration of C-dots in the BNC membrane. RESULTS An optimized nanopaper including C-dots at a concentration of 530 g L-1 and an impregnation time of 14 h at 30 °C with significant antimicrobial activity on Listeria monocytogenes was designed. The addition of C-dots into BNC significantly increased ultimate tensile strength and decreased strain with respect to breaking BNC. A BNC sheet with high-efficient UV-blocking property was prepared using C-dots. CONCLUSION Based on the results, the designed nanopaper shows a substantial capacity with respect to the fabrication of antimicrobial/UV-blocking sheets for food active packaging. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fatemeh Salimi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
15
|
Salgado-Cruz MDLP, Salgado-Cruz J, García-Hernández AB, Calderón-Domínguez G, Gómez-Viquez H, Oliver-Espinoza R, Fernández-Martínez MC, Yáñez-Fernández J. Chitosan as a Coating for Biocontrol in Postharvest Products: A Bibliometric Review. MEMBRANES 2021; 11:421. [PMID: 34073018 PMCID: PMC8228418 DOI: 10.3390/membranes11060421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
The aim of this work was to carry out a systematic literature review focused on the scientific production, trends, and characteristics of a knowledge domain of high worldwide importance, namely, the use of chitosan as a coating for postharvest disease biocontrol in fruits and vegetables, which are generated mainly by fungi and bacteria such as Aspergillus niger, Rhizopus stolonifera, and Botrytis cinerea. For this, the analysis of 875 published documents in the Scopus database was performed for the years 2011 to 2021. The information of the keywords' co-occurrence was visualized and studied using the free access VOSviewer software to show the trend of the topic in general. The study showed a research increase of the chitosan and nanoparticle chitosan coating applications to diminish the postharvest damage by microorganisms (fungi and bacteria), as well as the improvement of the shelf life and quality of the products.
Collapse
Affiliation(s)
- Ma de la Paz Salgado-Cruz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México 03940, Mexico
| | - Julia Salgado-Cruz
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - Alitzel Belem García-Hernández
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
| | - Georgina Calderón-Domínguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
| | - Hortensia Gómez-Viquez
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - Rubén Oliver-Espinoza
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - María Carmen Fernández-Martínez
- Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico;
| | - Jorge Yáñez-Fernández
- Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico;
| |
Collapse
|
16
|
Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09282-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.653420] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food industries are facing a great challenge due to contamination of food products with different microbes such as bacteria, fungi, viruses, parasites, etc. These microbes deteriorate food items by producing different toxins during pre- and postharvest processing. Mycotoxins are one of the most potent and well-studied toxic food contaminants of fungal origin, causing a severe health hazard to humans. The application of synthetic chemicals as food preservatives poses a real scourge in the present scenario due to their bio-incompatibility, non-biodegradability, and environmental non-sustainability. Therefore, plant-based antimicrobials, including essential oils, have developed cumulative interest as a potential alternative to synthetic preservatives because of their ecofriendly nature and generally recognized as safe status. However, the practical utilization of essential oils as an efficient antimicrobial in the food industry is challenging due to their volatile nature, less solubility, and high instability. The recent application of different delivery strategies viz. nanoencapsulation, active packaging, and polymer-based coating effectively addressed these challenges and improved the bioefficacy and controlled release of essential oils. This article provides an overview of essential oils for the preservation of stored foods against bacteria, fungi, and mycotoxins, along with the specialized mechanism of action and technological advancement by using different delivery systems for their effective application in food and agricultural industries smart green preservative.
Collapse
|
18
|
Jokar A, Barzegar H, Maftoon Azad N, Shahamirian M. Effects of cinnamon essential oil and Persian gum on preservation of pomegranate arils. Food Sci Nutr 2021; 9:2585-2596. [PMID: 34026074 PMCID: PMC8116839 DOI: 10.1002/fsn3.2213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Given the high perishability of pomegranate arils, edible antimicrobial coating will enhance their shelf life and maintain their marketability. An antimicrobial coating was prepared using 1% (w/v) soluble part of Persian gum (PG) and different concentrations (0.25%, 0.50%, and 0.75% (v/v)) of cinnamon essential oil (CEO) to extend the shelf life of pomegranate arils. Microbiological, chemical, physical, and sensorial characteristics of coated and uncoated samples were evaluated at 7-day intervals. Total anthocyanin (TAN), titrable acidity (TA), and ascorbic acid showed a decreasing trend, during the whole period of the storage. TAN, TA, and ascorbic acid decreased from 119.8 to 44.5 mg/L, 1.6% to 1.37%, and 682 to 140 mg/L, respectively. Firmness increased during the storage time, while total soluble solids (TSS, around 17.4 °Brix) and total phenolic compounds (TP, around 14.21 mg/100 ml) showed no significant changes with CEO concentrations. Coatings containing 0.5% and 0.75% CEO significantly prevented fungal growth on the samples at least for 3 weeks and 3 months, respectively. Optimization proved that 1-week cold storage and 0.43% CEO could dramatically meet 80% of the research targets including maximum nutritional quality and freshness, as well preventing microbial spoilage. It was concluded that coating the pomegranate arils by PG and selecting an appropriate concentration of the CEO could considerably increase shelf life, marketability, and nutritional quality of pomegranate arils at a suitable and acceptable level.
Collapse
Affiliation(s)
- Akbar Jokar
- Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education CenterAgricultural Research, Education and Extension Organization (AREEO)ShirazIran
| | - Hasan Barzegar
- Agricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Neda Maftoon Azad
- Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education CenterAgricultural Research, Education and Extension Organization (AREEO)ShirazIran
| | - Maryam Shahamirian
- Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education CenterAgricultural Research, Education and Extension Organization (AREEO)ShirazIran
| |
Collapse
|
19
|
Moradi M, Kousheh SA, Razavi R, Rasouli Y, Ghorbani M, Divsalar E, Tajik H, Guimarães JT, Ibrahim SA. Review of microbiological methods for testing protein and carbohydrate-based antimicrobial food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Yousuf B, Wu S, Siddiqui MW. Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Kumar A, Gupta V, Singh PP, Kujur A, Prakash B. Fabrication of volatile compounds loaded-chitosan biopolymer nanoparticles: Optimization, characterization and assessment against Aspergillus flavus and aflatoxin B 1 contamination. Int J Biol Macromol 2020; 165:1507-1518. [PMID: 33038402 DOI: 10.1016/j.ijbiomac.2020.09.257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
The study demonstrates the use of chitosan as a carrier agent of designed antifungal formulation (CME 4:1:1) based on a combination of plant compounds such as trans- cinnamaldehyde (C), methyl eugenol (M), and estragole (E). The formulation was encapsulated inside the chitosan biopolymer nanomatrix (Ne-CME) and characterized by SEM, FTIR, and XRD. The Ne-CME exhibited enhanced antifungal and aflatoxin B1 inhibitory effect compared to the individual compounds and unencapsulated form. Ne-CME (0.04 μl/ml) caused significant protection of Piper longum fruit from fungal (90.05%) and aflatoxin B1 (100%) contamination and had no significant negative effects on its nutritional properties. In addition, the probable antifungal mechanism of Ne-CME was investigated using in-silico (effect on Omt-1 and Vbs structural genes of AFB1 biosynthesis) and biochemical (perturbances in the cell membrane, carbohydrate catabolism, methyl-glyoxal, mitochondrial membrane potential, and antioxidant defense system) assay.
Collapse
Affiliation(s)
- Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vishal Gupta
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anupam Kujur
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
22
|
Nair MS, Tomar M, Punia S, Kukula-Koch W, Kumar M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int J Biol Macromol 2020; 164:304-320. [DOI: 10.1016/j.ijbiomac.2020.07.083] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
|
23
|
Wang D, Dong Y, Chen X, Liu Y, Wang J, Wang X, Wang C, Song H. Incorporation of apricot (Prunus armeniaca) kernel essential oil into chitosan films displaying antimicrobial effect against Listeria monocytogenes and improving quality indices of spiced beef. Int J Biol Macromol 2020; 162:838-844. [DOI: 10.1016/j.ijbiomac.2020.06.220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
|
24
|
Hassoun A, Carpena M, Prieto MA, Simal-Gandara J, Özogul F, Özogul Y, Çoban ÖE, Guðjónsdóttir M, Barba FJ, Marti-Quijal FJ, Jambrak AR, Maltar-Strmečki N, Kljusurić JG, Regenstein JM. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants (Basel) 2020; 9:E882. [PMID: 32957633 PMCID: PMC7555908 DOI: 10.3390/antiox9090882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Consumer demand for food of high quality has driven research for alternative methods of food preservation on the one hand, and the development of new and rapid quality assessment techniques on the other hand. Recently, there has been a growing need and interest in healthier food products, which has led to an increased interest in natural preservatives, such as essential oils, plant extracts, and edible films and coatings. Several studies have shown the potential of using biopreservation, natural antimicrobials, and antioxidant agents in place of other processing and preservation techniques (e.g., thermal and non-thermal treatments, freezing, or synthetic chemicals). Changes in food quality induced by the application of natural preservatives have been commonly evaluated using a range of traditional methods, including microbiology, sensory, and physicochemical measurements. Several spectroscopic techniques have been proposed as promising alternatives to the traditional time-consuming and destructive methods. This review will provide an overview of recent studies and highlight the potential of spectroscopic techniques to evaluate quality changes in food products following the application of natural preservatives.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, 9291 Tromsø, Norway
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | - Yeşim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | | | - María Guðjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 113 Reykjavík, Iceland;
- Matis, Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Francisco J. Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Nadica Maltar-Strmečki
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička c. 54, 10 000 Zagreb, Croatia;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| |
Collapse
|
25
|
Effect of chitosan coatings on the evolution of sodium carbonate-soluble pectin during sweet cherry softening under non-isothermal conditions. Int J Biol Macromol 2020; 154:267-275. [PMID: 32179112 DOI: 10.1016/j.ijbiomac.2020.03.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022]
Abstract
The inhibiting effect of chitosan coating (2%) on the softening and sodium carbonate-soluble pectin (SSP) evolution of sweet cherries during non-isothermal storage was investigated. Chitosan coating significantly extend the softening (6.4% greater than the control group), maintained the SSP content (6.6% greater than the control group), and reduced the degradation of SSP by inhibiting the expression of the paPME1-5 genes, which regulating pectin methylesterase activity of sweet cherries under temperature variation. In addition, the results of methylation and monosaccharide composition indicated that the chitosan coating reduced demethylation of SSP and the loss of RG-I main and side chain neutral sugars. Atomic force microscopy images revealed that the coated sweet cherries contained more linked, branched, and long SSP chains and maintained the width of the pectin backbone (>140 nm). These results indicated that a chitosan coating is feasible to preserve postharvest fruit under non-isothermal conditions.
Collapse
|
26
|
Ju J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. Application of edible coating with essential oil in food preservation. Crit Rev Food Sci Nutr 2018; 59:2467-2480. [DOI: 10.1080/10408398.2018.1456402] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jian Ju
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University
- School of Food Science and Technology, Jiangnan University
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, China
| |
Collapse
|
27
|
Ju J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food. Crit Rev Food Sci Nutr 2018; 59:3281-3292. [DOI: 10.1080/10408398.2018.1488159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jian Ju
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Joint International Research Laboratory of Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
28
|
Bambace MF, Gerard LM, Moreira MDR. An approach to improve the safety and quality of ready‐to‐eat blueberries. J Food Saf 2018. [DOI: 10.1111/jfs.12602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- María Florencia Bambace
- Grupo de Investigación en Ingeniería en Alimentos, Facultad de IngenieríaUniversidad Nacional de Mar del Plata Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Liliana Mabel Gerard
- Facultad de Ciencias de la AlimentaciónUniversidad Nacional de Entre Ríos Entre Ríos Argentina
| | - María del Rosario Moreira
- Grupo de Investigación en Ingeniería en Alimentos, Facultad de IngenieríaUniversidad Nacional de Mar del Plata Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
29
|
Araújo JMS, de Siqueira ACP, Blank AF, Narain N, de Aquino Santana LCL. A Cassava Starch–Chitosan Edible Coating Enriched with Lippia sidoides Cham. Essential Oil and Pomegranate Peel Extract for Preservation of Italian Tomatoes (Lycopersicon esculentum Mill.) Stored at Room Temperature. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2139-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int J Biol Macromol 2018; 109:1095-1107. [DOI: 10.1016/j.ijbiomac.2017.11.097] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
|
31
|
|