1
|
Wang Z, Cheng X, Ma A, Jiang F, Chen Y. Multiplexed food-borne pathogen detection using an argonaute-mediated digital sensor based on a magnetic-bead-assisted imaging transcoding system. NATURE FOOD 2025; 6:170-181. [PMID: 39748032 DOI: 10.1038/s43016-024-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
Accurate, sensitive and multiplexed detection of food-borne pathogens is crucial for assessing food safety risks. Here we present a digital DNA-amplification-free nucleic acid detection assay to achieve multiplexed and ultrasensitive detection of three food-borne pathogens. We used mesophilic Clostridium butyricum argonaute and magnetic beads in a digital carrier system (d-MAGIC). Clostridium butyricum argonaute, with its two-guide accurate cleavage activity, precisely targets and cleaves fluorescence-quencher reporters corresponding to different bacteria through a two-step process. The system uses fluorescence-encoded magnetic beads as programmable multi-probes, allowing the simultaneous detection of multiple pathogens and easy data interpretation via artificial intelligence. The method showed a wide detection range (101 to 107 CFU ml-1) and a low limit of detection of 6 CFU ml-1 for food-borne pathogens without DNA amplification. Digital nucleic acid testing using d-MAGIC can become a next-generation strategy for accurate and convenient pathogen detection.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinrui Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feng Jiang
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
2
|
Wang Z, Ma A, Chen Y. An Amplification-Free Digital Assay Based on Primer Exchange Reaction-Mediated Botryoidal-Like Fluorescent Polystyrene Dots to Detect Multiple Pathogenic Bacteria. ACS NANO 2024; 18:31174-31187. [PMID: 39485393 DOI: 10.1021/acsnano.4c09069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Multiple and ultrasensitive detection of pathogenic bacteria is critical but remains a challenge. Here, we introduce a digital assay for multiplexed and target DNA amplification-free detection of pathogenic bacteria using botryoidal-like fluorescent polystyrene dots (PS-dots), which were first prepared through the hybridization reaction between primer exchange reaction chains and polystyrene nanospheres that encapsulated polymer dots for signal preamplification. The pathogenic bacteria's DNA was cleavaged by the argonaute (Ago) protein-mediated multiple and precise cleavage reactions, where the obtained target sequences bridged the magnetic beads (MBs) and botryoidal-like PS-dots via a hybridization reaction, and the fluorescent MB-botryoidal PS-dot complexes were utilized as digital probes based on colors and sizes for digital encoding. An artificial-intelligence-fluorescent microsphere counting algorithm was applied to identify and count the fluorescent MBs for digital readout. This digital assay combined the ultrabright botryoidal-like PS-dots with Clostridium butyricum Ago's precise enzyme cleavage properties, achieving simultaneous detection of three pathogenic bacteria with a linearity range from 102 to 106 CFU/mL without target DNA amplification within 1.5 h. This digital assay has also been applied to detect aquatic and clinical samples with accepted accuracy (98%), which offers an avenue for a next-generation multiplexed digital platform for pathogenic bacteria analysis.
Collapse
Affiliation(s)
- Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
3
|
Lee HW, Yoon SR, Dang YM, Kang M, Lee K, Ha JH, Bae JW. Presence of an ultra-small microbiome in fermented cabbages. PeerJ 2023; 11:e15680. [PMID: 37483986 PMCID: PMC10358336 DOI: 10.7717/peerj.15680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Ultramicrobacteria (UMB), also known as ultra-small bacteria, are tiny bacteria with a size less than 0.1 µm3. They have a high surface-to-volume ratio and are found in various ecosystems, including the human body. UMB can be classified into two types: one formed through cell contraction and the other that maintains a small size. The ultra-small microbiome (USM), which may contain UMB, includes all bacteria less than 0.2 µm in size and is difficult to detect with current methods. However, it poses a potential threat to food hygiene, as it can pass through sterilization filters and exist in a viable but non-culturable (VBNC) state. The data on the USM of foods is limited. Some bacteria, including pathogenic species, are capable of forming UMB under harsh conditions, making it difficult to detect them through conventional culture techniques. Methods The study described above focused on exploring the diversity of USM in fermented cabbage samples from three different countries (South Korea, China, and Germany). The samples of fermented cabbage (kimchi, suancai, and sauerkraut) were purchased and stored in chilled conditions at approximately 4 °C until filtration. The filtration process involved two steps of tangential flow filtration (TFF) using TFF cartridges with different pore sizes (0.2 µm and 100 kDa) to separate normal size bacteria (NM) and USM. The USM and NM isolated via TFF were stored in a refrigerator at 4 °C until DNA extraction. The extracted DNA was then amplified using PCR and the full-length 16S rRNA gene was sequenced using single-molecule-real-time (SMRT) sequencing. The transmission electron microscope (TEM) was used to confirm the presence of microorganisms in the USM of fermented cabbage samples. Results To the best of our knowledge, this is the first study to identify the differences between USM and NM in fermented cabbages. Although the size of the USM (average 2,171,621 bp) was smaller than that of the NM (average 15,727,282 bp), diversity in USM (average H' = 1.32) was not lower than that in NM (average H' = 1.22). In addition, some members in USM probably underwent cell shrinkage due to unfavorable environments, while others maintained their size. Major pathogens were not detected in the USM in fermented cabbages. Nevertheless, several potentially suspicious strains (genera Cellulomonas and Ralstonia) were detected. Our method can be used to screen food materials for the presence of USM undetectable via conventional methods. USM and NM were efficiently separated using tangential flow filtration and analyzed via single-molecule real-time sequencing. The USM of fermented vegetables exhibited differences in size, diversity, and composition compared with the conventional microbiome. This study could provide new insights into the ultra-small ecosystem in fermented foods, including fermented cabbages.
Collapse
Affiliation(s)
- Hae-Won Lee
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - So-Ra Yoon
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Yun-Mi Dang
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Miran Kang
- Practical Technology Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Kwangho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Hyung Ha
- Hygienic Safety ⋅ Materials Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Opportunities and Challenges of Understanding Community Assembly in Spontaneous Food Fermentation. Foods 2023; 12:foods12030673. [PMID: 36766201 PMCID: PMC9914028 DOI: 10.3390/foods12030673] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Spontaneous fermentations that do not rely on backslopping or industrial starter cultures were especially important to the early development of society and are still practiced around the world today. While current literature on spontaneous fermentations is observational and descriptive, it is important to understand the underlying mechanism of microbial community assembly and how this correlates with changes observed in microbial succession, composition, interaction, and metabolite production. Spontaneous food and beverage fermentations are home to autochthonous bacteria and fungi that are naturally inoculated from raw materials, environment, and equipment. This review discusses the factors that play an important role in microbial community assembly, particularly focusing on commonly reported yeasts and bacteria isolated from spontaneously fermenting food and beverages, and how this affects the fermentation dynamics. A wide range of studies have been conducted in spontaneously fermented foods that highlight some of the mechanisms that are involved in microbial interactions, niche adaptation, and lifestyle of these microorganisms. Moreover, we will also highlight how controlled culture experiments provide greater insight into understanding microbial interactions, a modest attempt in decoding the complexity of spontaneous fermentations. Further research using specific in vitro microbial models to understand the role of core microbiota are needed to fill the knowledge gap that currently exists in understanding how the phenotypic and genotypic expression of these microorganisms aid in their successful adaptation and shape fermentation outcomes. Furthermore, there is still a vast opportunity to understand strain level implications on community assembly. Translating these findings will also help in improving other fermentation systems to help gain more control over the fermentation process and maintain consistent and superior product quality.
Collapse
|
5
|
Thilakarathna WPDW, Yu CHJ, Rupasinghe HPV. Variations in nutritional and microbial composition of napa cabbage kimchi during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. P. D. Wass Thilakarathna
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| | - Cindy H. J. Yu
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences Faculty of Agriculture Dalhousie University Truro Nova Scotia Canada
| |
Collapse
|
6
|
Lee W, Choi HJ, Zin H, Kim E, Yang SM, Hwang J, Kwak HS, Kim SH, Kim HY. Effect of Enterotoxigenic Escherichia coli on Microbial Communities during Kimchi Fermentation. J Microbiol Biotechnol 2021; 31:1552-1558. [PMID: 34489379 PMCID: PMC9705866 DOI: 10.4014/jmb.2108.08038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
The diverse microbial communities in kimchi are dependent on fermentation period and temperature. Here, we investigated the effect of enterotoxigenic Escherichia coli (ETEC) during the fermentation of kimchi at two temperatures using high-throughput sequencing. There were no differences in pH between the control group, samples not inoculated with ETEC, and the ETEC group, samples inoculated with ETEC MFDS 1009477. The pH of the two groups, which were fermented at 10 and 25°C, decreased rapidly at the beginning of fermentation and then reached pH 3.96 and pH 3.62. In both groups, the genera Lactobacillus, Leuconostoc, and Weissella were predominant. Our result suggests that microbial communities during kimchi fermentation may be affected by the fermentation parameters, such as temperature and period, and not enterotoxigenic E. coli (ETEC).
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyo Ju Choi
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyunwoo Zin
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinhee Hwang
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyo-Sun Kwak
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea,Corresponding authors S.H. Kim E-mail:
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea,
H.Y. Kim Phone: +82-31-201-2123 Fax: +82-31-204-8116 E-mail:
| |
Collapse
|
7
|
Zhou M, Zheng X, Zhu H, Li L, Zhang L, Liu M, Liu Z, Peng M, Wang C, Li Q, Li D. Effect of Lactobacillus plantarum enriched with organic/inorganic selenium on the quality and microbial communities of fermented pickles. Food Chem 2021; 365:130495. [PMID: 34243128 DOI: 10.1016/j.foodchem.2021.130495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023]
Abstract
Lactobacillus enriched with organic/inorganic selenium and pickles fermented with the Lactobacillus plantarum R were prepared. The results showed that selenium-enriched Lactobacillus plantarum R enhanced the antioxidant capacity, inhibition rate of advanced glycation end-products (AGEs), nitrite degradation, and the organic acid production of fermented pickles, while Lactobacillus plantarum R enriched with inorganic selenium (R-Se-IN) showed the best performance. Twenty-three aroma-active substances and seven characteristic compounds were detected in the R-Se-IN group. Moreover, the bacterial community result revealed that Lactococcus, Lactobacillus, and Leuconostoc were predominant in the R-Se-IN group, while the other groups contained Enterobacter, Halomonas, and Klebsiella. Furthermore, the correlations between environmental factors, differential flavor substances, and microbial communities were explored based on multivariate statistical analysis. These results indicate that the addition of Lactobacillus plantarum R enriched with organic/inorganic selenium influenced the environmental factors, differential flavor substances, and microbial communities of the fermented pickles.
Collapse
Affiliation(s)
- Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Xin Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Hanjian Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Leibing Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Lin Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Menglin Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zeping Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Mingye Peng
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Qin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
8
|
Antimicrobial Resistance Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review of Highlights and Advantages. Microorganisms 2021; 9:microorganisms9050923. [PMID: 33925810 PMCID: PMC8146338 DOI: 10.3390/microorganisms9050923] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance is a major public health problem and is mainly due to the indiscriminate use of antimicrobials in human and veterinary medicine. The consumption of animal-based foods can contribute to the transfer of these genes between animal and human bacteria. Resistant and multi-resistant bacteria such as Salmonella spp. and Campylobacter spp. have been detected both in animal-based foods and in production environments such as farms, industries and slaughterhouses. This review aims to compile the techniques for detecting antimicrobial resistance using traditional and molecular methods, highlighting their advantages and disadvantages as well as the effectiveness and confidence of their results.
Collapse
|
9
|
Bacteriocinogenic Bacillus spp. Isolated from Korean Fermented Cabbage (Kimchi)—Beneficial or Hazardous? FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacillus velezensis ST03 and ST32, Bacillus amyloliquefaciens ST06 and ST109, and Bacillus subtilis ST08 were isolated from artisanal-produced kimchi and were identified based on 16S rRNA partial sequencing. DNA obtained from the investigated bacilli generated positive results for lichenicidin, iturin, subtilosin, and surfactin on a strain-specific basis. The strains were found to produce antimicrobial metabolites with activity levels ranging between 800 and 1600 AU/mL on a strain-specific basis, as determined against Listeria monocytogenes ATCC15313. Moreover, all tested strains in this study were still active after treatment with proteolytic enzymes, even with reduced inhibition zones compared to the controls, pointing to additional antimicrobial activity possibly related to a non-proteinaceous molecular structure. Most probably these strains may express surfactin as an additional factor in their complex antimicrobial activity. B. amyloliquefaciens ST09 and B. velezensis ST03 and ST32 were characterized as positive for β-hemolysis. B. subtilis ST08 was shown to be positive for hblC and nheC and B. amyloliquefaciens ST109 for nheB. B. amyloliquefaciens ST109 generated positive results for gelatinase activity. The ability of the studied Bacillus strains to metabolize different carbohydrate sources was done based on the API50CHB test, while the enzyme production profile was recorded by the APIZym kit. All studied strains were positive producers for biogenic amines production. Studied Bacillus spp. strains were resistant to some of the evaluated antibiotics, tested according to recommendations of CLSI and EFSA.
Collapse
|
10
|
The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing. Foods 2020; 9:foods9111568. [PMID: 33137924 PMCID: PMC7693646 DOI: 10.3390/foods9111568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022] Open
Abstract
Kimchi is recognized worldwide as the flagship food of Korea. To date, most of the currently available microbiological studies on kimchi deal with Korean manufactures. Moreover, there is a lack of knowledge on the occurrence of eumycetes in kimchi. Given these premises, the present study was aimed at investigating the bacterial and fungal dynamics occurring during the natural fermentation of an artisan non-Korean kimchi manufacture. Lactic acid bacteria were dominant, while Enterobacteriaceae, Pseudomonadaceae, and yeasts progressively decreased during fermentation. Erwinia spp., Pseudomonasveronii, Pseudomonasviridiflava, Rahnellaaquatilis, and Sphingomonas spp. were detected during the first 15 days of fermentation, whereas the last fermentation phase was dominated by Leuconostoc kimchi, together with Weissellasoli. For the mycobiota at the beginning of the fermentation process, Rhizoplaca and Pichia orientalis were the dominant Operational Taxonomic Units (OTUs) in batch 1, whereas in batch 2 Protomyces inundatus prevailed. In the last stage of fermentation, Saccharomyces cerevisiae, Candida sake,Penicillium, and Malassezia were the most abundant taxa in both analyzed batches. The knowledge gained in the present study represents a step forward in the description of the microbial dynamics of kimchi produced outside the region of origin using local ingredients. It will also serve as a starting point for further isolation of kimchi-adapted microorganisms to be assayed as potential starters for the manufacturing of novel vegetable preserves with high quality and functional traits.
Collapse
|
11
|
Xu X, Wu B, Zhao W, Lao F, Chen F, Liao X, Wu J. Shifts in autochthonous microbial diversity and volatile metabolites during the fermentation of chili pepper (Capsicum frutescens L.). Food Chem 2020; 335:127512. [PMID: 32745837 DOI: 10.1016/j.foodchem.2020.127512] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
Abstract
To reveal the potential of core bacterial and fungal communities for aroma formation in the fermentation of chili pepper, shifts in microbial diversity and volatile metabolites during the 32-day fermentation process were measured using high-throughput sequencing and gas chromatography-mass spectrometry. Rosenbergiella and Staphylococcus were the dominant bacterial genera, where Hyphopichia and Kodamaea were the most abundant fungi, in fermented chili pepper. Sixteen differential volatile metabolites were detected in fermented and unfermented samples using differential metabolomics analysis. Nine strains from the genera Hyphopichia, Staphylococcus, Rosenbergiella, and Bacillus were isolated from fermented chili pepper. The correlation of dominant microorganisms with key odorants by Spearman correlation and two-way orthogonal partial least squares analysis indicated that Hyphopichia exhibited a significant positive correlation with the formation of 11 key odorants. These findings enhance our understanding of the core functional bacterial and fungal genera involved in the production of desirable flavors in fermented chili pepper.
Collapse
Affiliation(s)
- Xinxing Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Bingbing Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Wenting Zhao
- Beijing Academy of Agricultural and Forestry Sciences, Beijing 100089, China
| | - Fei Lao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Fang Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
12
|
Liang H, He Z, Wang X, Song G, Chen H, Lin X, Ji C, Zhang S. Bacterial profiles and volatile flavor compounds in commercial Suancai with varying salt concentration from Northeastern China. Food Res Int 2020; 137:109384. [PMID: 33233086 DOI: 10.1016/j.foodres.2020.109384] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Suancai, a popular traditional fermented cabbage in northeast China, is commonly prepared by the spontaneous fermentation process at a certain salt concentration. The salt can affect the metabolites by affecting the microorganisms during Suancai fermentation. The bacterial community and volatile flavor compounds in commercial Suancai from different regions of Northeastern China at different salt concentrations were investigated using next-generation sequencing and GC-MS. Firmicutes and Cyanobacteria were the dominant phyla in the commercial Suancai, and Lactobacillus, Pediococcus, and Leuconostoc were the dominant genera. Among them, Lactobacillus and Pediococcus were considered as the biomarkers of the low and high salt Suncai, respectively. Eighty-five volatile flavor compounds were detected, and HS exhibited higher contents of volatile flavor compounds than LS. Based on the results of correlation analysis, Pediococcus were highly correlated with the alcohols and nitriles in Suancai. The contents of alcohols and nitriles significantly increased in the Suancai, fermented by Pediococcus pentosaceus. The co-inoculated fermentation of Lactobacillus plantarum and P. pentosaceus could increase the concentrations of alcohols, esters, aldehydes, hydrocarbons, and nitriles in Suancai. This study provides a perspective for understanding the ecology of Suancai fermentation and facilitating the fermentation with multispecies inoculation fermentation at an appropriate salt concentration.
Collapse
Affiliation(s)
- Huipeng Liang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Zhen He
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinyi Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Ge Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Huiying Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Sufang Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
13
|
Choi Y, Kang J, Lee Y, Seo Y, Lee H, Kim S, Lee J, Ha J, Oh H, Kim Y, Byun KH, Ha SD, Yoon Y. Quantitative microbial risk assessment for Clostridium perfringens foodborne illness following consumption of kimchi in South Korea. Food Sci Biotechnol 2020; 29:1131-1139. [PMID: 32670667 DOI: 10.1007/s10068-020-00754-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to conduct a risk assessment for Clostridium perfringens foodborne illness via kimchi consumption in South Korea. Prevalence of C. perfringens in kimchi, kimchi consumption amount and frequency, and distribution conditions (time and temperature) from manufacture to the home were determined. C. perfringens initial contamination level was estimated using Beta distribution [Beta (6, 79)]. Potential C. perfringens cell counts during distribution were predicted using the Weibull model (primary models, R 2 = 0.923-0.953) and a polynomial model [(δ = 1/(0.2385 + (- 0.0307 × Temp) + (0.0011 × Temp2)), R 2 = 0.719]. Average daily consumption data was assessed using Gamma distribution [1.0444, 91.767, RiskShift (0.16895), RiskTruncate (0, 1078)]. The mean risk of C. perfringens-associated foodborne illness following kimchi consumption was found to be 1.21 × 10-17. These results suggest that the risk of C. perfringens foodborne illness from kimchi consumption, under current conditions, can be considered to be very low in S. Korea.
Collapse
Affiliation(s)
- Yukyung Choi
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310 Korea
| | - Joohyun Kang
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310 Korea
| | - Yewon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310 Korea
| | - Yeongeun Seo
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310 Korea
| | - Heeyoung Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310 Korea
| | - Sejeong Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310 Korea
| | - Jeeyeon Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310 Korea
| | - Jimyeong Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310 Korea
| | - Hyemin Oh
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310 Korea
| | - Yujin Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310 Korea
| | - Kye-Hwan Byun
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546 Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546 Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 04310 Korea
- Risk Analysis Research Center, Sookmyung Women's University, Seoul, 04310 Korea
| |
Collapse
|
14
|
Liu P, Miao L. Multiple Batches of Fermentation Promote the Formation of Functional Microbiota in Chinese Miscellaneous-Flavor Baijiu Fermentation. Front Microbiol 2020; 11:75. [PMID: 32082290 PMCID: PMC7005924 DOI: 10.3389/fmicb.2020.00075] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Baiyunbian baijiu, the most popular miscellaneous-flavor baijiu in China, has been widely consumed for decades. Similar to many Chinese baijiu, Baiyunbian baijiu is fermented in five successive batches every year. Sensory analysis demonstrated that the raw baijiu obtained from the last two fermentation batches always has better quality than that produced from the former three batches. In this study, the microbial compositions of fungi and bacteria in each fermentation batch were investigated via high-throughput sequencing. The results showed that Bacillus, Virgibacillus, and Lactobacillus dominated the bacterial community in the last two batches, and the most prevalent fungi were Paecilomyces, Saccharomyces, and Zygosaccharomyces. In contrast, large percentages of fungi belonging to Thermomyces, Thermoascus, Monascus, and Issatchenkia and prokaryotes belonging to Acetobacter, Lactobacillus, and Thermoactinomyces were observed in the former three fermentation batches. GC-MS analysis revealed that the fermented grains sampled from the latter two batches contained high concentrations of ethyl lactate, 2,3-butanediol and ethyl caproate, which were mainly generated by co-fermentation of Lactobacillus and yeast. The high acidity of the fermented grains in the fourth and fifth fermentation batches as well as the large contents of ethanol and moisture promoted the formation of the functional microbial community. This study provides insight into factors that influenced the baijiu fermentation and is helpful for developing new fermentation techniques with higher baijiu quality.
Collapse
Affiliation(s)
- Pulin Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lihong Miao
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
15
|
Leaf-associated microbiota on perilla (Perilla frutescens var. frutescens) cultivated in South Korea to detect the potential risk of food poisoning. Food Res Int 2019; 126:108664. [DOI: 10.1016/j.foodres.2019.108664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
|
16
|
Wang D, Chen G, Tang Y, Li H, Shen W, Wang M, Liu S, Qin W, Zhang Q. Effects of temperature on paocai bacterial succession revealed by culture-dependent and culture-independent methods. Int J Food Microbiol 2019; 317:108463. [PMID: 31809966 DOI: 10.1016/j.ijfoodmicro.2019.108463] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
Paocai is a widely consumed Chinese traditional fermented vegetable product. To understand the effect of temperature on paocai fermentation flora, the bacterial community structure of paocai fermented at 10 °C, 15 °C, 25 °C and 35 °C was analyzed by culture-dependent and culture-independent methods. The results showed that increasing the fermentation temperature in a certain range is beneficial for rapid paocai acid production and shortening of the maturity period. Illumina Miseq sequencing was performed on 56 samples at different fermentation process temperatures using a culture-independent method. A total of 1,964,231 high-quality reads of 16S rRNA V3-V4 regions were obtained, and they were divided into 405 operational taxonomic units (OTUs) and identified as 213 bacterial genera. The bacterial diversity decreased with the progression of fermentation, and some spoiled samples had an increased diversity. The culture-independent method found that at 10 °C, Lactococcus appeared at the start of fermentation, Leuconostoc and Weissella appeared in the middle of fermentation, and Lactobacillus and Leuconostoc dominated fermentation in the late stage. At 15 °C, Lactococcus started fermentation, Leuconostoc appeared in the middle stage, and Lactobacillus was dominant in the late stage. At 25 °C, Lactococcus started fermentation, Weissella and Lactobacillus appeared in the middle stage, and Lactobacillus dominated fermentation in the late stage. Finally, at 35 °C, Lactococcus, Weissella, and Lactobacillus started fermentation, Weissella and Lactobacillus appeared in the middle stage, and Lactobacillus dominated fermentation in the late stage. A total of 647 strains of bacteria were isolated by culture-dependent methods and were divided into 12 genera and 19 species by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and 16S ribosomal RNA gene (rDNA) sequencing technology. More types of bacteria were isolated in the early stage of fermentation. At 10 °C, Lactococcus lactis began fermentation, and Lactobacillus brevis and Leuconostoc mesenteroides dominated acid production in the middle and late stages of paocai fermentation. At 15 °C, L. lactis initiates fermentation, while Lactobacillus plantarum dominates the acid fermentation of paocai. At 25 °C and 35 °C, there were a large number of Enterobacteriaceae bacteria in the start-up fermentation stage, and L. plantarum was dominant after 1-2 days of fermentation. Redundancy analysis (RDA) found that the lower the temperature, the more bacterial species that are produced, and the higher the temperature and the longer the time, the more obvious are the effects of L. plantarum on paocai. The results of dominant bacteria studied by culture-dependent and culture-independent methods are similar. The results indicate that most of the dominant microorganisms in the paocai fermentation system are culturable. This discovery can provide data and physical support for modernization and regulation of different types of paocai production.
Collapse
Affiliation(s)
- Dongdong Wang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, PR China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Gong Chen
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, PR China; Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, PR China
| | - Yao Tang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, PR China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Heng Li
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, PR China; Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, PR China
| | - Wenxi Shen
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, PR China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Meng Wang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, PR China.
| | - Qisheng Zhang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, PR China; Sichuan Academy of Food and Fermentation Industries, Chengdu 611130, PR China.
| |
Collapse
|
17
|
Jeong SG, Lee JY, Yoon SR, Moon EW, Ha JH. A quantitative PCR based method using propidium monoazide for specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum in kimchi cabbage (Brassica rapa L. subsp. pekinensis). Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Sobhan A, Lee J, Park MK, Oh JH. Rapid detection of Yersinia enterocolitica using a single–walled carbon nanotube-based biosensor for Kimchi product. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Xu X, Luo D, Bao Y, Liao X, Wu J. Characterization of Diversity and Probiotic Efficiency of the Autochthonous Lactic Acid Bacteria in the Fermentation of Selected Raw Fruit and Vegetable Juices. Front Microbiol 2018; 9:2539. [PMID: 30405588 PMCID: PMC6205992 DOI: 10.3389/fmicb.2018.02539] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
The diversity of indigenous lactic acid bacteria (LAB) in fermented broccoli, cherry, ginger, white radish, and white-fleshed pitaya juices was analyzed using culture-independent and -dependent approaches. The major properties of selected probiotic strains, including dynamic variations in pH, viable cell counts, antibiotic resistance, bacterial adhesion to hydrophobic compounds, and survivability during simulated gastrointestinal transit, were investigated using broccoli as the fermentation substrate. In broccoli and ginger juices, the genus Lactobacillus occupied the dominant position (abundances of 79.0 and 30.3%, respectively); in cherry and radish juices, Weissella occupied the dominant position (abundances of 78.3 and 83.2%, respectively); and in pitaya juice, Streptococcus and Lactococcus occupied the dominant positions (52.2 and 37.0%, respectively). Leuconostoc mesenteroides, Weissella cibaria/soli/confusa, Enterococcus gallinarum/durans/hirae, Pediococcus pentosaceus, Bacillus coagulans, and Lactococcus garvieae/lactis subspecies were identified by partial 16S rRNA gene sequencing. In general, the selected autochthonous LAB isolates displayed no significant differences in comparison with commercial strains with regard to growth rates or acidification in fermented broccoli juice. Among all the isolates, L. mesenteroides B4-25 exhibited the highest antibiotic resistance profile (equal to that of L. plantarum CICC20265), and suitable adhesion properties (adhesion of 13.4 ± 5.2% ∼ 36.4 ± 3.2% and 21.6 ± 1.4% ∼ 69.6 ± 2.3% to ethyl acetate and xylene, respectively). Furthermore, P. pentosaceus Ca-4 and L. mesenteroides B-25 featured the highest survival rates (22.4 ± 2.6 and 21.2 ± 1.4%, respectively), after simulated gastrointestinal transit. These results indicated a high level of diversity among the autochthonous bacterial community in fermented fruit and vegetable juices, and demonstrated the potential of these candidate probiotics for applications in fermentation.
Collapse
Affiliation(s)
- Xinxing Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Dongsheng Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Yejun Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Jihong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| |
Collapse
|
20
|
Liang H, Chen H, Ji C, Lin X, Zhang W, Li L. Dynamic and Functional Characteristics of Predominant Species in Industrial Paocai as Revealed by Combined DGGE and Metagenomic Sequencing. Front Microbiol 2018; 9:2416. [PMID: 30356774 PMCID: PMC6189446 DOI: 10.3389/fmicb.2018.02416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/20/2018] [Indexed: 01/12/2023] Open
Abstract
The microbial community during the fermentation of industrial paocai, a lactic acid fermented vegetable food, was investigated via combined denaturing gradient gel electrophoresis (DGGE) and metagenomic sequencing. Firmicutes and Proteobacteria were identified as the dominant phyla during the fermentation. DGGE results of the bacterial community analysis showed that many genera were observed during the fermentation of industrial paocai, but the same predominant genus and species were observed: Lactobacillus and Lactobacillus (L.) alimentarius/L. paralimentarius. The abundance of L. alimentarius/L. paralimentarius increased fast during the initial stage of fermentation and approximately remained constant during the later stage. Metagenomic sequencing was used to finally identify the predominant species and their genetic functions. Metabolism was the primary functions of the microbial community in industrial paocai fermentation, including carbohydrate metabolism (CM), overview (OV), amino acid metabolism (AAM), nucleotide metabolism (NM), energy metabolism (EM), etc. The predominant species L. alimentarius and L. paralimentarius were involved in plenty of pathways in metabolism and played different roles in the metabolism of carbohydrate, amino acid, lipid to form flavor compounds during industrial paocai fermentation. This study provided valuable information about the predominant species in industrial paocai and its functional properties, which could enable us to advance our understanding of the fermentation mechanism during fermentation of industrial paocai. Our results will advance the understanding of the microbial roles in the industrial paocai fermentation and provide a theoretical basis for improving the quality of industrial paocai products.
Collapse
Affiliation(s)
- Huipeng Liang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Huiying Chen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chaofan Ji
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinping Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Wenxue Zhang
- Food Eco-engineering and Biotechnology Lab, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, China
| | - Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
21
|
Yeluri Jonnala BR, McSweeney PLH, Sheehan JJ, Cotter PD. Sequencing of the Cheese Microbiome and Its Relevance to Industry. Front Microbiol 2018; 9:1020. [PMID: 29875744 PMCID: PMC5974213 DOI: 10.3389/fmicb.2018.01020] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
The microbiota of cheese plays a key role in determining its organoleptic and other physico-chemical properties. It is essential to understand the various contributions, positive or negative, of these microbial components in order to promote the growth of desirable taxa and, thus, characteristics. The recent application of high throughput DNA sequencing (HTS) facilitates an even more accurate identification of these microbes, and their functional properties, and has the potential to reveal those microbes, and associated pathways, responsible for favorable or unfavorable characteristics. This technology also facilitates a detailed analysis of the composition and functional potential of the microbiota of milk, curd, whey, mixed starters, processing environments, and how these contribute to the final cheese microbiota, and associated characteristics. Ultimately, this information can be harnessed by producers to optimize the quality, safety, and commercial value of their products. In this review we highlight a number of key studies in which HTS was employed to study the cheese microbiota, and pay particular attention to those of greatest relevance to industry.
Collapse
Affiliation(s)
- Bhagya R Yeluri Jonnala
- Food and Nutrition Deptartment, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Fermoy, Ireland
| | | | | | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
22
|
Seo SH, Park SE, Kim EJ, Lee KI, Na CS, Son HS. A GC-MS based metabolomics approach to determine the effect of salinity on Kimchi. Food Res Int 2018; 105:492-498. [DOI: 10.1016/j.foodres.2017.11.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
|