1
|
Perri G, Difonzo G, Ciraldo L, Rametta F, Gadaleta-Caldarola G, Ameur H, Nikoloudaki O, De Angelis M, Caponio F, Pontonio E. Tailor-made fermentation of sprouted wheat and barley flours and their application in bread making: A comprehensive comparison with conventional approaches in the baking industry. Curr Res Food Sci 2025; 10:101053. [PMID: 40290370 PMCID: PMC12022488 DOI: 10.1016/j.crfs.2025.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
This study investigates the development and application of type III sourdoughs, produced by fermenting sprouted wheat and barley flours with carefully selected lactic acid bacteria (LAB). Two optimized combinations of LAB strains were used: Furfurilactobacillus rossiae (CR5), Weissella confusa T6B10, and Lactiplantibacillus plantarum SB88.B4 for sprouted wheat flour; and Leuconostoc pseudomesenteroides DSM 20193, L. plantarum 7A, and F. rossiae (CR5) for sprouted barley flours. Fermentation resulted in substantial increases in peptide content (450 % in sprouted wheat flour-based sourdough and 520 % in sprouted barley flour-based sourdough) and phenolic compounds (344 % and 261 %, respectively), along with improved antioxidant activity (100 % in wheat and 40 % in barley). Among the experimental breads, those made with sprouted barley sourdough demonstrated the highest nutritional and functional benefits, including a highest content of dietary fiber, improved in vitro protein digestibility (IVPD, 81.14 %), a reduced predicted glycemic index (pGI, 84.78 %), and strong angiotensin-converting enzyme (ACE) inhibitory activity (73 %). The rheological behaviour of doughs incorporating novel type III sourdoughs was comparable to those containing type II wheat sourdoughs combined with enzymatyc enanchers, indicating their suitability for baking applications. Sensory evaluations highlighted that bread made with type III sourdough from sprouted wheat flour was appreciated for its enhanced crust and crumb colour, while bread made with sprouted barley sourdough stood out for its rich bran aroma, toasted notes, and balanced acidity. This study highlights the potential of targeted fermentation of sprouted flours as a key solution to address the growing demand for health-focused and eco-friendly innovations from both consumers and producers.
Collapse
Affiliation(s)
- Giuseppe Perri
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, Bari, I-70126, Italy
| | - Graziana Difonzo
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, Bari, I-70126, Italy
| | - Lorenzo Ciraldo
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, Bari, I-70126, Italy
| | - Federico Rametta
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, Bari, I-70126, Italy
| | - Gaia Gadaleta-Caldarola
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, Bari, I-70126, Italy
| | - Hana Ameur
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100, Bolzano, Italy
| | - Olga Nikoloudaki
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100, Bolzano, Italy
| | - Maria De Angelis
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, Bari, I-70126, Italy
| | - Francesco Caponio
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, Bari, I-70126, Italy
| | - Erica Pontonio
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, Bari, I-70126, Italy
| |
Collapse
|
2
|
Abdi R, Sharma M, Cao W, Navneet, Duizer L, Joye IJ. Sprouted wheat wholemeal as a techno-functional ingredient in hard pretzels. Food Res Int 2024; 194:114878. [PMID: 39232516 DOI: 10.1016/j.foodres.2024.114878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
There has been a growing interest in incorporating sprouted wheat wholemeal (SWW) into whole grain baking, driven by its heightened nutritional content and improved nutrient bioavailability. This study aimed to assess how substituting soft wheat flour (SWF) with various levels of wheat wholemeal (unsprouted and sprouted) impacts the quality and sensory characteristics of hard pretzel sticks, which are globally enjoyed as popular snacks. The dough samples containing wholemeal did not demonstrate the same extensibility as the SWF dough sample. Additionally, substituting SWF with wholemeal increased the resistance to extension. Analysis of the Raman spectra of SWF and two other selected dough samples containing 75 % unsprouted wheat wholemeal (UWW) or SWW indicated α-helix as the dominant protein secondary structure. As the ratio of wholemeal to SWF increased in both unsprouted and sprouted wheat pretzel samples, protein and fiber content increased and starch content decreased, resulting in a decreased peak viscosity in an RVA (Rapid Visco Analyzer) test. The findings also showed no significant difference in hardness between the SWF pretzel sample and all other samples (p > 0.05), except when SWF was replaced with the highest level (75 %) of SWW, resulting in a significantly softer texture. Color analysis revealed that the introduction of wholemeal led to a decrease in the L* value, indicating a darker surface appearance in the samples, likely due to the presence of bran. Finally, sensory evaluation determined that replacing SWF with 25 % SWW resulted in the creation of a sample most similar to SWF in terms of sensory attributes. This research paves the way for future studies and advancements in the formulation and analysis of pretzel dough, creating opportunities to improve both the quality of the product and consumer satisfaction.
Collapse
Affiliation(s)
- Reihaneh Abdi
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Madhu Sharma
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada; McCormick Canada, Mississauga, Ontario L5S 1S7, Canada
| | - Wei Cao
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada; School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Navneet
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lisa Duizer
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Iris J Joye
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
3
|
Bresciani A, Sergiacomo A, De Stefani A, Marti A. Impact of Sprouted Chickpea Grits and Flour on Dough Rheology and Bread Features. Foods 2024; 13:2698. [PMID: 39272464 PMCID: PMC11394579 DOI: 10.3390/foods13172698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigated the effects of incorporating sprouted chickpeas, at a 25% enrichment level, into bread production as either grits (90% of particles ≥500 µm) or flour (90% of particles ≤250 µm). The focus was to investigate the role of particle size on dough and bread. In addition to the functional, mixing and pasting properties of ingredients, gluten aggregation, mixing, extensional, leavening, and pasting properties of the blends were assessed during bread-making, as well as bread volume and texture. Chickpea particle size influenced water absorption capacity (1.8 for grits vs. 0.75 g/g for flour) and viscosity (245 for grits vs. 88 BU for flour), with flour showing a greater decrease in both properties. With regard to dough properties, dough development time (16.6 vs. 5.3 min), stability (14.6 vs. 4.6 min), and resistance to extension (319 vs. 235 BU) was higher, whereas extensibility was lower (105 vs. 152 mm) with grits, compared to flour. During bread-making, grits resulted in a higher specific volume (2.5 vs. 2.1 mL/g) and softer crumb (6.2 vs. 17.4 N) at all the considered storage times. In conclusion, sprouted chickpea grits can be effectively used as a new ingredient in bread-making favouring the consumption of chickpea, without compromising product quality.
Collapse
Affiliation(s)
- Andrea Bresciani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Alessio Sergiacomo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Andrea De Stefani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
4
|
Cervini M, Lobuono C, Volpe F, Curatolo FM, Scazzina F, Dall’Asta M, Giuberti G. Replacement of Native with Malted Triticale (x Triticosecale Wittmack) Flour in Dry Pasta: Technological and Nutritional Implications. Foods 2024; 13:2315. [PMID: 39123507 PMCID: PMC11312214 DOI: 10.3390/foods13152315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
The use of native and malted triticale (MT) flour in dry pasta has been limited despite the potential of triticale in cereal-based food production. In this study, triticale-based dry spaghetti with increasing levels of substitution (0, 25, 50, and 75 g/100 g w/w) of MT flour were formulated and analyzed. Samples were analyzed for technological and nutritional traits, including the in vitro starch and protein digestions. The gradual substitution of native triticale flour with MT increased (p < 0.05) the total dietary fiber content, whereas total starch decreased (p < 0.05). Adding MT flour increased the cooking loss and the stickiness of cooked pasta (p < 0.05). Using MT flour modulated the in vitro starch digestion, lowering the slowly digestible and resistant starch contents. The in vitro protein digestibility was positively affected using MT at the highest substitution level. Overall, MT could be used to formulate dry pasta products being the substitution to native triticale up to 50 g/100 g, a good compromise between nutritional quality and technological characteristics.
Collapse
Affiliation(s)
- Mariasole Cervini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.C.); (G.G.)
| | - Chiara Lobuono
- Department of Food and Drug, University of Parma, 43125 Parma, Italy; (C.L.); (F.S.)
| | - Federica Volpe
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.V.); (F.M.C.)
| | - Francesco Matteo Curatolo
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.V.); (F.M.C.)
| | - Francesca Scazzina
- Department of Food and Drug, University of Parma, 43125 Parma, Italy; (C.L.); (F.S.)
| | - Margherita Dall’Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.V.); (F.M.C.)
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.C.); (G.G.)
| |
Collapse
|
5
|
Sarabandi K, Dashipour A, Akbarbaglu Z, Peighambardoust SH, Ayaseh A, Kafil HS, Jafari SM, Mousavi Khaneghah A. Incorporation of spray-dried encapsulated bioactive peptides from coconut ( Cocos nucifera L.) meal by-product in bread formulation. Food Sci Nutr 2024; 12:4723-4734. [PMID: 39055222 PMCID: PMC11266913 DOI: 10.1002/fsn3.4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to stabilize and mask the bitterness of peptides obtained from the enzymatic hydrolysis of coconut-meal protein with maltodextrin (MD) and maltodextrin-pectin (MD-P) as carriers via spray-drying. Essential (~35%), hydrophobic (~32%), antioxidant (~15%), and bitter (~45%) amino acids comprised a significant fraction of the peptide composition (with a degree of hydrolysis of 33%). The results indicated that the peptide's production efficiency, physical and functional properties, and hygroscopicity improved after spray-drying. Morphological features of free peptides (fragile and porous structures), spray-dried with MD (wrinkled with indented structures), and MD-P combination (relatively spherical particles with smooth surfaces) were influenced by the process type and feed composition. Adding free and microencapsulated peptides to the bread formula (2% W/W) caused changes in moisture content (35%-43%), water activity (0.89-0.94), textural properties (1-1.6 N), specific volume (5.5-6 cm3/g), porosity (18%-27%), and color indices of the fortified product. MD-P encapsulated peptides in bread fortification resulted in thermal stability and increased antioxidant activity (DPPH and ABTS+ radical scavenging: 4.5%-39.4% and 31.6%-46.8%, respectively). MD-P (as a carrier) could maintain sensory characteristics and mask the bitterness of peptides in the fortified bread. The results of this research can be used to produce functional food and diet formulations.
Collapse
Affiliation(s)
| | - Alireaza Dashipour
- Department of Food Science & Technology, School of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
| | - Zahra Akbarbaglu
- Department of Food ScienceCollege of Agriculture, University of TabrizTabrizIran
| | | | - Ali Ayaseh
- Department of Food ScienceCollege of Agriculture, University of TabrizTabrizIran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design EngineeringGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical EducationTehranIran
| | | |
Collapse
|
6
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
7
|
Guo J, Qi X, Liu Y, Guan E, Wen J, Bian K. Structure-activity relationship between gluten and dough quality of sprouted wheat flour based on air classification-induced component recombination. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6905-6911. [PMID: 37312439 DOI: 10.1002/jsfa.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Air classification can separate sprouted wheat flour (SWF) into three types: coarse wheat flour (F1), medium wheat flour (F2) and fine wheat flour (F3). The gluten quality of SWF can be indirectly improved by removing inferior parts (F3). In order to reveal the underlying mechanism of this phenomenon, the composition and structural changes of gluten, as well as the rheological properties and fermentation characteristics of gluten in recombinant dough in the process of air classification of all three SWF types, were analyzed in this study. RESULTS Overall, sprouting significantly reduced the content of high-molecular-weight subunits, such as glutenin subunit and ω-gliadin. It also destroyed the structural content, such as disulfide bonds, α-helix and β-turn contents, which maintained the stability of gluten gel. Air classification made the above changes in F3 more severe but reversed them in F1. Moreover, rheological properties were more affected by gluten composition, whereas fermentation characteristics were more affected by gluten structure. CONCLUSION After air classification, particles rich in high molecular weight subunits from SWF are enriched in F1, and the gluten of F1 has more secondary structure that maintain gel stability, which ultimately lead to improved rheology properties and fermentation characteristics. F3 relatively exhibits the opppsite phenomenon. These results further reveal the potential mechanism of improvement of SWF gluten by air classification. Moreover, Thus, this study provides new perspectives for the utilization of SWF. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Guo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xiaoxiao Qi
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yuanxiao Liu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Erqi Guan
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jiping Wen
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Ke Bian
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Piazza I, Carnevali P, Faccini N, Baronchelli M, Terzi V, Morcia C, Ghizzoni R, Patrone V, Morelli L, Cervini M, Giuberti G. Combining Native and Malted Triticale Flours in Biscuits: Nutritional and Technological Implications. Foods 2023; 12:3418. [PMID: 37761126 PMCID: PMC10529920 DOI: 10.3390/foods12183418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Triticale-based biscuits were formulated with increasing substitution levels (i.e., 0, 25, 50, 75, and 100% w/w) of malted triticale flour (MTF). The products were analyzed for technological and nutritional characteristics, including the evaluation of the in vitro starch digestion. The results indicated that the substitution of triticale flour with MTF increased (p < 0.05) the total dietary fiber and ash contents. Total starch decreased (p < 0.05) when the level of MTF increased in the formulation, causing an increase in reducing sugars and an increase in the starch hydrolysis index and in the in vitro predicted glycemic index (pGI). The hardness and spread ratio values of biscuits decreased (p < 0.05) with increasing levels of MTF in the recipe. The lightness of doughs and biscuits decreased (p < 0.05) with increasing MTF levels. Overall, MTF could be used to formulate biscuits with higher dietary fiber content than native triticale flour and a medium to high in vitro glycemic index value as a function of the substitution level.
Collapse
Affiliation(s)
- Isabella Piazza
- Centre BIOGEST-SITEIA, Department of Life Science, University of Study of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia, Italy
| | - Paola Carnevali
- R&D Food Microbiology & Molecular Biology Research, Barilla G. e R. Fratelli S.p.A., 43122 Parma, Italy;
| | - Nadia Faccini
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola d’Arda, Italy; (N.F.); (M.B.); (V.T.); (C.M.); (R.G.)
| | - Marina Baronchelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola d’Arda, Italy; (N.F.); (M.B.); (V.T.); (C.M.); (R.G.)
| | - Valeria Terzi
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola d’Arda, Italy; (N.F.); (M.B.); (V.T.); (C.M.); (R.G.)
| | - Caterina Morcia
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola d’Arda, Italy; (N.F.); (M.B.); (V.T.); (C.M.); (R.G.)
| | - Roberta Ghizzoni
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola d’Arda, Italy; (N.F.); (M.B.); (V.T.); (C.M.); (R.G.)
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.P.); (L.M.); (M.C.); (G.G.)
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.P.); (L.M.); (M.C.); (G.G.)
| | - Mariasole Cervini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.P.); (L.M.); (M.C.); (G.G.)
| | - Gianluca Giuberti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.P.); (L.M.); (M.C.); (G.G.)
| |
Collapse
|
9
|
Amoah I, Ascione A, Muthanna FMS, Feraco A, Camajani E, Gorini S, Armani A, Caprio M, Lombardo M. Sustainable Strategies for Increasing Legume Consumption: Culinary and Educational Approaches. Foods 2023; 12:foods12112265. [PMID: 37297509 DOI: 10.3390/foods12112265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Legumes are nutrient-dense crops with health-promoting benefits. However, several barriers are associated with their consumption. Emerging issues including food neophobic tendencies or taboos, unclear dietary guidelines on legume consumption, health concerns, and socio-economic reasons, as well as long cooking procedures, adversely affect legume consumption frequency. Pre-treatment methods, including soaking, sprouting, and pulse electric field technology, are effective in reducing the alpha-oligosaccharides and other anti-nutritional factors, eventually lowering cooking time for legumes. Extrusion technology used for innovative development of legume-enriched products, including snacks, breakfast cereals and puffs, baking and pasta, represents a strategic way to promote legume consumption. Culinary skills such as legume salads, legume sprouts, stews, soups, hummus, and the development of homemade cake recipes using legume flour could represent effective ways to promote legume consumption. This review aims to highlight the nutritional and health effects associated with legume consumption, and strategies to improve their digestibility and nutritional profile. Additionally, proper educational and culinary approaches aimed to improve legumes intake are discussed.
Collapse
Affiliation(s)
- Isaac Amoah
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi 0023351, Ghana
| | - Angela Ascione
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Fares M S Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| |
Collapse
|
10
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Post-sprouting thermal treatment of green barley malt to produce functional clean-label ingredients: Impact on fermentation, bread-making properties and bread quality. Food Res Int 2023; 167:112696. [PMID: 37087264 DOI: 10.1016/j.foodres.2023.112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Malt flour represents a potential clean label bread improver, but a high enzymatic activity can lead to some bread defects. Thus, this study was focused on applying different thermal treatments (10 and 40 min; 70-90 °C) to green barley malt in order to promote a partial enzyme inactivation. The addition of 1.5 g of thermally treated malt (TTM) per 100 g of flour in wheat bread formulation was evaluated regarding the resulting bread-making properties, dough fermentation and overall bread quality. Activity of starch-degrading enzymes was not detectable above 80 °C/10 min. TTM incorporation improved the gas production by up to 60% during fermentation, mainly in formulations to which malts thermally treated under mild conditions have been added. Compared to untreated malt, thermal treatment reduced dough thermal weakening, improved gel strength during gelatinization and maintained low setback values. Bread collapse observed by baking follow-up was related to gas inflation and low mechanical resistance. Formulations with the addition of malts thermally treated at 70 °C for 40 min resulted in breads with higher specific volume, improved coloration and a crumb with slightly smaller pores than control and untreated malts. Thus, thermal treatment can be used as a technique to produce standardized malted flour to be used as clean label bread improvers.
Collapse
|
11
|
Schmidt M, Raczyk M. FODMAP reduction strategies for nutritionally valuable baking products: current state and future challenges. Crit Rev Food Sci Nutr 2023; 64:8036-8053. [PMID: 37000015 DOI: 10.1080/10408398.2023.2195026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Fermentable oligo-, di- and monosaccharides and polyols (FODMAP) comprise several previously unrelated carbohydrates, such as fructans, fructo-oligosaccharides, galacto-oligosaccharides, fructose (in excess of glucose), mannitol and sorbitol, and among others. For many patients with gastro-intestinal disorders, such as irritable bowel syndrome, the ingestion of FODMAP triggers symptoms and causes discomfort. Among the main contributors to the dietary FODMAP intake are baking products, in particular bread as a major global staple food. This is primarily due to the fructan content of the cereal flours, but also process induced accumulation of FODMAP is possible. To provide low-FODMAP baking products, researchers have investigated various approaches, such as bio-process reduction by yeast, lactic acid bacteria, germination of the raw material or the use of exogenous enzymes. In addition, the selection of appropriate ingredients, which are either naturally or after pretreatment suitable for low-FODMAP products, is discussed. The sensory and nutritional quality of low-FODMAP baking products is another issue, that is addressed, with particular focus on providing sufficient dietary fiber intake. Based on this information, the current state of low-FODMAP baking and future research necessities, to establish practical strategies for low-FODMAP products, are evaluated in this article.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany
| | - Marianna Raczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
12
|
Atudorei D, Mironeasa S, Codină GG. Dough Rheological Behavior and Bread Quality as Affected by Addition of Soybean Flour in a Germinated Form. Foods 2023; 12:foods12061316. [PMID: 36981241 PMCID: PMC10048470 DOI: 10.3390/foods12061316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This study analyzes the possibility of using soybeans as an addition to the main ingredients used to make bread, with the aim of improving its quality characteristics. To maximize the nutritional profile of soybeans they were subjected to the germination and lyophilization process before being used in bread making. The addition levels of 5%, 10%, 15%, and 20% germinated soybean flour (GSF) on dough rheology and bread quality were used. From the rheology point of view, the GSF addition had the effect of decreasing the values of the creep and recovery parameters: JCo, JCm, μCo, Jmax, JRo, JRm, and Jr. At the same time, the rheological parameters λC and λR increased. The GSF addition did not affect dough homogeneity as may be seen from EFLM analysis. Regarding the quality of the bread, it may be concluded that a maximum of 15% GSF addition in wheat flour had a desirable effect on loaf volume, porosity, elasticity, and sensory properties of the bread. The bread samples with GSF additions showed a higher brightness and a less pronounced red and yellow tint. When the percentage of GSF in wheat flour increased, the value of the firmness parameter increased and the value of the gumminess, cohesiveness, and resilience parameters decreased. The addition of GSF had a desirable influence on the crumb structure of the bread samples. Thus, taking into account the results of the determinations outlined above, it can be stated that GSF addition in wheat flour leads to bread samples with good quality characteristics.
Collapse
Affiliation(s)
- Denisa Atudorei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | | |
Collapse
|
13
|
Pesce F, Ponzo V, Mazzitelli D, Varetto P, Bo S, Saguy IS. Strategies to Reduce Acrylamide Formation During Food Processing Focusing on Cereals, Children and Toddler Consumption: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2164896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Francesco Pesce
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Valentina Ponzo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Davide Mazzitelli
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Paolo Varetto
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Simona Bo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - I. Sam Saguy
- Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Cao W, Petker K, Abdi R, Joye IJ. Exploring the role of the liquid phase in dough made with sprouted wheat wholemeal in bread production. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Reidzane S, Gramatina I, Galoburda R, Komasilovs V, Zacepins A, Bljahhina A, Kince T, Traksmaa A, Klava D. Composition of Polysaccharides in Hull-Less Barley Sourdough Bread and Their Impact on Physical Properties of Bread. Foods 2022; 12:foods12010155. [PMID: 36613370 PMCID: PMC9818821 DOI: 10.3390/foods12010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The complex of polysaccharides of the grain transforms during processing and modifies the physical and chemical characteristics of bread. The aim of the research was to characterize the changes of glucans, mannans and fructans in hull-less barley and wholegrain wheat breads fermented with spontaneous hull-less barley sourdough, germinated hull-less barley sourdough and yeast, as well as to analyze the impact of polysaccharides on the physical parameters of bread. By using the barley sourdoughs for wholegrain wheat bread dough fermentation, the specific volume and porosity was reduced; the hardness was not significantly increased, but the content of β-glucans was doubled. Principal component analysis indicates a higher content of β-glucans and a lower content of starch, total glucans, fructans and mannans for hull-less barley breads, but wholegrain wheat breads fermented with sourdoughs have a higher amount of starch, total glucans, fructans and mannans, and a lower content of β-glucans. The composition of polysaccharides was affected by the type of flour and fermentation method used.
Collapse
Affiliation(s)
- Sanita Reidzane
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
- Correspondence:
| | - Ilze Gramatina
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Ruta Galoburda
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Vitalijs Komasilovs
- Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Aleksejs Zacepins
- Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Anastassia Bljahhina
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tatjana Kince
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| | - Anna Traksmaa
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Dace Klava
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia
| |
Collapse
|
16
|
Dapčević-Hadnađev T, Tomić J, Škrobot D, Šarić B, Hadnađev M. Processing strategies to improve the breadmaking potential of whole-grain wheat and non-wheat flours. DISCOVER FOOD 2022. [PMCID: PMC8890466 DOI: 10.1007/s44187-022-00012-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strategies to increase the bio-functionality of staple food, such as bread, by incorporating whole-grain wheat flour or flour from other, non-wheat grains instead of refined wheat flour are often constrained with the lack of their techno-functionality, despite the associated beneficial effect on consumers' health and well-being. Most of the available studies investigating the possibilities to improve technological and sensory quality of bread prepared using whole-grain wheat and non-wheat flours still rely on formulation approaches in which different additives and novel ingredients are used as structuring agents. Less attention has been given to technological approaches which could be applied to induce structural changes on biopolymer level and thus increase the breadmaking potential of whole grains such as: modification of grain and biopolymers structure by germination, flour particle size reduction, dry-heat or hydrothermal treatment, atmospheric cold plasma, high-pressure processing or ultrasound treatment. Strategies to modify processing variables during breadmaking like dough kneading and hydration modification, sourdough fermentation or non-conventional baking techniques application are also poorly exploited for bread preparation from non-wheat grains. In this paper, the challenges and opportunities of abovementioned processing strategies for the development of bread with whole-wheat flours and non-wheat flours from underutilised gluten-containing or gluten-free cereals and pseudocereals will be reviewed throughout the whole breadmaking chain: from grain to bread and from milling to baking. Feasibility of different strategies to increase the technological performance and sensory quality of bread based on whole-grain wheat flours or flours from other, non-wheat grains will be addressed considering both the environmental, safety and nutritive advantages.
Collapse
Affiliation(s)
- Tamara Dapčević-Hadnađev
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Tomić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Dubravka Škrobot
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Bojana Šarić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Miroslav Hadnađev
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
17
|
Özacar ZZ, Atiroğlu A, Atiroğlu V, Güy N, Özacar M. Identification and antioxidant activity of natural functional microstructures produced with various neutral chemicals and bovine serum albumin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Yıltırak S, Kocadağlı T, Evrim Çelik E, Özkaynak Kanmaz E, Gökmen V. Effects of sprouting and fermentation on the formation of Maillard reaction products in different cereals heated as wholemeal. Food Chem 2022; 389:133075. [PMID: 35489263 DOI: 10.1016/j.foodchem.2022.133075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
The concentration and composition of reducing sugars and free amino acids as Maillard reaction (MR) precursors change with grain sprouting. The formation of early and advanced glycation products, and α-dicarbonyl compounds as intermediates were monitored during heating native and sprouted wholemeals, as well as during heating of yeast and sourdough fermented native and sprouted wholemeals. Sprouting increased the concentration of all MR products because of an increase in reducing sugar concentrations. Although reducing sugars were lowered due to their consumption by yeasts, fermentation did not lower the furosine concentration. Sourdough fermentation unexpectedly increased furosine because the low pH caused glucose release from polysaccharides. Glyoxal, methylglyoxal and diacetyl were found to be formed as metabolites during yeast and sourdough fermentation. Another factor affecting the MR in sprouted/fermented wholemeals was revealed to be the increased amount of total free amino acids that compete with bound lysine to react with reducing sugars.
Collapse
Affiliation(s)
- Süleyman Yıltırak
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Ecem Evrim Çelik
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Evrim Özkaynak Kanmaz
- Department of Nutrition and Dietetics, Artvin Çoruh University, 08100 Seyitler, Artvin, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
19
|
Atudorei D, Atudorei O, Codină GG. The Impact of Germinated Chickpea Flour Addition on Dough Rheology and Bread Quality. PLANTS 2022; 11:plants11091225. [PMID: 35567225 PMCID: PMC9105507 DOI: 10.3390/plants11091225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
The research focused on the effect of germinated chickpea flour (GCF) in a lyophilized form on dough rheology, microstructure and bread quality. The GCF addition levels in refined wheat flour with a low α-amylase activity were 5%, 10%, 15% and 20%, up to an optimum falling number value of the mixed flour. Generally, the dough rheological properties of water absorption, tolerance to mixing, dough consistency, dough extensibility, index of swelling, baking strength and loss tangent (tan δ) for the temperature sweep test decreased with the increased level of GCF addition, whereas the total volume of gas production and G′ and G″ modules for the temperature sweep test increased. Dough microstructure analyzed by epifluorescence light microscopy (EFLM) clearly showed a change in the starch and gluten distribution from the dough system by an increase in protein and a decrease in starch granules phase with the increased level of GCF addition in wheat flour. The bread physical characteristics (loaf volume, porosity, elasticity) and sensory ones were improved with up to 15% GCF addition in wheat flour. The bread firmness increased, whereas the bread gumminess, cohesiveness and resilience decreased with increased GCF addition in wheat flour. The bread crust and crumb color of the bread samples become darker with an increased GCF addition in the bread recipe.
Collapse
|
20
|
Elliott H, Woods P, Green BD, Nugent AP. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? NUTR BULL 2022; 47:138-156. [DOI: 10.1111/nbu.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Hannah Elliott
- Linwoods Health Foods Co. Armagh UK
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
| | | | - Brian D. Green
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
| | - Anne P. Nugent
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
- School of Agriculture and Food Sciences Institute of Food and Health University College Dublin Dublin Ireland
| |
Collapse
|
21
|
An insight into the rheology and texture assessment: The influence of sprouting treatment on the whole wheat flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Clean-label techno-functional ingredients for baking products - a review. Crit Rev Food Sci Nutr 2022; 63:7461-7476. [PMID: 35258383 DOI: 10.1080/10408398.2022.2046541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increased awareness of consumers regarding unfamiliar labels speeded up the ongoing clean label trend. As baking products are widely consumed worldwide, the reduction of non-natural baking aids and improvers is of great interest for consumer's health but also representing a big challenge for food industries. Thus, this paper aims at describing new techno-functional clean label ingredients for baked products and their production processes conditions. Firstly, it includes ingredients such as sustainable protein sources, fat replacers and leavening alternatives. Then, it addresses new process alternatives for producing baking ingredients with natural claim as well as current concepts as the natural fermentation. In particular, molecular and functional modifications of the flour are discussed regarding malting and dry heat treatments. By being considered as green and emerging technologies that improve flour functionality, the resulting ingredients can replace additives. Changes in quality and technological attributes of breads and cakes will be discussed as a consequence of the partial to total replacement of conventional ingredients. This paper provides new alternatives for the baking industry to meet the demand of a growing health-concerned population. In addition, it focused on opening up new possibilities for the food industry to go in line with the consumers' expectations.
Collapse
Affiliation(s)
| | | | | | - Alain Le-Bail
- ONIRIS-GEPEA, Nantes, France
- SFR 4202 IBSM, Nantes, France
| |
Collapse
|
23
|
Soladoye PO, Juárez M, Estévez M, Fu Y, Álvarez C. Exploring the prospects of the fifth quarter in the 21st century. Compr Rev Food Sci Food Saf 2022; 21:1439-1461. [PMID: 35029308 DOI: 10.1111/1541-4337.12879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
A variable proportion of slaughtered livestock, generally referred to as the fifth quarter, is not part of the edible dressed meat and regarded as animal byproduct. In order for the fifth quarter to play a significant role in the current effort toward a circular bio-based economy, it has to successfully support food security, social inclusivity, environmental sustainability, and a viable economy. The high volume of these low-value streams and their nutrient-dense nature can facilitate their position as a very important candidate to explore within the context of a circular bio-based economy to achieve some of the United Nations Sustainable Development Goals (UN-SDGs). While these sources have been traditionally used for various applications across different cultures and industries, it seems evident that their full potential has not yet been exploited, leaving these products more like an environmental burden rather than valuable resources. With innovation and well-targeted interdisciplinary collaborations, the potential of the fifth quarter can be fully realized. The present review intends to explore these low-value streams, their current utilization, and their potential to tackle the global challenges of increasing protein demands while preventing environmental degradation. Factors that limit widespread applications of the fifth quarter across industries and cultures will also be discussed.
Collapse
Affiliation(s)
- Philip O Soladoye
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Manuel Juárez
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Mario Estévez
- IPROCAR Research Institute, University of Extremadura, Caceres, Spain
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
24
|
Rheological Approaches of Wheat Flour Dough Enriched with Germinated Soybean and Lentil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Germination is a convenient technique that could be used to enhance the nutritional profile of legumes. Furthermore, consumers’ increasing demand for diversification of bakery products represents an opportunity to use such germinated flours in wheat-based products. Thus, this study aimed to underline the effects of soybean germinated flour (SGF) and lentil germinated flour (LGF) on the rheological behavior of dough during different processing stages and to optimize the addition level. For this purpose, flour falling number, dough properties during mixing, extension, fermentation, and dynamic rheological characteristics were evaluated. Response surface methodology (RSM) was used for the optimization of SGF and LGF addition levels in wheat flour, optimal and control samples microstructures being also investigated through epifluorescence light microscopy (EFLM). The results revealed that increased SGF and LGF addition levels led to curve configuration ratio, visco-elastic moduli, and maximum gelatinization temperature rises, while the falling number, water absorption, dough extensibility, and baking strength decreased. The interaction between SGF and LGF significantly influenced (p < 0.05) the falling number, dough consistency after 450 s, baking strength, curve configuration ratio, viscous modulus, and maximum gelatinization temperature. The optimal sample was found to contain 5.60% SGF and 3.62% LGF added in wheat flour, with a significantly lower falling number, water absorption, tolerance to kneading, dough consistency, extensibility, and initial gelatinization temperature being observed, while dough tenacity, the maximum height of gaseous production, total CO2 volume production, the volume of the gas retained in the dough at the end of the test, visco-elastic moduli and maximum gelatinization temperatures were higher compared to the control. These results underlined the effects of SGF and LGF on wheat dough rheological properties and could be helpful for novel bakery products development.
Collapse
|
25
|
Wang H, Zhang J, Wang R, Liu X, Zhang Y, Sun J, Su L, Zhang H. Improving quality attributes of sweet dumplings by germination: Effect of glutinous rice flour microstructure and physicochemical properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Sprouted grains in product development. Case studies of sprouted wheat for baking flours and fermented beverages. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Microwave and microwave-vacuum drying as alternatives to convective drying in barley malt processing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Cardone G, Rumler R, Speranza S, Marti A, Schönlechner R. Sprouting Time Affects Sorghum ( Sorghum bicolor [L.] Moench) Functionality and Bread-Baking Performance. Foods 2021; 10:foods10102285. [PMID: 34681334 PMCID: PMC8534832 DOI: 10.3390/foods10102285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Despite being considered a climate-resilient crop, sorghum is still underutilized in food processing because of the limited starch and protein functionality. For this reason, the objective of this study was to investigate the effect of sprouting time on sorghum functional properties and the possibility to exploit sprouted sorghum in bread making. In this context, red sorghum was sprouted for 24, 36, 48, 72, and 96 h at 27 °C. Sprouting time did not strongly affect the sorghum composition in terms of total starch, fiber, and protein contents. On the other hand, the developed proteolytic activity had a positive effect on oil-absorption capacity, pasting, and gelation properties. Conversely, the increased α-amylase activity in sprouted samples (≥36 h) altered starch functionality. As regards sorghum-enriched bread, the blends containing 48 h-sprouted sorghum showed high specific volume and low crumb firmness. In addition, enrichment in sprouted sorghum increased both the in vitro protein digestibility and the slowly digestible starch fraction of bread. Overall, this study showed that 48 h-sprouted sorghum enhanced the bread-making performance of wheat-based products.
Collapse
Affiliation(s)
- Gaetano Cardone
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via G. Celoria 2, 20133 Milan, Italy;
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Rubina Rumler
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Sofia Speranza
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via G. Celoria 2, 20133 Milan, Italy;
- Correspondence:
| | - Regine Schönlechner
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; (R.R.); (S.S.); (R.S.)
| |
Collapse
|
29
|
Yıltırak S, Kocadağlı T, Çelik EE, Özkaynak Kanmaz E, Gökmen V. Effects of Sprouting and Fermentation on Free Asparagine and Reducing Sugars in Wheat, Einkorn, Oat, Rye, Barley, and Buckwheat and on Acrylamide and 5-Hydroxymethylfurfural Formation during Heating. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9419-9433. [PMID: 34374283 DOI: 10.1021/acs.jafc.1c03316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Usage of sprouted grains is an increasing trend in thermally processed foods. Sprouting alters the composition of sugars and amino acids, which are Maillard reaction precursors. Free asparagine, total free amino acids, and sugars were monitored during sprouting and yeast and sourdough fermentations. Acrylamide and 5-hydroxymethylfurfural (HMF) were analyzed in heated samples. The asparagine concentration decreased up to 40% after 24-36 h of sprouting, except for buckwheat, and then increased to the initial concentration after 48 h and several folds after 72 h. The increased amount of reducing sugars after sprouting caused higher acrylamide and HMF formation even if the asparagine concentration was lower. Acrylamide and HMF formation decreased after fermentation of sprouted wholemeal because sugars and asparagine were consumed by yeast. A pH drop of 3 units by sourdough fermentation decreased acrylamide formation but increased HMF formation. Results indicated that sprouted cereal products should be produced under controlled conditions to be used in heated foods.
Collapse
Affiliation(s)
- Süleyman Yıltırak
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Ecem Evrim Çelik
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Evrim Özkaynak Kanmaz
- Department of Nutrition and Dietetics, Artvin Çoruh University, Seyitler, Artvin 08100, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
30
|
Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour. Foods 2021; 10:foods10071542. [PMID: 34359411 PMCID: PMC8304690 DOI: 10.3390/foods10071542] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/31/2023] Open
Abstract
Germinated bean flour (GBF) was obtained and incorporated in different levels (5%, 10%, 15%, 20% and 25%) into dough and bread made from refined wheat flour. The incorporation of GBF into wheat flour led to a decrease of the water absorption value, dough consistency, baking strength, extensibility and improved tolerance for mixing, total gas production and α-amylase activity. Tan δ increased in a frequency-dependent manner for the samples with a GBF addition, whereas the G’ and G” decreased with the increased value of the temperature. According to the microscopic structures of the dough samples, a decrease of the starch area may be clearly seen for the samples with high levels of GBF addition in wheat flour. The bread evaluation showed that the specific volume, porosity and elasticity increased, whereas the firmness, gumminess and chewiness decreased up to a level of 15% GBF addition in wheat flour. The color parameters L*, a* and b* of the bread samples indicated a darkening effect of GBF on the crumb and crust. From the sensory point of view, the bread up to a 15% GBF addition was well-appreciated by the panelists. According to the data obtained, GBF could be recommended for use as an improver, especially up to a level of 15% addition in the bread-making industry.
Collapse
|
31
|
Perri G, Rizzello CG, Ampollini M, Celano G, Coda R, Gobbetti M, De Angelis M, Calasso M. Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties. Foods 2021; 10:foods10071489. [PMID: 34199014 PMCID: PMC8306093 DOI: 10.3390/foods10071489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/28/2022] Open
Abstract
A comprehensive study into the potential of bioprocessing techniques (sprouting and sourdough fermentation) for improving the technological and nutritional properties of wheat breads produced using barley and lentil grains was undertaken. Dextran biosynthesis in situ during fermentation of native or sprouted barley flour (B or SB) alone or by mixing SB flour with native or sprouted lentil flour (SB-L or SB-SL) by Weissella paramesenteroides SLA5, Weissella confusa SLA4, Leuconostoc pseudomesenteroides DSM 20193 or Weissella confusa DSM 20194 was assessed. The acidification and the viscosity increase during 24 h of fermentation with and without 16% sucrose (on flour weight), to promote the dextran synthesis, were followed. After the selection of the fermentation parameters, the bioprocessing was carried out by using Leuconostoc pseudomesenteroides DSM 20193 (the best LAB dextran producer, up to 2.7% of flour weight) and a mixture of SB-SL (30:70% w/w) grains, enabling also the decrease in the raffinose family oligosaccharides. Then, the SB-SL sourdoughs containing dextran or control were mixed with the wheat flour (30% of the final dough) and leavened with baker’s yeast before baking. The use of dextran-containing sourdough allowed the production of bread with structural improvements, compared to the control sourdough bread. Compared to a baker’s yeast bread, it also markedly reduced the predicted glycemic index, increased the soluble (1.26% of dry matter) and total fibers (3.76% of dry matter) content, giving peculiar and appreciable sensory attributes.
Collapse
Affiliation(s)
- Giuseppe Perri
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | | | | | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, 00100 Helsinki, Finland;
- Helsinki Institute of Sustainability Science, Department of Food and Nutrition, University of Helsinki, 00100 Helsinki, Finland
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bozen, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.P.); (G.C.); (M.D.A.)
- Correspondence: ; Tel.: +39-080-544-2948
| |
Collapse
|
32
|
Herrera A C, Gonzalez de Mejia E. Feasibility of commercial breadmaking using chickpea as an ingredient: Functional properties and potential health benefits. J Food Sci 2021; 86:2208-2224. [PMID: 34028013 DOI: 10.1111/1750-3841.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023]
Abstract
The use of pulses, such as chickpea, has become more relevant in baking as they exhibit potential health benefits such as reduction of obesity, type 2 diabetes, and prevention of colon cancer. It is also a good source of highly bioavailable protein at a low cost. This allows companies to develop new innovative products that meet the demand for nutritional value-added baked goods. Further understanding of the baking properties and rheology of chickpea flours will allow the baking industry to overcome processing and quality challenges related to the effects caused by the addition of non-gluten-forming ingredients. Therefore, the objective of this review was to summarize the rheological properties of baking formulations using chickpea as an ingredient in order to produce quality products while preserving the nutritional aspects of this legume. It also covers health benefits linked to chickpea-specific compounds.
Collapse
Affiliation(s)
- Catherin Herrera A
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
33
|
Liu H, Li Z, Zhang X, Liu Y, Hu J, Yang C, Zhao X. The effects of ultrasound on the growth, nutritional quality and microbiological quality of sprouts. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Perri G, Coda R, Rizzello CG, Celano G, Ampollini M, Gobbetti M, De Angelis M, Calasso M. Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem 2021; 355:129638. [PMID: 33799242 DOI: 10.1016/j.foodchem.2021.129638] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/07/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Exopolysaccharides produced in situ by lactic acid bacteria during sourdough fermentation are recognized as bread texture improvers. In this study, the suitability of whole and sprouted lentil flours, added with 25% on flour weight sucrose for dextran formation by selected strains during sourdough fermentation, was evaluated. The dextran synthesized in situ by Weissella confusa SLA4 was 9.2 and 9.7% w/w flour weight in lentil and sprouted lentil sourdoughs, respectively. Wheat bread supplemented with 30% w/w sourdough showed increased specific volume and decreased crumb hardness and staling rate, compared to the control wheat bread. Incorporation of sourdoughs improved the nutritional value of wheat bread, leading to increased total and soluble fibers content, and the aroma profile. The integrated biotechnological approach, based on sourdough fermentation and germination, is a potential clean-label strategy to obtain high-fibers content foods with tailored texture, and it can further enhance the use of legumes in novel foods.
Collapse
Affiliation(s)
- Giuseppe Perri
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66 (Agnes Sjobergin katu 2), FI-00014 Helsinki, Finland; Helsinki Institute of Sustainability Science, Department of Food and Nutrition, University of Helsinki, Finland.
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Marco Ampollini
- Puratos Italia S.r.l., Via Fratelli Lumìere, 37/A, Quartiere S.P.I.P., 43122 Parma, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Piazza Università 1, 39100 Bozen, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy.
| |
Collapse
|
35
|
Yang B, Yin Y, Liu C, Zhao Z, Guo M. Effect of germination time on the compositional, functional and antioxidant properties of whole wheat malt and its end-use evaluation in cookie-making. Food Chem 2021; 349:129125. [PMID: 33535111 DOI: 10.1016/j.foodchem.2021.129125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
This study investigated the effect of germination time on compositional changes and functionality of whole wheat malt flour (WMF) as well as its influence on cookie quality. The results illustrated that malting resulted in decreases of starch, protein, fat and ash, while it increased dietary fiber, carbohydrate and energy. Gel hydration, emulsifying and foaming ability, pasting viscosity decreased significantly, particularly during the first 2 days of germination. Both bound and immobilized water in WMF decreased with increasing germination time while the concentration and antioxidant capacity of extractable and hydrolyzable phenolic compounds (EPP and HPP) increased significantly in WMF and malt-based cookies. Flours changed from an integrated granular to an irregular tousy structure during germination. The incorporation of WMF induced a distorted "honey-like" comb structure to the cookies. Conclusively, controlled germination not only improves the physicochemical, functional properties of WMF but also increases nutrition value and technological performance of malt-based cookies.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yanjing Yin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng Liu
- Shandong Taishan Beer Company, Tai'an 271000, China; Shandong Institute of Pomology, Tai'an 271018, Shandong, China
| | - Zhengtao Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Mengmeng Guo
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
36
|
Cardone G, Grassi S, Scipioni A, Marti A. Bread-making performance of durum wheat as affected by sprouting. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Suárez-Estrella D, Cardone G, Buratti S, Pagani MA, Marti A. Sprouting as a pre-processing for producing quinoa-enriched bread. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Alfeo V, Bravi E, Ceccaroni D, Sileoni V, Perretti G, Marconi O. Effect of Baking Time and Temperature on Nutrients and Phenolic Compounds Content of Fresh Sprouts Breadlike Product. Foods 2020; 9:E1447. [PMID: 33066003 PMCID: PMC7599486 DOI: 10.3390/foods9101447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Sprouting has received increasing attention because of the enhanced nutritional values of the derived products. Baking affects the nutrient availability of the end products. The aim of this study was to evaluate how different baking time and temperature affect the nutritional values of bakery products derived from fresh wheat sprouts. Results indicate that the breadlike products showed comparable total polyphenol content and the thermal processes affected the free and bound fractions. Low temperature and high exposure time appear to promote the availability of the free polyphenols and sugars, while high temperature and low exposure time appear to preserve bound polyphenols and starch. Sugar profiles were influenced by baking programs with a higher simple sugar content in the samples processed at low temperature. Phenolic acids showed a strong decrease following processing, and free and bound phenolic acids were positively influenced by high baking temperatures, while an opposite trend was detected at low temperatures. Significant differences in phenolic acid profiles were also observed with a redistribution of hydroxycinnamic acids among the bound and free fractions. It may be concluded that grain type, germination conditions, and the baking programs play a fundamental role for the production of high-nutritional-value bakery products.
Collapse
Affiliation(s)
- Vincenzo Alfeo
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Elisabetta Bravi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Dayana Ceccaroni
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Valeria Sileoni
- Department of Economics, Universitas Mercatorum, Piazza Mattei 10, 00186, Rome, Italy
| | - Giuseppe Perretti
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| |
Collapse
|
39
|
Perspectives on the Use of Germinated Legumes in the Bread Making Process, A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nowadays, it may be noticed that there is an increased interest in using germinated seeds in the daily diet. This high interest is due to the fact that in a germinated form, the seeds are highly improved from a nutritional point of view with multiple benefits for the human body. The purpose of this review was to update the studies made on the possibilities of using different types of germinated legume seeds (such as lentil, chickpea, soybean, lupin, bean) in order to obtain bakery products of good quality. This review highlights the aspects related to the germination process of the seeds, the benefits of the germination process on the seeds from a nutritional point of view, and the effects of the addition of flour from germinated seeds on the rheological properties of the wheat flour dough, but also on the physico–chemical and sensory characteristics of the bakery products obtained. All these changes on the bread making process and bread quality depend on the level and type of legume seed subjected to the germination process which are incorporated in wheat flour.
Collapse
|
40
|
Gómez M, Gutkoski LC, Bravo‐Núñez Á. Understanding whole‐wheat flour and its effect in breads: A review. Compr Rev Food Sci Food Saf 2020; 19:3241-3265. [DOI: 10.1111/1541-4337.12625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| | - Luiz C. Gutkoski
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos Universidade de Passo Fundo Passo Fundo RS Brazil
| | - Ángela Bravo‐Núñez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| |
Collapse
|
41
|
Jribi S, Sahagún M, Belorio M, Debbabi H, Gomez M. Effect of sprouting time on dough and cookies properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00407-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Wholemeal Spelt Bread Enriched with Green Spelt as a Source of Valuable Nutrients. Processes (Basel) 2020. [DOI: 10.3390/pr8040389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate the nutritional value of wholemeal bread prepared from the flour of spelt wheat (Triticum aestivum ssp. spelta) that was enriched by the addition of freeze-dried spelt grain (at proportions of 4%, 8%, and 12%, respectively, in relation to the flour weight). The spelt grain used in the study was harvested at the milk dough stage (the so-called green grain). Green spelt grain was characterized by a significantly higher content of minerals namely P, Mg, Ca and Zn compared to ripe spelt grain. Additionally, it contained significantly higher amounts of amino acids (Asp, Thr, Ser, Gly, Ala, Cys, Val, Met, Ile, Leu, Phe, Lys), lipids, as well as monounsaturated fatty acids (MUFA), and omega-3 and omega-9 acids. However, it had a lower content of palmitic, stearic, and linoleic acids, polyunsaturated fatty acids (PUFA), and omega-6 acids. The results showed that the nutritional value of bread was improved by the green spelt grain, however the ω6/ω3 ratio in bread enriched with green spelt grain was slightly less favorable than in control bread. Among all the products tested, bread enriched with a 12% proportion of green spelt grain was characterized by the highest content of almost all the amino acids (except for Pro, Cys, and Met), as well as in Mg, Zn, Mn, Cu and Fe. In addition, overall acceptability of this bread was the highest. Bread enriched with 8% of green grain contained the highest amount of P, Ca, Pro, linoleic acid, PUFA, and ω 6 acids, while bread enriched with 4% of green spelt grain had the highest content of palmitic acid and saturated fatty acids.
Collapse
|
43
|
Setia R, Dai Z, Nickerson MT, Sopiwnyk E, Malcolmson L, Ai Y. Properties and bread‐baking performance of wheat flour composited with germinated pulse flours. Cereal Chem 2020. [DOI: 10.1002/cche.10261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rashim Setia
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| | - Zhixin Dai
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| | - Elaine Sopiwnyk
- Canadian International Grains Institute (Cigi) Winnipeg MB Canada
| | | | - Yongfeng Ai
- Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon SK Canada
| |
Collapse
|
44
|
Cardone G, D’Incecco P, Casiraghi MC, Marti A. Exploiting Milling By-Products in Bread-Making: The Case of Sprouted Wheat. Foods 2020; 9:E260. [PMID: 32121490 PMCID: PMC7143436 DOI: 10.3390/foods9030260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
This research investigated the effect of sprouting on wheat bran. Bran from un-sprouted (BUW) and sprouted (BSW) wheat were characterized in terms of chemical composition, enzymatic activities, and hydration properties. In addition, the rheological properties (using GlutoPeak, Farinograph, Extensograph, and Rheofermentometer tests) and bread-making performance (color, texture, volume of bread) of wheat doughs enriched in bran at 20% replacement level were assessed. Sprouting process caused a significant decrease in phytic acid (~20%), insoluble dietary fiber (~11%), and water holding capacity (~8%), whereas simple sugars (~133%) and enzymatic activities significantly increased after processing. As regards the gluten aggregation kinetics, the BSW-blend profile was more similar to wheat than BUW-blend, indicating changes in the fiber and gluten interactions. BSW led to a worsening of the mixing and leavening properties, instead, no significant changes in extensibility were observed. Finally, BSW improved bread volume (~10%) and crumb softness (~52%). Exploiting bran from sprouted wheat might be useful to produce bread rich in fiber with enhanced characteristics.
Collapse
Affiliation(s)
| | | | | | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (G.C.); (P.D.); (M.C.C.)
| |
Collapse
|
45
|
Ma M, Sun QJ, Li M, Zhu KX. Deterioration mechanisms of high-moisture wheat-based food - A review from physicochemical, structural, and molecular perspectives. Food Chem 2020; 318:126495. [PMID: 32146308 DOI: 10.1016/j.foodchem.2020.126495] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/13/2023]
Abstract
Wheat-based products are staple foods for over a third of the world's population. However, most wheat-based staple foods are provided with a high water content to maintain naturally chewable mouthfeel, which leads to a short shelf life and limits their distribution and marketing. Understanding the fundamental mechanisms and dynamics that drive the quality deterioration is therefore essential for obtaining alternative technologies for optimal quality and extended shelf life. Here, we provide the basis for the physicochemical, structural, and molecular changes occurring in various wheat products during storage, intending to elucidate the underlying deterioration causes. Generally, more desirable qualities are obtained for fresh wheat products, both in appearance and mouthfeel. During storage, changes in the physicochemical properties, structure, main constituents, and water status contribute to the quality deterioration. Based on these changes, deterioration mechanisms are summarized to provide both theoretical and practical references for the quality regulation of high-moisture wheat-based food.
Collapse
Affiliation(s)
- Meng Ma
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Qing-Jie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
46
|
Wee MSM, Henry CJ. Reducing the glycemic impact of carbohydrates on foods and meals: Strategies for the food industry and consumers with special focus on Asia. Compr Rev Food Sci Food Saf 2020; 19:670-702. [PMID: 33325165 DOI: 10.1111/1541-4337.12525] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/01/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes is increasingly prevalent in Asia, which can be attributed to a carbohydrate-rich diet, consisting of foods in the form of grains, for example, rice, or a food product made from flours or isolated starch, for example, noodles. Carbohydrates become a health issue when they are digested and absorbed rapidly (high glycemic index), and more so when they are consumed in large quantities (high glycemic load). The principal strategies of glycemic control should thus aim to reduce the amount of carbohydrate available for digestion, reduce the rate of digestion of the food, reduce the rate of glucose absorption, and increase the rate of glucose removal from blood. From a food perspective, the composition and structure of the food can be modified to reduce the amount of carbohydrates or alter starch digestibility and glucose absorption rates via using different food ingredients and processing methods. From a human perspective, eating behavior and food choices surrounding a meal can also affect glycemic response. This review therefore identifies actionable strategies and opportunities across foods and meals that can be considered by food manufacturers or consumers. They are (a) using alternative ingredients, (b) adding functional ingredients, and (c) changing processing methods and parameters for foods, and optimizing (a) eating behavior, (b) preloading or co-ingestion of other macronutrients, and (c) meal sequence and history. The effectiveness of a strategy would depend on consumer acceptance, compatibility of the strategy with an existing food product, and whether it is economically or technologically feasible. A combination of two or more strategies is recommended for greater effectiveness and flexibility.
Collapse
Affiliation(s)
- May S M Wee
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
47
|
Lentil sprouts: a nutraceutical alternative for the elaboration of bread. Journal of Food Science and Technology 2019; 57:1817-1829. [PMID: 32327792 DOI: 10.1007/s13197-019-04215-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
The pro-health action of germinated lentils could be useful to be added with wheat flour in the production of box bread. In this work, we spectroscopically evaluate the germinated and non-germinated lentils, and use them at the concentrations of 5 and 10% for the production of box bread. The chemical and physical tests of the bread and its determination of phenolic acids and flavonoids (by HPLC) were also performed. As well as the evaluation of the quality of flour and dough used to produce the bread and the acceptance of the germinated lentil bread with a population of 20 people with diabetes or with diabetic relatives It is shown that: (1) The amplitude of photoacoustic signal obtained by photoacoustic spectroscopy is modified as a function of the percentage of germinated lentil (GL) flour (0, 5 or 10%) add to the bread; being higher the photoacoustic amplitude to higher concentration of GL in the absorption band of 300-425 nm, which is related to higher content of phenols and flavonoids. (2) The contents of phenolic acids (Sinapinic, β- resorcylic, Chlorogenic and Ferulic) and flavonoids (Quercetin and Isorhamnetin) tended to increase in the germinated lentil bread with 10% concentration of germinated lentil flour with respect to the control bread (0% GL). (3) The addition of germinated lentils flour to 5 and 10% into wheat flour to produce bread with higher hardness and less cohesiveness than bread based on wheat flour only. The Falling number indicate that there is no significant difference between the control sample and the 5% GL flour, while in the 10% GL flour there was a reduction of 21 s, with respect to the control. The effect of the germinated lentil flour percentage on the pasting properties of the flours was significant between the control and 10% GL flour. In general, the quality of the dough and flour are modified due to the addition of germinates lentils, and this affectation increases with the increase in the concentration of GL. (4) The bread added with germinated lentil has sensory acceptance with a group of people with diabetes and/or diabetic relatives in their attributes in general. The obtained results thus support the production of wheat bread with mixed germinated lentils flour, as a nutraceutical option for human consumption.
Collapse
|
48
|
Bresciani A, Marti A. Using Pulses in Baked Products: Lights, Shadows, and Potential Solutions. Foods 2019; 8:E451. [PMID: 31581614 PMCID: PMC6835306 DOI: 10.3390/foods8100451] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023] Open
Abstract
Nowadays, consumers are more conscious of the environmental and nutritional benefits of foods. Pulses-thanks to both nutritional and health-promoting features, together with their low environmental impact-satisfy the demand for high-protein/high-fiber products. However, their consumption is still somewhat limited in Western countries, due to the presence of antinutrient compounds including phytic acid, trypsin inhibitors, and some undigested oligosaccharides, which are responsible for digestive discomfort. Another limitation of eating pulses regularly is their relatively long preparation time. One way to increase the consumption of pulses is to use them as an ingredient in food formulations, such as bread and other baked products. However, some sensory and technological issues limit the use of pulses on an industrial scale; consequently, they require special attention when combined with cereal-based products. Developing formulations and/or processes to improve pulse quality is necessary to enhance their incorporation into baked products. In this context, this study provides an overview of strengths and weaknesses of pulse-enriched baked products focusing on the various strategies-such as the choice of suitable ingredients or (bio)-technological approaches-that counteract the negative effects of including pulses in baked goods.
Collapse
Affiliation(s)
- Andrea Bresciani
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy.
| | - Alessandra Marti
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
49
|
Jribi S, Sahagùn M, Debbabi H, Gomez M. Evolution of functional, thermal and pasting properties of sprouted whole durum wheat flour with sprouting time. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sarra Jribi
- National Institute of Agronomy of Tunisia (INAT) Research Unit UR17AGR01 “Valorization of the Tunisian natural and agro‐food heritage through innovation” University of Carthage 43 Avenue Charles Nicolle Tunis 1082 Tunisia
- Food Technology Area College of Agriculture Engineering University of Valladolid Palencia 34004 Spain
| | - Marta Sahagùn
- Food Technology Area College of Agriculture Engineering University of Valladolid Palencia 34004 Spain
| | - Hajer Debbabi
- National Institute of Agronomy of Tunisia (INAT) Research Unit UR17AGR01 “Valorization of the Tunisian natural and agro‐food heritage through innovation” University of Carthage 43 Avenue Charles Nicolle Tunis 1082 Tunisia
| | - Manuel Gomez
- Food Technology Area College of Agriculture Engineering University of Valladolid Palencia 34004 Spain
| |
Collapse
|
50
|
Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A. Sprouted Grains: A Comprehensive Review. Nutrients 2019; 11:E421. [PMID: 30781547 PMCID: PMC6413227 DOI: 10.3390/nu11020421] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/27/2022] Open
Abstract
In the last decade, there has been an increase in the use of sprouted grains in human diet and a parallel increase in the scientific literature dealing with their nutritional traits and phytochemical contents. This review examines the physiological and biochemical changes during the germination process, and the effects on final sprout composition in terms of macro- and micro-nutrients and bioactive compounds. The main factors affecting sprout composition are taken into consideration: genotype, environmental conditions experimented by the mother plant, germination conditions. In particular, the review deepens the recent knowledge on the possible elicitation factors useful for increasing the phytochemical contents. Microbiological risks and post-harvest technologies are also evaluated, and a brief summary is given of some important in vivo studies matching with the use of grain sprouts in the diet. All the species belonging to Poaceae (Gramineae) family as well as pseudocereals species are included.
Collapse
Affiliation(s)
- Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Fabio Stagnari
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Carlo Lerici 1, 64023 Teramo, Italy.
| | - Angelica Galieni
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63030 Monsampolo del Tronto, Italy.
| |
Collapse
|