1
|
Wen C, Cao L, Xu X, Liang L, Liu X, Zhang J, Li Y, Liu G. Effect of different phospholipids on the co-encapsulation of curcumin and oligomeric proanthocyanidins in nanoliposomes: Characteristics, physical stability, and in vitro release. Food Chem 2025; 487:144721. [PMID: 40393221 DOI: 10.1016/j.foodchem.2025.144721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/22/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
Abstract
In the present study, the differences among NLs prepared with soybean phospholipids (SPL), soybean phosphatidylcholine (PC), and sunflower seed phospholipids (SSPL) were investigated. The structural characteristics, physical stability, in vitro release, and bio-accessibility of NLs co-encapsulating curcumin (Cur) and oligomeric proanthocyanidins (OPC) were evaluated. Compared with PC and SSPL, SPL co-encapsulated Cur and OPC NLs (SPL-co-loaded-NLs) had a smaller particle size (147 nm), a more uniform shape (spherical bilayer structure), and better size homogeneity. In addition, SPL-co-loaded-NLs also possessed the highest stability, antioxidant capacity (DPPH· scavenging rate: 38.79 %, FRAP value: 0.17 mmol Fe2+/mL), and bio-accessibility (Cur: 93 %, OPC: 96 %). Furthermore, FT-IR and XRD confirmed that the higher stability of SPL-co-loaded-NLs compared with other NLs was due to their tighter lipid structure, tighter lipid aggregation, and stronger hydrophobic and hydrogen bonding interactions between active substances and phospholipids. This study was expected to provide a theoretical reference for developing functional foods with co-encapsulated active substances of different polarities.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
2
|
Nejatian M, Ghandehari Yazdi AP, Fattahi R, Saberian H, Bazsefidpar N, Assadpour E, Jafari SM. Improving the storage and oxidative stability of essential fatty acids by different encapsulation methods; a review. Int J Biol Macromol 2024; 260:129548. [PMID: 38246446 DOI: 10.1016/j.ijbiomac.2024.129548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Linoleic acid and α-linolenic acid are the only essential fatty acids (EFAs) known to the human body. Other fatty acids (FAs) of the omega-6 and omega-3 families originate from linoleic acid and α-linolenic acid, respectively, by the biological processes of elongation and desaturation. In diets with low fish consumption or vegetarianism, these FAs play an exclusive role in providing two crucial FAs for maintaining our body's vital functions; docosahexaenoic acid and arachidonic acid. However, these polyunsaturated FAs are inherently sensitive to oxidation, thereby adversely affecting the storage stability of oils containing them. In this study, we reviewed encapsulation as one of the promising solutions to increase the stability of EFAs. Accordingly, five main encapsulation techniques could be classified: (i) spray drying, (ii) freeze drying, (iii) emulsification, (iv) liposomal entrapment, and (v) other methods, including electrospinning/spraying, complex coacervation, etc. Among these, spray drying was the frequently applied technique for encapsulation of EFAs, followed by freeze dryers. In addition, maltodextrin and gum Arabic were the main wall materials in carriers. Paying attention to industrial scalability and lower cost of the encapsulation process by the other methods are the important aspects that should be given more attention in the future.
Collapse
Affiliation(s)
- Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran; Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Pouya Ghandehari Yazdi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran.
| | - Reza Fattahi
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Hamed Saberian
- Technical Centre of Agriculture, Academic Center for Education, Culture and Research (ACECR), Isfahan University of Technology, Isfahan, Iran
| | - Nooshin Bazsefidpar
- Department of Research and Development, Zarmacaron Company, Zar Industrial and Research Group, Alborz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Senna C, Soares L, Egea MB, Fernandes SS. The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules 2024; 29:440. [PMID: 38257357 PMCID: PMC10819138 DOI: 10.3390/molecules29020440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.
Collapse
Affiliation(s)
- Caroline Senna
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Luiza Soares
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Km 01, Rural Area, Rio Verde 75901-970, Brazil
| | - Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| |
Collapse
|
4
|
Fernandes SS, da Silva Cardoso P, Egea MB, Quintal Martínez JP, Segura Campos MR, Otero DM. Chia mucilage carrier systems: A review of emulsion, encapsulation, and coating and film strategies. Food Res Int 2023; 172:113125. [PMID: 37689890 DOI: 10.1016/j.foodres.2023.113125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The use of carrier systems for the protection and delivery of bioactive compounds in the agri-food industry is an area of opportunity that requires the design of new systems and sources of materials for their structure. Chia seeds (Salvia hispanica L.) produce mucilage with functional qualities that allow their application in diverse areas of the food industry. These qualities have been used to form very stable carrier systems, such as capsules, emulsions, coatings, and films that can protect and prolong the functionalities of loaded compounds (e.g., antimicrobial and antioxidant capabilities). This paper presents a review of chia mucilage-based carrier systems and their applications in food products (micro-and nanoparticles, emulsions, coatings, and films for food packaging), as well as the current technological prospects of these systems. The use of chia mucilage in coatings and films shows a high potential for use in biodegradable, edible, and organic packaging. Although many studies have been conducted on chia mucilage encapsulation systems, there is still a gap in the application of capsules and particles in food.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- Graduate Program in Chemical Engineering, School of Chemistry and Food, Federal University of Rio Grande, Campus Carreiros, Rio Grande, Rio Grande do Sul 96203-900, Brazil.
| | - Patrick da Silva Cardoso
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Campus Canela, Salvador, Bahia 40110907, Brazil.
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | - Juan Pablo Quintal Martínez
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn. Mérida, Yucatán C.P. 97203, Mexico.
| | - Maira Rubi Segura Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn. Mérida, Yucatán C.P. 97203, Mexico.
| | - Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Campus Canela, Salvador, Bahia 40110907, Brazil; Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil.
| |
Collapse
|
5
|
Keramat M, Ehsandoost E, Golmakani MT. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods 2023; 12:foods12061191. [PMID: 36981117 PMCID: PMC10048451 DOI: 10.3390/foods12061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, new approaches have been developed to limit the oxidation of oil-based food products by inhibiting peroxidation at the interfacial region. This review article describes and discusses these particular approaches. In bulk oils, modifying the polarity of antioxidants by chemical methods (e.g., esterifying antioxidants with fatty alcohol or fatty acids) and combining antioxidants with surfactants with low hydrophilic–lipophilic balance value (e.g., lecithin and polyglycerol polyricinoleate) can be effective strategies for inhibiting peroxidation. Compared to monolayer emulsions, a thick interfacial layer in multilayer emulsions and Pickering emulsions can act as a physical barrier. Meanwhile, high viscosity of the water phase in emulsion gels tends to hinder the diffusion of pro-oxidants into the interfacial region. Furthermore, applying surface-active substances with antioxidant properties (such as proteins, peptides, polysaccharides, and complexes of protein-polysaccharide, protein-polyphenol, protein-saponin, and protein-polysaccharide-polyphenol) that adsorb at the interfacial area is another novel method for enhancing oil-in-water emulsion oxidative stability. Furthermore, localizing antioxidants at the interfacial region through lipophilization of hydrophilic antioxidants, conjugating antioxidants with surfactants, or entrapping antioxidants into Pickering particles can be considered new strategies for reducing the emulsion peroxidation.
Collapse
|
6
|
Maria Jenita Peter, Lalithapriya U, Venkatachalapathy R, Sukumar M. Characterization of an effective drug carrier system for improved oxidative and thermal stability of essential fatty acids: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Maria Jenita Peter
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | | | | | - Muthusamy Sukumar
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
7
|
Xiao Z, Xia J, Zhao Q, Niu Y, Zhao D. Maltodextrin as wall material for microcapsules: A review. Carbohydr Polym 2022; 298:120113. [DOI: 10.1016/j.carbpol.2022.120113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 11/02/2022]
|
8
|
Enhancement of the Digestion of Virgin Silkworm Pupae Oil (Bombyx mori) by Forming a Two-Layer Emulsion Using Lecithin and Whey Protein Isolate. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Du Q, Zhou L, Li M, Lyu F, Liu J, Ding Y. Omega‐3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Linhui Zhou
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Minghui Li
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Fei Lyu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Jianhua Liu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| | - Yuting Ding
- College of Food Science and Technology Zhejiang University of Technology Hangzhou P. R. China
- Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province Hangzhou P. R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou) Hangzhou P. R. China
| |
Collapse
|
10
|
Copado CN, Julio LM, Diehl BW, Ixtaina VY, Tomás MC. Multilayer microencapsulation of chia seed oil by spray-drying using electrostatic deposition technology. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Bordón MG, Alasino NPX, Villanueva-Lazo Á, Carrera-Sánchez C, Pedroche-Jiménez J, Millán-Linares MDC, Ribotta PD, Martínez ML. Scale-up and optimization of the spray drying conditions for the development of functional microparticles based on chia oil. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Formulation, spray-drying and physicochemical characterization of functional powders loaded with chia seed oil and prepared by complex coacervation. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Synthesis and Characterization of Chitosan Particles Loaded with Antioxidants Extracted from Chia ( Salvia hispanica L.) Seeds. Int J Anal Chem 2021; 2021:5540543. [PMID: 34221019 PMCID: PMC8219427 DOI: 10.1155/2021/5540543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Chia (Salvia hispanica L.) seeds contain antioxidants with great benefits for health and are widely used in the food industry. Antioxidants can be degraded by environmental factors, decreasing their biological activity. Their encapsulation in chitosan (CH) particles represents an alternative to protect them and increases their application. The encapsulation efficiency (%EE) of the antioxidants in the CH particles depends on the synthesis conditions. In this study, two methods for encapsulation of chia extract in chitosan particles were evaluated: method A, 0.05% CH in 1% acetic acid was mixed with 0.07% of tripolyphosphate (TPP) and method B, 0.3% CH in 2% acetic acid was mixed with 1% TPP. The results showed that the %EE decreased with the concentration of the extract, and the FTIR analysis suggested that the compounds of the extract were adsorbed on the surface of the particles. Dynamic light scattering and zeta potential analysis showed that the particles of method A are unstable and with a tendency to agglomerate, and the particles of method B are stable. The highest %EE was obtained with 0.2 mg·mL−1 (method A) and 1.0 mg·mL−1 (method B) of the extract. The higher loading capacity (%LC) (16–72%) was exhibited by the particles of method A. The best particle yield (62–69%) was observed for method B. The particles with the extract adsorbed showed antioxidant activity (5–60%) at 25°C; however, in the particles with the extract encapsulated, the activity increased after subjecting to acidic conditions at 40°C due to the breakdown of the particles. The results obtained will allow choosing the appropriate conditions for the synthesis of chitosan particles loaded with chia extracts with specific characteristics (%EE, %LC, size, and type) according to their future applications. The particles could be used in food and pharmaceutical industries and even in edible films for food packaging.
Collapse
|
14
|
Bordón MG, Alasino NP, Martínez V, Gauna Peter R, Iturralde R, Ribotta PD, Martínez ML. Influence of the spray drying operating conditions on the estimated drying kinetics of emulsion single droplets and the properties of microencapsulated chia oil. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Spray-air contact and operating conditions in tall and short-form co-current spray dryers affect relevant physico-chemical properties of microencapsulated chia oil (Salvia hispanica L.). FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Influence of O/W emulsion interfacial ionic membranes on the encapsulation efficiency and storage stability of powder microencapsulated astaxanthin. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Salazar‐Vega IM, Julio LM, Segura‐Campos MR, Tomás MC. Chia protein hydrolysates: characterisation and emulsifying properties. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ine M. Salazar‐Vega
- Facultad de Ingeniería Química Campus de Ciencias Exactas e Ingenierías Universidad Autónoma de Yucatán Periférico Nte. Km. 33.5Tablaje Catastral 13615Col. Chuburná de Hidalgo Inn Mérida Yucatán97203México
| | - Luciana M. Julio
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos) CONICET‐CICPBA‐Facultad de Ciencias Exactas‐Universidad Nacional de La Plata (UNLP)47 y 116 La Plata Buenos Aires1900Argentina
| | - Maira R. Segura‐Campos
- Facultad de Ingeniería Química Campus de Ciencias Exactas e Ingenierías Universidad Autónoma de Yucatán Periférico Nte. Km. 33.5Tablaje Catastral 13615Col. Chuburná de Hidalgo Inn Mérida Yucatán97203México
| | - Mabel C. Tomás
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos) CONICET‐CICPBA‐Facultad de Ciencias Exactas‐Universidad Nacional de La Plata (UNLP)47 y 116 La Plata Buenos Aires1900Argentina
| |
Collapse
|
18
|
Effect of Interfacial Ionic Layers on the Food-Grade O/W Emulsion Physical Stability and Astaxanthin Retention during Spray-Drying. Foods 2021; 10:foods10020312. [PMID: 33546371 PMCID: PMC7913560 DOI: 10.3390/foods10020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
The utilization of astaxanthin in food processing is considered to be narrow because of its substandard solubility in aqueous matrices and the instability of chemical compounds during the processing of food and the instability of chemical compounds during the processing of food. The investigation sought to evaluate multilayer emulsions stabilized by ionic interfacial layers of lupin protein isolate (LPI), ι-carrageenan (CA), and chitosan (CHI) on the physical stability of the emulsion as well as the retention of astaxanthin during the spray drying process. Primary emulsion (Pr-E) was prepared by adding LPI on oil droplet surfaces containing astaxanthin. The homogenization pressure and cycles to obtain the Pr-E were investigated. The secondary emulsion (Se-E) and tertiary emulsion (Te-E) were elaborated by mixing CA/Pr-E and CHI/Se-E, respectively. Emulsion stability was assessed under different environmental stresses (pH and NaCl). Astaxanthin retention of emulsions was determined immediately after finishing the spray-drying process. The results showed that Pr-E was stabilized with 1.0% (w/v) of LPI at 50 MPa and three cycles. Se-E and Te-E were obtained with CA/Pr-E and Se-E/CHI of 70/30 and 50/50% (w/w), respectively. The Se-E was the most stable compared to the Pr-E and Te-E when subjected to different pHs; nevertheless, once the NaCl concentration rose, no variations in the ζ-potential of all emulsions studied or destabilization were observed. The Se-E and Te-E derived provided higher astaxanthin retention (>95%) during the spray-drying process compared to Pr-E (around 88%). The results indicated that these astaxanthin multilayer emulsions show considerable potential as a functional ingredient in food products.
Collapse
|
19
|
Vellido-Perez J, Ochando-Pulido J, Brito-de la Fuente E, Martinez-Ferez A. Novel emulsions–based technological approaches for the protection of omega–3 polyunsaturated fatty acids against oxidation processes – A comprehensive review. FOOD STRUCTURE-NETHERLANDS 2021. [DOI: 10.1016/j.foostr.2021.100175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Nanoliposomes and Nanoemulsions Based on Chia Seed Lipids: Preparation and Characterization. Int J Mol Sci 2020; 21:ijms21239079. [PMID: 33260309 PMCID: PMC7731419 DOI: 10.3390/ijms21239079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) are important in reducing the risk for cardiovascular, metabolic and neurodegenerative diseases. Chia (Salvia hispanica L.) seeds contain high levels of omega-3 PUFA, α-linolenic acid (ALA) in particular, and are a potential source for development of omega-3 PUFA-based products. Our objective was to obtain and characterize chia seed lipids, focusing on phospholipid fraction, and to investigate their use in the formulation of nanoemulsions (NE) and nanoliposomes (NL). Solvent-based lipid extraction was performed on the ORURO variety of chia seeds, followed by lipid composition analysis using GC and LC-MS and physico-chemical characterization of chia NL and NE. Folch extraction led to a slightly higher yield of ALA as compared to Soxhlet extraction. Lipid, phospholipid, and fatty acid composition analysis of the oil and residue revealed that the residue was rich in phospholipids; these were used to prepare NE and NL. Physico-chemical characterization showed that NE and NL were generally spherical (transmission electron microscopy), with a size of <120 nm under hydrated conditions that remained stable over 5 days. In conclusion, chia oil and phospholipid-rich residue can be used to obtain stable NL or NE using a simple method that involves spontaneous emulsification during lipid hydration, which potentially may be useful in cosmetics, pharmaceutical, and other health applications.
Collapse
|
21
|
Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors. COSMETICS 2020. [DOI: 10.3390/cosmetics7040087] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aim of this work was to review the reported information about the phospholipid composition of lecithins derived from several natural sources (lipids of plant, animal, and marine origin) and describe their main applications for the cosmetic, food, and pharmaceutical sectors. This study was carried out using specialized search engines and according to the following inclusion criteria: (i) documents published between 2005 and 2020, (ii) sources of lecithins, (iii) phospholipidic composition of lecithins, and (iv) uses and applications of lecithins. Nevertheless, this work is presented as a narrative review. Results of the review indicated that the most studied source of lecithin is soybean, followed by sunflower and egg yolk. Contrarily, only a few numbers of reports focused on lecithins derived from marine animals despite the relevance of this source in association with an even higher composition of phospholipids than in case of those derived from plant sources. Finally, the main applications of lecithins were found to be related to their nutritional aspects and ability as emulsion stabilizers and lipid component of liposomes.
Collapse
|
22
|
Electrospun nanofibers of poly(vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil. Int J Biol Macromol 2020; 160:307-318. [DOI: 10.1016/j.ijbiomac.2020.05.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
|
23
|
Wang C, Sun C, Lu W, Gul K, Mata A, Fang Y. Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Compr Rev Food Sci Food Saf 2020; 19:2955-2971. [DOI: 10.1111/1541-4337.12621] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/28/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Chenxi Wang
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Khalid Gul
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Analucia Mata
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
24
|
Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia Seeds ( Salvia hispanica L.): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 2019; 25:E11. [PMID: 31861466 PMCID: PMC6994964 DOI: 10.3390/molecules25010011] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Chia (Salvia hispanica L.) is a small seed that comes from an annual herbaceous plant, Salvia hispanica L. In recent years, usage of Chia seeds has tremendously grown due to their high nutritional and medicinal values. Chia was cultivated by Mesopotamian cultures, but then disappeared for centuries until the middle of the 20th century, when it was rediscovered. Chia seeds contain healthy ω-3 fatty acids, polyunsaturated fatty acids, dietary fiber, proteins, vitamins, and some minerals. Besides this, the seeds are an excellent source of polyphenols and antioxidants, such as caffeic acid, rosmarinic acid, myricetin, quercetin, and others. Today, chia has been analyzed in different areas of research. Researches around the world have been investigating the benefits of chia seeds in the medicinal, pharmaceutical, and food industry. Chia oil is today one of the most valuable oils on the market. Different extraction methods have been used to produce the oil. In the present study, an extensive overview of the chemical composition, nutritional properties, and antioxidant and antimicrobial activities, along with extraction methods used to produce chia oil, will be discussed.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Maja Ivanovski
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Darija Cör
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
25
|
Copado CN, Diehl BWK, Ixtaina VY, Tomás MC. Improvement of the Oxidative Stability of Spray‐Dried Microencapsulated Chia Seed Oil Using Maillard Reaction Products (MRPs). EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Claudia N. Copado
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE‐UNLP), CICPBACalle 47 and 116La Plata 1900Argentina
| | - Bernd W. K. Diehl
- Spectral Service GmbH Laboratorium fur AuftragsanalytikEmil Hoffman Str. 33D‐50996 CologneGermany
| | - Vanesa Y. Ixtaina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE‐UNLP), CICPBACalle 47 and 116La Plata 1900Argentina
- Facultad de Ciencias Agrarias y Forestales (FCAyF‐UNLP)Calle 60 and 119La Plata 1900Argentina
| | - Mabel C. Tomás
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata (CONICET), Facultad de Ciencias Exactas (FCE‐UNLP), CICPBACalle 47 and 116La Plata 1900Argentina
| |
Collapse
|
26
|
Julio LM, Copado CN, Crespo R, Diehl BW, Ixtaina VY, Tomás MC. Design of microparticles of chia seed oil by using the electrostatic layer-by-layer deposition technique. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|