1
|
Wang Y, Chen J, Xu F, Xue Y, Wang L. Effects of Moisture Migration and Changes in Gluten Network Structure during Hot Air Drying on Quality Characteristics of Instant Dough Sheets. Foods 2024; 13:3171. [PMID: 39410206 PMCID: PMC11475067 DOI: 10.3390/foods13193171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The impact of hot air drying temperature on instant dough sheets' qualities was investigated based on water migration and gluten network structure changes. The results revealed that the drying process redistributed the hydrogen proton, with deeply bound water accounting for more than 90%. The T2 value decreased as the drying temperature increased, effectively restricting moisture mobility. Meanwhile, microstructural analysis indicated that instant dough sheets presented porous structures, which significantly reduced the rehydration time of instant dough sheets (p < 0.05). In addition, elevated drying temperatures contributed to the cross-linking of proteins, as evidenced by increased GMP and disulfide bond content (reaching a maximum at 80 °C), which improved the texture and cooking properties. Hence, the water mobility was effectively reduced by controlling the drying temperature. The temperature had a facilitating impact on promoting the aggregation of the gluten network structure, which improved the quality of the instant dough sheets.
Collapse
Affiliation(s)
- Yuwen Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
- Henan Province Zhongyuan Food Laboratory, Luohe 462000, China
| | - Fei Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Yuqi Xue
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Lei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| |
Collapse
|
2
|
Yang M, Zhang J, Yan H, Pan Y, Zhou J, Zhong H, Wang J, Cai H, Feng F, Zhao M. A comprehensive review of medium chain monoglycerides on metabolic pathways, nutritional and functional properties, nanotechnology formulations and applications in food system. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38779723 DOI: 10.1080/10408398.2024.2353403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.
Collapse
Affiliation(s)
- Mengyu Yang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Heng Yan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Guangdong Qingyunshan Pharmaceutical Co., Ltd, Shaoguan, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Qiu XM, Lin Q, Zheng BD, Zhao WL, Ye J, Xiao MT. Preparation and potential antitumor activity of alginate oligosaccharides degraded by alginate lyase from Cobetia marina. Carbohydr Res 2023; 534:108962. [PMID: 37769377 DOI: 10.1016/j.carres.2023.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
It is of great significance to develop marine resources and study its potential biological activity by using alginate lyase produced by marine psychrophilic bacteria. In the previous study, a new marine psychrophilic bacterium (Cobetia marina HQZ08) was screened from the growth area of Laminaria japonica, and it was found that the strain could efficiently produce alginate-degrading enzyme (Aly30). In this paper, the ability of Aly30 to degrade alginate was optimized and the optimal degradation conditions were obtained. It was found that the main degradation product of alginate oligosaccharides was trisaccharide. In vitro cell experiments showed that the antitumor activity of low molecular weight alginate oligosaccharides was better than that of high molecular weight alginate oligosaccharides. In summary, Aly30 had the potential to produce alginate oligosaccharides with low degree of polymerization and antitumor activity, which provided a reference for the enzymatic preparation and application of alginate oligosaccharides.
Collapse
Affiliation(s)
- Xiao-Ming Qiu
- Food Engineering School, Zhangzhou Institute of Technology, Zhangzhou, 363000, China
| | - Qi Lin
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, 361021, China.
| | - Wan-Lin Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, 361021, China
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen, 361021, China.
| |
Collapse
|
4
|
Obadi M, Li Y, Xu B. Recent advances in extending the shelf life of fresh wet noodles: Influencing factors and preservation technologies. J Food Sci 2023; 88:3626-3648. [PMID: 37548645 DOI: 10.1111/1750-3841.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Fresh wet noodles (FWNs) are popular among people and have attracted increasing attention because of their characteristics of freshness, chewiness, good taste, and better maintenance of noodle flavor. However, due to the high moisture content and abundance of nutrients in FWN, they are prone to spoilage, which shortens their shelf life and reduces their quality, greatly restricting their large-scale production. Therefore, seeking effective preservation methods to prolong the shelf life is a major breakthrough for the industrialization of FWN. The present review provides a comprehensive overview of the main factors that contribute to the spoilage and degradation of FWN. These factors encompass microorganisms, moisture content, nutritional composition, enzymes, and storage temperature. Moreover, the recent developments in novel shelf-life extension technology applied to FWN, such as chemical preservatives, natural preservatives, physical treatment technologies, and composite preservation technology, are presented and discussed. From the literature reviewed, the application of technologies, such as adding preservatives, modified atmosphere packaging, microwave, cold plasma, ozone, and other technologies, has a certain effect on improving the shelf life of FWN, but the single preservation technology still has some deficiencies. In order to further improve the preservation efficiency, using two or more preservation methods is an important direction for future research on the preservation technology of FWN.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuntong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Jishou University, Jishou, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Ye X, Chen L, Su Z, Lin X, Chen J. Process optimization, texture and microstructure of novel kelp tofu. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Zhang M, Xiong Z, Ahmad I, Chen M, Xiong H. Effects of Potassium Carbonate on Quality Characteristics of Composite Starch‐Wheat Noodles and Its Mechanism. STARCH-STARKE 2022. [DOI: 10.1002/star.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengtian Zhang
- College of Food Science and Technology Huazhong Agricultural University Wuhan 9430070 China
| | - Zhouyi Xiong
- Fisheries Research Institute Wuhan Academy of Agricultural Sciences Wuhan 430207 China
| | - Ishtiaq Ahmad
- College of Food Science and Technology Huazhong Agricultural University Wuhan 9430070 China
| | - Mengting Chen
- College of Food Science and Technology Huazhong Agricultural University Wuhan 9430070 China
| | - Hanguo Xiong
- College of Food Science and Technology Huazhong Agricultural University Wuhan 9430070 China
- Hubei Juzhou Technology Co., Ltd. Room 01, Unit 1, Building 10, Optical Valley Venture Street, Dongxin Road, Wuhan East Lake New Technology Development Zone 2330 Wuhan 430040 China
| |
Collapse
|
7
|
Effect of Tremella fuciformis and Different Hydrocolloids on the Quality Characteristics of Wheat Noodles. Foods 2022; 11:foods11172617. [PMID: 36076803 PMCID: PMC9455474 DOI: 10.3390/foods11172617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
To improve the quality characteristics of noodles and enrich nutritional value, Tremella fuciformis (TF) powder was incorporated into noodles. Tremella fuciformis (TF) is an edible fungus with rich nutritional value, and TF gel has good viscosity properties. This paper explored the effect of TF on noodle quality, and compared the difference between TF and three hydrocolloids: sodium alginate (SA), guar gum (GG) and xanthan gum (XG). The results showed that TF could significantly (p < 0.05) increase the hardness, adhesiveness and chewiness of noodles, and showed a decreasing trend for additions greater than 3%. The addition of 3% TF enhanced storage modulus (G′), loss modulus (G″) and elasticity of dough. The addition of 3% TF also increased α-helix and β-sheet content, and degradation temperature in noodles. Meanwhile, it elevated the deeply bound water content and retarded water mobility. In addition, the content of slowly digestible starch and resistant starch in the noodles increased with the addition of 3% TF. It was found that the effect of 3% TF on the above data was not different from the effects of the three hydrocolloids (respectively, their optimal additions), and improved the quality characteristics of the noodles. The results provide guidance for the application of TF and the development of a new natural hydrocolloid and nutritionally fortified noodles.
Collapse
|
8
|
Chen C, Zhang M, Liu W, Lin Z. Baking characteristic improvement and starch retrogradation inhibition of Chinese pancakes by hydrocolloids. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
- International Joint Laboratory on Food Safety Jiangnan University 214122 Wuxi, Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University 214122 Wuxi, Jiangsu China
| | - Wenchao Liu
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
| | - Zhihan Lin
- Jiangsu New Herunshijia Food Co Zhenjiang Jiangsu China
| |
Collapse
|
9
|
Zhang Y, Guo X, Xiong H, Zhu T. Effect of modified soy protein isolate on dough rheological properties and noodle qualities. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yingying Zhang
- School of Food Science and Technology Henan University of Technology Zhengzhou China
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xingfeng Guo
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Haoran Xiong
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Tingwei Zhu
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
10
|
Yang YL, Guan EQ, Zhang LL, Pang JY, Li MM, Bian K. Effects of vacuum degree, mixing speed, and water amount on the moisture distribution and rheological properties of wheat flour dough. J Food Sci 2021; 86:2421-2433. [PMID: 34028019 DOI: 10.1111/1750-3841.15752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022]
Abstract
Effects of vacuum degrees (0.00, 0.02, 0.04, 0.06, 0.08 MPa) on water distribution state, tensile properties, stress relaxation properties, and viscoelasticity of dough, as well as the effects of mixing speed (50, 70, 90 rpm/min) and water content (40%, 45%, 50%) under optimum vacuum degree were studied. The results showed that the proper vacuum degree (0.06 MPa) could promote the full contact between flour and water and improved the water-holding capacity of the dough. Meanwhile, the dough had stronger tensile strength, the best viscoelasticity and the ability to recover from external deformation more quickly. Under the vacuum of 0.06 MPa, with the increasing of mixing speed, the response to the external force of dough increased first and then decreased. Adding more water reduced the strength of dough, weakened the response to external forces, and led to a significant decrease in tensile resistance and tensile area of the dough, as well as a decrease in viscoelasticity (p < 0.05). The proper vacuum mixing allowed the preparation of dough to require more water and less energy. PRACTICAL APPLICATION: In the processing of wheat flour products, vacuum mixing is considered to be beneficial to the quality of noodles and breads. As the intermediate of these products, the dough is of great significance for the monitoring of its rheological characteristics. In this study, a moderate vacuum degree led to a significant improvement in the rheological properties of the dough, and the processing performance was the best. Under the optimal vacuum degree, the influence of mixing speed and water amount cannot be ignored. Vacuum mixing is an efficient dough preparation method, which can produce certain economic benefits.
Collapse
Affiliation(s)
- Yu-Ling Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Er-Qi Guan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.,Henan Food Crop Collaborative Innovation Center, Zhengzhou, China
| | - Li-Li Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jin-Yue Pang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Meng-Meng Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Ke Bian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.,Henan Food Crop Collaborative Innovation Center, Zhengzhou, China
| |
Collapse
|
11
|
Zhang J, Feng F, Zhao M. Glycerol Monocaprylate Modulates Gut Microbiota and Increases Short-Chain Fatty Acids Production without Adverse Effects on Metabolism and Inflammation. Nutrients 2021; 13:1427. [PMID: 33922631 PMCID: PMC8147114 DOI: 10.3390/nu13051427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
Glycerol monocaprylate (GMC) is a glycerol derivative of medium-chain fatty acids (MCFAs) and is widely used as a preservative in food processing. However, GMC and its hydrolytic acid (octylic acid) have antibacterial properties that may affect the physiology and intestinal microecology of the human body. Therefore, in this study, the effects of two different dosages of GMC (150 and 1600 mg kg-1) on glucose, lipid metabolism, inflammation, and intestinal microecology of normal diet-fed C57BL/6 mice were comprehensively investigated. The obtained results showed that the level of triglycerides (TGs) in the low-dose group down-regulated significantly, and the anti-inflammatory cytokine interleukin 10 (IL-10) significantly increased, while the pro-inflammatory cytokines monocyte chemotactic protein 1 (MCP-1) and interleukin 1beta (IL-1β) in the high-dose group were significantly decreased. Importantly, GMC promoted the α-diversity of gut microbiota in normal-diet-fed mice, regardless of dosages. Additionally, it was found that the low-dose treatment of GMC significantly increased the abundance of Lactobacillus, while the high-dose treatment of GMC significantly increased the abundance of SCFA-producers such as Clostridiales, Lachnospiraceae, and Ruminococcus. Moreover, the content of short-chain fatty acids (SCFAs) was significantly increased by GMC supplementation. Thus, our research provides a novel insight into the effects of GMC on gut microbiota and physiological characteristics.
Collapse
Affiliation(s)
- Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.Z.); (F.F.)
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.Z.); (F.F.)
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.Z.); (F.F.)
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
12
|
Yang S, Shan CS, Xu YQ, Jin L, Chen ZG. Dissimilarity in sensory attributes, shelf life and spoilage bacterial and fungal microbiota of industrial-scale wet starch noodles induced by different preservatives and temperature. Food Res Int 2020; 140:109980. [PMID: 33648215 DOI: 10.1016/j.foodres.2020.109980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Shelf life, storage stability and microbial growth of wet starch noodles during storage were investigated, and spoilage microbiota was also analyzed to further reveal the decisive factor shaping the microbial community. Sensory analysis and microbiological results indicated that starch noodles treated with sodium dehydroacetate and stored at 4 °C could effectively delay the moldy decay and extend the shelf-life to 50 days, as compared to control and other treatments. In wet starch noodles, molds were found to have a higher spoilage potential than bacteria and yeasts. 16S rDNA sequencing revealed that preservatives, rather than temperature, could cause the significant difference (PERMANOVA p = 0.001) of spoilage bacterial community among samples and sodium dehydroacetate could markedly reduce the bacterial diversity. ITS rDNA sequencing results demonstrated that temperature was the decisive factor in shaping fungal spoilage microbiota (Mantel test r = 0.413, p = 0.002). Besides, Spearman correlation analysis illustrated that the abundance of some microorganisms such as Pseudomonas, Aspergillus and Penicillium were found to be significantly correlated with pH or temperature. These findings provide guiding information in the selection of preservatives and environmental condition for this high-moisture starch noodles.
Collapse
Affiliation(s)
- Sha Yang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chang-Song Shan
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yong-Qiang Xu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Lu Jin
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|