1
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2025; 38:338-370. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Guo H, Li H, Xiao Y, Wu DT, Gan RY, Kang Z, Huang Y, Gao H. Revisiting fermented buckwheat: a comprehensive examination of strains, bioactivities, and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39989084 DOI: 10.1080/10408398.2025.2468367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Buckwheat, a nutrient-rich pseudocereal, is known for its various biological properties, but its antinutritional factors, such as phytic acid and tannins, can hinder nutrient absorption. Fermentation improves buckwheat's nutritional profile by enhancing bioactive compounds, increasing digestibility, and reducing antinutritional factors. This review comprehensively examines the effects of fermentation and microbial strains on the nutritional composition and functional properties of buckwheat, highlighting their impact on health benefits and potential applications in diverse food products. Fermentation significantly boosts essential nutrients, including amino acids, vitamins, minerals, and bioactive compounds, while reducing antinutritional factors like phytic acid and protease inhibitors. It also enhances antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, and gut microbiota-regulating properties. However, there are notable gaps in research, including limited understanding of fermentation process control, heavy metal transformation, and pathogenic microorganism effects during fermentation. Addressing these gaps is crucial for optimizing the functional properties and ensuring the safety of fermented buckwheat in the food industry. Overall, fermented buckwheat holds significant potential as a functional ingredient for gluten-free foods, nondairy beverages, and other health-promoting products that cater to specific dietary needs.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yue Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan, P. R. China
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Fan Z, Li Y, Fan X, Wang P, Yang R, Xie C. Simultaneous Determination of Three Active Forms of Vitamin B12 In Situ Produced During Fermentation by LC-MS/MS. Foods 2025; 14:309. [PMID: 39856975 PMCID: PMC11764900 DOI: 10.3390/foods14020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The in situ fortification of vitamin B12 (VB12) in foods through fermentation is an effective strategy to address the deficiency of this micronutrient, and precise monitoring of VB12 production is crucial for developing VB12-fortified functional foods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is advantageous for analyzing trace substances in food due to its high sensitivity. In the present study, an LC-MS/MS method capable of rapidly and accurately quantifying three active forms of VB12, namely adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), hydroxocobalamin (OHCbl), in 8 min were developed. Meanwhile, the quantitative result of this method is not affected by pseudo-VB12 because the selected ion channels include fragments of active VB12. Maintaining light-shielding during extraction and purification is essential, as light exposure during the process can decrease the content of detected VB12 by about 30%. At last, the developed method was applied for the determination of VB12 in fermented rice bran and the cell mass of Propionibacterium freudenreichii. The results showed that AdoCbl was the predominant form of VB12 during fermentation, and the addition of cobalt did not influence the proportions of the three VB12 types. The present study reported a rapid and accurate method for the simultaneous determination of three active forms of VB12, which can effectively support the development of foods with VB12 fortification.
Collapse
Affiliation(s)
| | | | | | | | | | - Chong Xie
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.F.); (Y.L.); (X.F.); (P.W.); (R.Y.)
| |
Collapse
|
4
|
Ashagrie H, Baye K, Guibert B, Rochette I, Tisseyre P, Humblot C. The use of propionic and lactic acid bacteria to produce cobalamin and folate in injera, an Ethiopian cereal-based fermented food. Int J Food Microbiol 2025; 426:110909. [PMID: 39288569 DOI: 10.1016/j.ijfoodmicro.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Like in many developing countries, the traditional Ethiopian diet relies mainly on starchy staple foods and often lacks sufficient animal-sourced foods which are crucial for cobalamin intake. Furthermore, the concentration of folate in traditionally prepared injera, an Ethiopian cereal-based fermented staple food, is highly variable and injera contains biologically inactive corrinoids. This study aimed to improve the cobalamin and folate content of injera by using cobalamin-producing Propionibacterium freudenreichii and folate-producing Lactiplantibacillus plantarum strains, both individually and combined. Since injera is fermented using backslopping, we also assessed the ability of these strains to produce cobalamin and folate consistently across successive fermentation batches. Changes in the microbial ecosystem were monitored using real-time PCR. The theoretical contribution of the injera prepared using the selected strains to the cobalamin and folate intake of children and women of reproductive age was also calculated. Results showed that using the selected bacterial strains individually increased cobalamin (up to 19.2 μg/100 g of dry matter) and folate (up to 180.2 μg/100 g of dry matter) levels in the injera dough over several backslopping fermentation batches. Regular consumption of the injera with enhanced vitamin content produced using each strain alone would be capable of fulfilling the entire recommended nutrient intake for cobalamin and up to 29 % of the recommended intake for folate for children and women of reproductive age. However, when the strains were used together, the production of both vitamins was reduced. The presence of certain common endogenous bacterial species and genera exhibited significant variability, highlighting the complex response of the native microbiota to the different inoculation strategies employed. Future experiments should consider selecting a microbial consortium comprising non-competing microorganisms to ensure the simultaneous production of cobalamin and folate in fermented foods.
Collapse
Affiliation(s)
- Henok Ashagrie
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Benjamin Guibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Isabelle Rochette
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Pierre Tisseyre
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France.
| |
Collapse
|
5
|
Călinoiu LF, Odochean R, Martău GA, Mitrea L, Nemes SA, Ștefănescu BE, Vodnar DC. In situ fortification of cereal by-products with vitamin B12: An eco-sustainable approach for food fortification. Food Chem 2024; 460:140766. [PMID: 39126946 DOI: 10.1016/j.foodchem.2024.140766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Vitamin B12 deficiency poses significant health risks, especially among populations with limited access to animal-based foods. This study explores the utilisation of cereal bran by-products, wheat (WB) and oat bran (OB), as substrates for in situ vitamin B12 fortification through solid-state fermentation (SSF) using Propionibacterium freudenreichii. The impact of various precursors addition, including riboflavin, cobalt, nicotinamide and DMBI on vitamin B12 production, along with changes in microbial growth, chemical profiles, and vitamin B12 yields during fermentation was evaluated. Results showed that WB and OB possess favourable constituents for microbial growth and vitamin B12 synthesis. The substrates supplemented with riboflavin, cobalt, and DMBI demonstrated enhanced B12 production. In addition, pH levels are essential in microbial viability and cobalamin biosynthesis. Monosaccharides and organic acids play a crucial role, with maltose showing a strong positive association with B12 production in OB, while in WB, citric acid exhibits significant correlations with various factors.
Collapse
Affiliation(s)
- Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Răzvan Odochean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Gheorghe-Adrian Martău
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Bianca-Eugenia Ștefănescu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Loivamaa I, Sillanpää A, Deptula P, Chamlagain B, Edelmann M, Auvinen P, Nyman TA, Savijoki K, Piironen V, Varmanen P. Aerobic adaptation and metabolic dynamics of Propionibacterium freudenreichii DSM 20271: insights from comparative transcriptomics and surfaceome analysis. mSystems 2024; 9:e0061524. [PMID: 39345151 PMCID: PMC11494915 DOI: 10.1128/msystems.00615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Propionibacterium freudenreichii (PFR) DSM 20271T is a bacterium known for its ability to thrive in diverse environments and to produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271T to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably of vitamin B12, pseudovitamin-B12, propionate, and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, tricarboxylic acid cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications. IMPORTANCE The study of the response of Propionibacterium freudenreichii to aerobic growth is crucial for understanding how this bacterium adapts to different environments and produces essential compounds like vitamin B12. By investigating its physiological changes under aerobic conditions, we can gain insights into its metabolic adjustments and potential for enhanced growth. These findings not only deepen our understanding of P. freudenreichii's responses to oxygen availability but also offer valuable information for optimizing its growth in industrial applications. This research sheds light on the adaptive mechanisms of this bacterium, providing a foundation for further exploration and potential applications in various fields.
Collapse
Affiliation(s)
- Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Annika Sillanpää
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Paulina Deptula
- Department of Food Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Li W, Xu R, Qin S, Song Q, Guo B, Li M, Zhang Y, Zhang B. Cereal dietary fiber regulates the quality of whole grain products: Interaction between composition, modification and processing adaptability. Int J Biol Macromol 2024; 274:133223. [PMID: 38897509 DOI: 10.1016/j.ijbiomac.2024.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.
Collapse
Affiliation(s)
- Wen Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Shaoshuang Qin
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Qiaozhi Song
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| |
Collapse
|
8
|
Ashagrie H, Baye K, Guibert B, Seyoum Y, Rochette I, Humblot C. Cereal-based fermented foods as a source of folate and cobalamin: The role of endogenous microbiota. Food Res Int 2023; 174:113625. [PMID: 37986477 DOI: 10.1016/j.foodres.2023.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Folate (vitamin B9) and cobalamin (vitamin B12) deficiencies potentially affect millions of people worldwide, leading to different pathologies. In Ethiopia, the diet is characterized by high consumption of fermented cereal-based foods such as injera, a good source of folate but not of cobalamin, which is only found in foods of animal origin that are rarely consumed. Some of the bacteria responsible for the fermentation of cereals can synthesize cobalamin, but whether or not fermented cereal food products contain cobalamin remains underexplored. The objective of this study was to assess the folate and cobalamin content of injera collected from various households in Ethiopia at different stages of production. Global (16S rRNA gene sequencing) and specific (real-time PCR quantification of bacteria known for folate or cobalamin production) bacterial composition of these samples was assessed. UPLC-PDA was used to identify the cobalamin to see whether the active or inactive form was present. Surprisingly, teff flour contained 0.8 μg/100 g of cobalamin, most probably due to microbial contamination from the environment and the harvesting process. While fermentation increased the folate and cobalamin content in some households, their levels decreased in others. Conversely, cooking consistently reduced the level of the vitamins. Fresh injera contained, on average, 21.2 μg/100 g of folate and 2.1 μg/100 g of cobalamin, which is high, but with marked variation depending on the sample. However, the form of cobalamin was a corrinoid that is biologically inactive in humans. Injera fermentation was dominated by lactic acid bacteria, with significant correlations observed between certain bacterial species and folate and cobalamin levels. For example, a high proportion of Fructilactobacillus sanfranciscensis, a known folate consumer, was negatively correlated with the folate content of injera. On the contrary, Lactobacillus coryniformis, known for its cobalamin synthesis ability was present in high proportion in the cobalamin-rich samples. These findings highlight the complex interrelationship between microorganisms and suggest the involvement of specific bacteria in the production of folate and cobalamin during injera fermentation. Controlled fermentation using vitamin-producing bacteria is thus a promising tool to promote folate and cobalamin production in fermented food.
Collapse
Affiliation(s)
- Henok Ashagrie
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Benjamin Guibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Yohannes Seyoum
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Isabelle Rochette
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France.
| |
Collapse
|
9
|
Gharibzahedi SMT, Moghadam M, Amft J, Tolun A, Hasabnis G, Altintas Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B 12: A Critical Review. Molecules 2023; 28:7469. [PMID: 38005191 PMCID: PMC10673454 DOI: 10.3390/molecules28227469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this overview, the latest achievements in dietary origins, absorption mechanism, bioavailability assay, health advantages, cutting-edge encapsulation techniques, fortification approaches, and innovative highly sensitive sensor-based detection methods of vitamin B12 (VB12) were addressed. The cobalt-centered vitamin B is mainly found in animal products, posing challenges for strict vegetarians and vegans. Its bioavailability is highly influenced by intrinsic factor, absorption in the ileum, and liver reabsorption. VB12 mainly contributes to blood cell synthesis, cognitive function, and cardiovascular health, and potentially reduces anemia and optic neuropathy. Microencapsulation techniques improve the stability and controlled release of VB12. Co-microencapsulation of VB12 with other vitamins and bioactive compounds enhances bioavailability and controlled release, providing versatile initiatives for improving bio-functionality. Nanotechnology, including nanovesicles, nanoemulsions, and nanoparticles can enhance the delivery, stability, and bioavailability of VB12 in diverse applications, ranging from antimicrobial agents to skincare and oral insulin delivery. Staple food fortification with encapsulated and free VB12 emerges as a prominent strategy to combat deficiency and promote nutritional value. Biosensing technologies, such as electrochemical and optical biosensors, offer rapid, portable, and sensitive VB12 assessment. Carbon dot-based fluorescent nanosensors, nanocluster-based fluorescent probes, and electrochemical sensors show promise for precise detection, especially in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
| | - Maryam Moghadam
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Jonas Amft
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Aysu Tolun
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Gauri Hasabnis
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Zeynep Altintas
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
10
|
Gomes Soares M, Bevilaqua GC, Marcondes Tassi ÉM, Reolon Schmidt VC. Fermented foods and beverages: a potential in situ vitamin B12 biofortification - a literature review. Int J Food Sci Nutr 2023; 74:655-667. [PMID: 37612883 DOI: 10.1080/09637486.2023.2248422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Millions of dollars have been increasingly spent on plant-based diets. Considering that vitamin B12 is obtained from the consumption of animal-derived foods, new sources of vitamin B12 and methods of food fortification are being eagerly sought. Therefore, this work aims to evaluate advances in situ fermentation processes of food and beverages produced on a large scale and industrial applications for obtaining cobalamin-rich products. Bibliometric analysis was performed and revealed that several studies report a great capacity for in situ biofortification of B12 in foods, mostly on the use of propionic (PB) and lactic (LAB) bacteria. In this context, market potentials for such products, the main microorganisms, including simultaneous cultures, and their respective applications have been presented herein. Although knowledge on potential applications is still limited, field research has been increasingly conducted, thus revealing scientific and technological opportunities, both for the production and the stability of B12 found in plant-based foods.
Collapse
Affiliation(s)
- Marcelo Gomes Soares
- Department of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | |
Collapse
|
11
|
Kumar R, Singh U, Tiwari A, Tiwari P, Sahu JK, Sharma S. Vitamin B12: Strategies for enhanced production, fortified functional food products and health benefits. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Piwowarek K, Lipińska E, Kieliszek M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl Microbiol Biotechnol 2023; 107:2169-2208. [PMID: 36929188 PMCID: PMC10033485 DOI: 10.1007/s00253-023-12458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
13
|
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Nanofortification of vitamin B-complex in food matrix: Need, regulations, and prospects. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100100. [PMID: 35769403 PMCID: PMC9235048 DOI: 10.1016/j.fochms.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Overview of nanomaterials to fortify food with vitamin B-complex. Nanofortification of food with vitamin B-complex to overcome conventional fortification challenges. Regulatory aspects, prospects, and upcoming trends of this indispensable technology are also discussed.
Micronutrient malnutrition (or hidden hunger) caused by vitamin B-complex deficiency is a significant concern in the growing population. Vitamin B-complex plays an essential role in many body functions. With the introduction of nanotechnology in the food industry, new and innovative techniques have started to develop, which holds a promising future to end malnutrition and help achieve United Nations Sustainable Developmental Goal-2 (UN SDG-2), named as zero hunger. This review highlights the need for nanofortification of vitamin B-complex in food matrix to address challenges faced by conventional fortification methods (bioavailability, controlled release, physicochemical stability, and shelf life). Further, different nanomaterials like organic, inorganic, carbon, and composites along with their applications, are discussed in detail. Among various nanomaterials, organic nanomaterials (lipid, polysaccharides, proteins, and biopolymers) were found best for fortifying vitamin B-complex in foods. Additionally, different regulatory aspects across the globe and prospects of this upcoming field are also highlighted in this review.
Collapse
|
15
|
Abstract
Legume proteins have a promising future in the food industry due to their nutritional, environmental, and economic benefits. However, their application is still limited due to the presence of antinutritional and allergenic compounds, their poor technological properties, and their unpleasant sensory characteristics. Fermentation has been traditionally applied to counteract these inconveniences. At present, lactic acid fermentation of legumes is attracting the attention of researchers and industry in relation to the development of healthier, tasty, and technologically adapted products. Hence, we aimed to review the literature to shed light on the effect of lactic acid fermentation on legume protein composition and on their nutritional, functional, technological, and sensorial properties. The antimicrobial activity of lactic acid bacteria during legume fermentation was also considered. The heterogenicity of raw material composition (flour, concentrate, and isolate), the diversity of lactic acid bacteria (nutriment requirements, metabolic pathways, and enzyme production), and the numerous possible fermenting conditions (temperature, time, oxygen, and additional nutrients) offer an impressive range of possibilities with regard to fermented legume products. Systematic studies are required in order to determine the specific roles of the different factors. The optimal selection of these criteria will allow one to obtain high-quality fermented legume products. Fermentation is an attractive technology for the development of legume-based products that are able to satisfy consumers’ expectations from a nutritional, functional, technological, and sensory point of view.
Collapse
|
16
|
de Assis DA, Machado C, Matte C, Ayub MAZ. High Cell Density Culture of Dairy Propionibacterium sp. and Acidipropionibacterium sp.: A Review for Food Industry Applications. FOOD BIOPROCESS TECH 2022; 15:734-749. [PMID: 35069966 PMCID: PMC8761093 DOI: 10.1007/s11947-021-02748-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
The dairy bacteria Propionibacterium sp. and Acidipropionibacterium sp. are versatile and potentially probiotic microorganisms showing outstanding functionalities for the food industry, such as the production of propionic acid and vitamin B12 biosynthesis. They are the only food grade microorganisms able to produce vitamin B12. However, the fermentation batch process using these bacteria present some bioprocess limitations due to strong end-product inhibition, cells slow-growing rates, low product titer, yields and productivities, which reduces the bioprocess prospects for industrial applications. The high cell density culture (HCDC) bioprocess system is known as an efficient approach to overcome most of those problems. The main techniques applied to achieve HCDC of dairy Propionibacterium are the fed-batch cultivation, cell recycling, perfusion, extractive fermentation, and immobilization. In this review, the techniques available and reported to achieve HCDC of Propionibacterium sp. and Acidipropionibacterium sp. are discussed, and the advantages and drawbacks of this system of cultivation in relation to biomass formation, vitamin B12 biosynthesis, and propionic acid production are evaluated.
Collapse
Affiliation(s)
- Dener Acosta de Assis
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Camille Machado
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Carla Matte
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Food Science and Technology Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, PO Box 15090, ZC 91501-970 Porto Alegre, RS Brazil
| |
Collapse
|
17
|
Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis. Foods 2022; 11:foods11020135. [PMID: 35053868 PMCID: PMC8774613 DOI: 10.3390/foods11020135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Massive urbanization and increasing disposable incomes favor a rapid transition in diets and lifestyle in sub-Saharan Africa (SSA). As a result, the SSA population is becoming increasingly vulnerable to the double burden of malnutrition and obesity. This, combined with the increasing pressure to produce sufficient food and provide employment for this growing population together with the threat of climate change-induced declining crop yields, requires urgent sustainable solutions. Can an increase in the cultivation of climate-resilient crops (CRCs) and their utilization to produce attractive, convenient and nutritious bread products contribute to climate change adaptation and healthy and sustainable diets? A food system analysis of the bread food value chain in SSA indicates that replacement of refined, mostly imported, wheat in attractive bread products could (1) improve food and nutrition security, (2) bring about a shift to more nutritionally balanced diets, (3) increase economic inclusiveness and equitable benefits, and (4) improve sustainability and resilience of the food system. The food system analysis also provided systematic insight into the challenges and hurdles that need to be overcome to increase the availability, affordability and uptake of CRCs. Proposed interventions include improving the agronomic yield of CRCs, food product technology, raising consumer awareness and directing policies. Overall, integrated programs involving all stakeholders in the food system are needed.
Collapse
|
18
|
Kumari M, Bhushan B, Kokkiligadda A, Kumar V, Behare P, Tomar SK. Vitamin B12 biofortification of soymilk through optimized fermentation with extracellular B12 producing Lactobacillus isolates of human fecal origin. Curr Res Food Sci 2021; 4:646-654. [PMID: 34585144 PMCID: PMC8455482 DOI: 10.1016/j.crfs.2021.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
The present study was designed to bio-fortify the soymilk (per se a B12-free plant food matrix). The PCR-based screening characterized the human fecal samples (4 out of 15 tested) and correspondingly identified novel lactobacilli isolates (n = 4) for their B12 production potential and rest (n = 62) as negative for this attribute. Further, 3 out of the 4 selected strains showed ability for extracellular vitamin production. The most prolific strain, Lactobacillus reuteri F2, secreted B12 (132.2 ± 1.9 μg/L) in cobalamin-free-medium with the highest ratio ever reported (0.97:1.00; extra-: intra-cellular). In next stage, the soymilk was biofortified in situ with B12 during un-optimized (2.8 ± 0.3 μg/L) and optimized (156.2 ± 3.6 μg/L) fermentations with a ∼54-fold increase at Artificial Neuro Fuzzy Inference System based R value of >0.99. The added-nutrients, temperature and initial-pH were observed to be the most important fermentation variables for maximal B12 biofortification. We report Lactobacillus rhamnosus F5 as the first B12 producing (101.7 ± 3.4 μg/L) strain from this species. The cyanocobalamin was extracted, purified and separated on UFLC as nutritionally-relevant B12. Besides, the vitamin was bioavailable in an auxotrophic-mutant. The lactobacilli fermentation is suggested, therefore, as an effective approach for B12 biofortification of soymilk. PCR-based real-time screening of human fecal samples for the presence of B12-related cbiK gene. Novel report of B12 production in Lactobacillus rhamnosus species (strain F5). A rare B12-producing phenotype of Lactobacillus reuteri F2 with highest ever ratio of extracellular vs total B12 (0.95:1.0). Sequential optimization (OFAT .→ GSD → ANFIS) enhanced post-fermentation soymilk B12 levels by 54-folds. One serving size (100 mL) of L. reuteri F2-biofortified fermented soymilk offered 6.5-fold higher B12 than human RDA. The produced B12 form is nutritionally-relevant and biologically active for humans.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana, 131028, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Kumar
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana, 131028, India
| | - Pradip Behare
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - S K Tomar
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
19
|
Oh S, Cave G, Lu C. Vitamin B 12 (Cobalamin) and Micronutrient Fortification in Food Crops Using Nanoparticle Technology. FRONTIERS IN PLANT SCIENCE 2021; 12:668819. [PMID: 34497618 PMCID: PMC8419335 DOI: 10.3389/fpls.2021.668819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/22/2021] [Indexed: 06/01/2023]
Abstract
It is necessary to develop a resilient food supply that will withstand unexpected future shocks and deliver the required amounts of nutrients to consumers. By increasing the sustainability of food and agriculture, the food system will be able to handle challenges such as climate change, declining agricultural resources, growing population/urbanization, pandemics, and recessions/shortages. Micronutrient deficiency, otherwise called hidden hunger, is one of the major malnutrition consequences worldwide, particularly in middle- or low- income countries. Unlike essential mineral or nutrient compounds, micronutrients could be less of a priority due to their small levels of requirement. However, insufficient micronutrients caused critical adverse health symptoms and are excessively vital for young children's development. Therefore, there have been numerous attempts to enhance minerals and nutrients in food crops, including biofortification, food fortification, and supplementation. Based on several interventions involving micronutrients, modern technology, such as nanotechnology, can be applied to enhance sustainability and to reduce the food system's environmental impact. Previous studies have addressed various strategies or interventions to mitigate major micronutrient deficiency including iron, iodine, zinc, and vitamin A. Comparably small amounts of studies have addressed vitamin B12 deficiency and its fortification in food crops. Vitamin B12 deficiency causes serious adverse health effects, including in the nervous or blood systems, and occurs along with other micronutrient deficiencies, such as folate, iron, and zinc, worldwide, particularly in middle- and low-income countries. Mitigation for B12 deficiency has mainly focused on developing pharmacological and medical treatments such as vitamin B12 serum or supplements. Further studies are required to undertake a sustainable approach to fortify vitamin B12 in plant-based food sources for public health worldwide. This review paper highlights nanoparticle application as a promising technology for enhancing vitamin B12 without conventional genetic modification requirements. The nanoparticle can efficiently deliver the mineral/nutrient using coating techniques to targeted sites into the plant. This is mainly because nanoparticles have better solubility and permeability due to their nano size with high surface exposure. Vitamin B12-coated nanoparticles would be absorbed, translocated, and accumulated by the plant and eventually enhance the bioavailability in food crops. Furthermore, by reducing adverse environmental effects, such as leaching issues that mainly occur with conventional fertilizer usage, it would be possible to develop more sustainable food fortification.
Collapse
Affiliation(s)
- Soojin Oh
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Gareth Cave
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
20
|
Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M. New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods 2021; 10:1603. [PMID: 34359473 PMCID: PMC8304663 DOI: 10.3390/foods10071603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.
Collapse
Affiliation(s)
| | | | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (K.G.); (I.N.); (M.P.-B.)
| | | |
Collapse
|
21
|
Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater. Molecules 2021; 26:molecules26133965. [PMID: 34209563 PMCID: PMC8271679 DOI: 10.3390/molecules26133965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Propionic acid bacteria are the source of many metabolites, e.g., propionic acid and trehalose. Compared to microbiological synthesis, the production of these metabolites by petrochemical means or enzymatic conversion is more profitable. The components of microbiological media account for a large part of the costs associated with propionic fermentation, due to the high nutritional requirements of Propionibacterium. This problem can be overcome by formulating a medium based on the by-products of technological processes, which can act as nutritional sources and at the same time replace expensive laboratory preparations (e.g., peptone and yeast extract). The metabolic activity of P. freudenreichii was investigated in two different breeding environments: in a medium containing peptone, yeast extract, and biotin, and in a waste-based medium consisting of only apple pomace and potato wastewater. The highest production of propionic acid amounting to 14.54 g/L was obtained in the medium containing apple pomace and pure laboratory supplements with a yield of 0.44 g/g. Importantly, the acid production parameters in the waste medium reached almost the same level (12.71 g/L, 0.42 g/g) as the medium containing pure supplements. Acetic acid synthesis was more efficient in the waste medium; it was also characterized by a higher level of accumulated trehalose (59.8 mg/g d.s.). Thus, the obtained results show that P. freudenreichii bacteria exhibited relatively high metabolic activity in an environment with apple pomace used as a carbon source and potato wastewater used as a nitrogen source. This method of propioniate production could be cheaper and more sustainable than the chemical manner.
Collapse
|
22
|
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect.
Collapse
|