1
|
Cheng X, Peng R, Zou M, Chen Y, Li W, Wang Z, Xu J, Guo Z. Effect of phase transition of soy protein-chitosan complexes on liposomes stability: The perspective of membrane structure and inlaid stabilization mechanism. Food Chem 2025; 480:143911. [PMID: 40117822 DOI: 10.1016/j.foodchem.2025.143911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
The aim of this study was to construct soybean protein (SPI)-chitosan (CS)-liposomes (Lip) systems with different electrostatic strengths and to investigate the effects of the phase behavior and structural properties of SPI-CS on the structural homeostasis of Lip. It was demonstrated that the SPI-CS-Lips exhibited different aggregation behaviors due to the strength of the electrostatic interaction, which had an essential effect on the adsorption and stabilization of the Lips. The SPI-CS-Lips system was transparent at pH = 5 with a potential of 22.32 mV and an average particle size of 316.53 nm. At this time, the formation of more uniform polymers was also observed in the microscope. The stabilization of the SPI-CS-Lip system depended on the adsorption and fixed-point embedding of SPI-CS and Lip. From the membrane structural perspective, the lateral stacking efficiency of the phospholipid molecules was increased in the SPI-CS-Lip system at pH = 5, with the most excellent stiffening behavior exhibited by the Lip. This study was conducted to provide theoretical support for the construction and mechanism exploration of the novel Nano-Lip system.
Collapse
Affiliation(s)
- Xiaoyi Cheng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ruiqi Peng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingxi Zou
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yan Chen
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenkang Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Mohamed SA, Elsherbini AM, Alrefaey HR, Adelrahman K, Moustafa A, Egodawaththa NM, Crawford KE, Nesnas N, Sabra SA. Gum Arabic: A Commodity with Versatile Formulations and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:290. [PMID: 39997853 PMCID: PMC11858195 DOI: 10.3390/nano15040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Gum Arabic (GA), or acacia gum, refers to the dried exudate produced by certain Acacia trees. GA is composed mainly of a mixture of polysaccharides and glycoproteins, with proportions that can slightly differ from one species to another. It is commonly utilized in the food and pharmaceutical industries as a stabilizer or an emulsifier owing to its biocompatibility, hydrophilicity, and antibacterial properties. In addition, GA can be manipulated as it possesses many functional groups that can be used in grafting, cross-linking, or chemical modifications to add a new feature to the developed material. In this review, we highlight recent GA-based formulations, including nanoparticles, hydrogels, nanofibers, membranes, or scaffolds, and their possible applications in tissue regeneration, cancer therapy, wound healing, biosensing, bioimaging, food packaging, and antimicrobial and antifouling membranes.
Collapse
Affiliation(s)
- Shaymaa A. Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Asmaa M. Elsherbini
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Heba R. Alrefaey
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kareem Adelrahman
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
| | - Alshaimaa Moustafa
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
| | - Nishal M. Egodawaththa
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kaitlyn E. Crawford
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nasri Nesnas
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Sally A. Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| |
Collapse
|
3
|
Kan G, Chen L, Zhang W, Bian Q, Wang X, Zhong J. Recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. Adv Colloid Interface Sci 2025; 335:103333. [PMID: 39522421 DOI: 10.1016/j.cis.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The application of curcumin in food science is challenged by its poor water solubility, easy degradation under processing and within the gastrointestinal tract, and poor bioavailability. Micro/nanocarrier is an emerging and efficient platform to overcome these drawbacks. This review focuses on the recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. The recent development advances of curcumin-loaded micro/nanocarriers could be classified into ten basic systems: emulsions, micelles, dendrimers, hydrogel polymeric particles, polymer nanofibers, polymer inclusion complexes, liposomes, solid lipid particles, structured lipid carriers, and extracellular vesicles. The application advances of curcumin-loaded micro/nanocarriers for food research could be classified into four types: coloring agents, functional active agents, preservation agents, and quality sensors. This review demonstrated that micro/nanocarriers were excellent carriers for the fat-soluble curcumin and the obtained curcumin-loaded micro/nanocarriers had promising application prospects in the field of food science.
Collapse
Affiliation(s)
- Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lijia Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenjie Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qiqi Bian
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
4
|
Xie H, Sha XM, Hu ZZ, Tu ZC. Enhanced stability of curcumin encapsulated in fish gelatin emulsions combined with γ-Polyglutamic acid. Int J Biol Macromol 2025; 284:137772. [PMID: 39557231 DOI: 10.1016/j.ijbiomac.2024.137772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
This study examined the rheological properties, interfacial characteristics, particle size, zeta potential, Turbiscan stability index (TSI), morphology, and encapsulation efficiency of curcumin (Cur) loaded fish gelatin (FG) emulsions modified with γ-polyglutamic acid (γ-PGA). The results showed that adding γ-PGA significantly increased curcumin encapsulation efficiency. At 0.3 mg/mL, FG emulsions had an encapsulation efficiency of 80.14 %, while FG-γ-PGA emulsions reached 90.35 %. The FG-γ-PGA emulsions also showed enhanced stability and resistance to phase separation, remaining stable for seven days, compared to three days for FG emulsions. After 24 h, the TSI of FG emulsions with 0.6 mg/mL Cur was 2.46, significantly higher than the 0.55 TSI for FG-γ-PGA emulsions at the same concentration. FG-γ-PGA emulsions had smaller droplet sizes, and analysis of interfacial characteristics, particle size, and zeta potential indicated better system stability than FG emulsions. These improved properties of FG-γ-PGA emulsions highlight their potential as efficient carriers for curcumin. Overall, the favorable characteristics of FG-γ-PGA emulsions suggest promising applications in the food industry, especially for developing functional foods with extended shelf life and enhanced nutritional benefits.
Collapse
Affiliation(s)
- Huan Xie
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Mei Sha
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| | - Zi-Zi Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Korin A, Youssef M, Elkhedir A, Li Y, Albahi A, Abd Elazim E, Khalifa I, Maqsood S, Li B. Effect of different anionic polysaccharides on whey protein's S/O/W bilayer emulsions containing EGCG: Molecular interaction and stability under various environmental stresses. Int J Biol Macromol 2025; 284:138209. [PMID: 39617226 DOI: 10.1016/j.ijbiomac.2024.138209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
We aimed at investigating the effect of different anionic polysaccharides (pectin, carboxymethylcellulose, and gum Arabic) on the physicochemical properties and stability of whey protein isolate (WPI)- stabilized solid-in-oil-in-water (S/O/W) bilayer emulsions loaded with epigallocatechin gallate (EGCG). S/O/W emulsions were prepared by homogenizing EGCG-loaded oil with an aqueous phase containing WPI and the selected polysaccharides. The emulsions were characterized for their particle size, zeta potential, microstructure, and rheological properties. Results noted that WPI-pectin stabilized emulsions demonstrated the best stability, with the smallest mean particle diameter (0.46 μm), highest zeta potential (-26.13 mV), and improved viscoelastic properties. Most importantly, WPI-pectin stabilized emulsions achieved the highest EGCG encapsulation efficiency (84.50 %) and adsorbed protein content (64.98 %), where their values in WPI-gum and WPI-carboxymethylcellulose were (57.87 and 67.33 %) and (44.57 and 53.22 %), respectively. Molecular docking simulations also provided insights into the interactions between WPI, lecithin, and polysaccharides in the presence of EGCG, elucidating the interfacial layer formation. This study highlights the potential of tailored protein complexes for developing stable delivery systems for polyphenols in functional food and beverage applications.
Collapse
Affiliation(s)
- Ali Korin
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Abdeen Elkhedir
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China; Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, Sudan
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China
| | - Amgad Albahi
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China; National Food Research Centre, Ministry of Agriculture and Natural Resources, Khartoum 113, Sudan
| | - Essam Abd Elazim
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China.
| |
Collapse
|
6
|
Zhao J, Jia W, Zhang R, Wang X, Zhang L. Improving curcumin bioavailability: Targeted delivery of curcumin and loading systems in intestinal inflammation. Food Res Int 2024; 196:115079. [PMID: 39614566 DOI: 10.1016/j.foodres.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Curcumin is a natural food ingredient and has the potential to alleviate inflammation and combat cancer. The incidence of intestinal inflammation has been increasing and poses a severe risk to human health. Due to low absorption and bioavailability, curcumin's anti-inflammatory ability is ineffective. To improve the bioavailability of curcumin, descriptions of the intestinal barrier, signaling pathways, and transport mechanisms are reviewed. Blocking the signaling pathways lowers the number of inflammatory cytokines produced, which is the primary mechanism by which curcumin relieves inflammatory symptoms. The bioavailability of curcumin is not only related to physicochemical properties but also to the nature of the carrier material. Environmental indicators also have an impact on the improvement of curcumin bioavailability in applications. There is a need to develop multifunctional and more stable nanomaterial targeting systems to improve curcumin bioavailability and achieve better results in nanotechnology research and targeted inflammation therapy.
Collapse
Affiliation(s)
- Junyi Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Zhang
- Keyi Sunshine Test, Xi'an 710021, China
| |
Collapse
|
7
|
Lin S, Pan MH, Chiou YS, Wei S, Ding B. Stability enhancement of proanthocyanidin-loaded liposomes via surface decoration with oxidized konjac glucomannan. Int J Biol Macromol 2024; 275:133230. [PMID: 38945704 DOI: 10.1016/j.ijbiomac.2024.133230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
The stability enhancement of proanthocyanidin-loaded liposomes (PC-Lip) via surface decoration with oxidized konjac glucomannan (OKGM) was investigated. The encapsulation efficiency and drug loading capacity of OKGM-coated PC-Lip (OKGM-PC-Lip) rose significantly. The average size and PDI of OKGM-PC-Lip increased, while the zeta potential decreased compared to those of PC-Lip. PC-Lip membrane fluidity reduced after coating with OKGM. The morphology of OKGM-PC-Lip showed that OKGM "halo layer" was formed on the liposome surface. Hydrogen bonding played an indispensable role in the combination between OKGM and PC-Lip, and the phase transition temperature of PC-Lip slightly increased after coating with OKGM. The retention rate of OKGM-PC-Lip was higher than that of PC-Lip at extreme pH. In vitro release, no significant difference in cumulative release was detected between OKGM-PC-Lip and PC-Lip at gastric stage, while the cumulative release rate of OKGM-PC-Lip was remarkably lower than that of PC-Lip at intestinal stage. The antioxidant activity of OKGM-PC-Lip was notably higher than that of PC-Lip. These results suggested that the resistance of PC-Lip to external influences was fruitfully enhanced after coating with OKGM. Compared with other polysaccharides, OKGM-coated liposomes may be more promising and advantageous in functional foods due to the polysaccharide's benefits to human health.
Collapse
Affiliation(s)
- Shouyan Lin
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yi-Shiou Chiou
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, ROC
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China.
| |
Collapse
|
8
|
Hu Y, Zhang L, Wen QH, Cheng XP, Zhou LQ, Chen MS, Ke DW, Tu ZC. Prebiotic saccharides polymerization improves the encapsulation efficiency, stability, bioaccessibility and gut microbiota modulation of urolithin A liposomes. Int J Biol Macromol 2024; 273:133045. [PMID: 38942666 DOI: 10.1016/j.ijbiomac.2024.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.
Collapse
Affiliation(s)
- Yue Hu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xin-Peng Cheng
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Li-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming-Shun Chen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dai-Wei Ke
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
9
|
Hudiyanti D, Al Khafiz MF, Anam K, Siahaan P, Suyati L, Sunarsih S, Christa SM. Prospect of Gum Arabic-Cocoliposome Matrix to Encapsulate Curcumin for Oral Administration. Polymers (Basel) 2024; 16:944. [PMID: 38611202 PMCID: PMC11013629 DOI: 10.3390/polym16070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Curcumin is an antioxidant that can effectively eliminate free radicals. However, as its oral bioavailability is low, an effective delivery method is required. Phospholipid-based liposomes can encapsulate lipophilic drugs, such as curcumin, while liposome, cholesterol, and gum Arabic (GA) can enhance the internal and external stability of drug membranes. This present study used concentrations of cholesterol (Cchol) and GA (CGA), ranging from 0 to 10, 20, 30, and 40% as well as 0 to 5, 10, 15, 20, 30, and 40%, respectively, to encapsulate curcumin in a GA-cocoliposome (CCL/GA) matrix and test its efficacy in simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). The absence of new characteristic peaks in the Fourier transform infrared (FTIR) spectra results indicate the presence of non-covalent interactions in the CCL/GA encapsulation. Furthermore, increasing the Cchol decreased the encapsulation efficiency (EE), loading capacity (LC), and antioxidant activity (IR) of the CCL/GA encapsulation but increased its release rate (RR). Conversely, increasing CGA increased its EE and IR but decreased its LC and RR. The two conditions applied confirmed this. Liposomal curcumin had the highest IR in SIF (84.081%) and the highest RR in SGF (0.657 ppm/day). Furthermore, liposomes loaded with 10% Cchol and 20% CGA performed best in SIF, while those loaded with 10% Cchol and 30% CGA performed best in SGF. Lastly, the CCL/GA performed better in SIF than SGF.
Collapse
Affiliation(s)
- Dwi Hudiyanti
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia; (K.A.); (P.S.); (L.S.)
| | - Muhammad Fuad Al Khafiz
- Postgraduate Chemistry Program, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia;
| | - Khairul Anam
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia; (K.A.); (P.S.); (L.S.)
| | - Parsaoran Siahaan
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia; (K.A.); (P.S.); (L.S.)
| | - Linda Suyati
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia; (K.A.); (P.S.); (L.S.)
| | - Sunarsih Sunarsih
- Department of Mathematics, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia;
| | - Sherllyn Meida Christa
- Chemistry Program, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia;
| |
Collapse
|
10
|
Wu P, Chen L, Chen M, Chiou BS, Xu F, Liu F, Zhong F. Use of sodium alginate coatings to improve bioavailability of liposomes containing DPP-IV inhibitory collagen peptides. Food Chem 2023; 414:135685. [PMID: 36809726 DOI: 10.1016/j.foodchem.2023.135685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Sodium alginate (SA) was used to coat liposomes containing DPP-IV inhibitory collagen peptides to improve their stability and in vitro absorption for intra-oral delivery. The liposome structure as well as entrapment efficiency and DPP-IV inhibitory activity was characterized. The liposome stability was determined by measuring in vitro release rates and their gastrointestinal stability. Transcellular permeability of liposomes was further tested to characterize their permeability in small intestinal epithelial cells. The results showed that the 0.3% SA coating increased the diameter (166.7 nm to 249.9 nm), absolute value of zeta potential (30.2 mV to 40.1 mV) and entrapment efficiency (61.52% to 70.99%) of liposomes. The SA-coated liposomes containing collagen peptides showed enhanced storage stability within one month, gastrointestinal stability increased by 50% in bioavailability, transcellular permeability increased by 18% in transmission percentage, and in vitro release rates reduced by 34%, compared to uncoated liposomes. SA coating liposomes are promising carriers for transporting hydrophilic molecules, may be beneficial for improving nutrient absorption and can protect bioactive compounds from being inactivated in the gastrointestinal tract.
Collapse
Affiliation(s)
- Peihan Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Ling Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, United States
| | - Feifei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Chitosan/bacterial cellulose films incorporated with tea polyphenol nanoliposomes for silver carp preservation. Carbohydr Polym 2022; 297:120048. [DOI: 10.1016/j.carbpol.2022.120048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/25/2022]
|
12
|
Hybrid liposomes composed of hydrophilic emulsifiers and lecithin: Physicochemical, interaction and curcumin loading properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Gonçalves RF, Madalena DA, Fernandes JM, Marques M, Vicente AA, Pinheiro AC. Application of nanostructured delivery systems in food: From incorporation to detection and characterization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Huang L, Teng W, Cao J, Wang J. Liposomes as Delivery System for Applications in Meat Products. Foods 2022; 11:foods11193017. [PMID: 36230093 PMCID: PMC9564315 DOI: 10.3390/foods11193017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
In the meat industry, microbial contamination, and lipid and protein oxidation are important factors for quality deterioration. Although natural preservatives have been widely used in various meat products, their biological activities are often reduced due to their volatility, instability, and easy degradation. Liposomes as an amphiphilic delivery system can be used to encapsulate food active compounds, which can improve their stability, promote antibacterial and antioxidant effects and further extend the shelf life of meat products. In this review, we mainly introduce liposomes and methods of their preparation including conventional and advanced techniques. Meanwhile, the main current applications of liposomes and biopolymer-liposome hybrid systems in meat preservation are presented.
Collapse
Affiliation(s)
- Li Huang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: (J.C.); (J.W.)
| | - Jinpeng Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (J.C.); (J.W.)
| |
Collapse
|
15
|
Yuan Y, Ma M, Xu Y, Wang D. Construction of biopolymer-based nanoencapsulation of functional food ingredients using the pH-driven method: a review. Crit Rev Food Sci Nutr 2021; 63:5724-5738. [PMID: 34969342 DOI: 10.1080/10408398.2021.2023858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biopolymer-based nanoencapsulation presents great performance in the delivery of functional food ingredients. In recent years, the pH-driven method has received considerable attention due to its unique characteristics of low energy and organic solvent-free during the construction of biopolymer-based nanoencapsulation. This review summarized the fundamental knowledge of pH-driven biopolymer-based nanoencapsulation. The principle of the pH-driven method is the protonation reaction of functional food ingredients that change with pH. The stability of functional food ingredients in an alkaline environment is a prerequisite for the adoption of this method. pH regulator is also an important influencing factor. Different coating materials used to the pH-driven nanoencapsulation were discussed, including single and composite materials, mainly focusing on proteins. Besides, the application evaluations of pH-driven nanoencapsulation in food were analyzed. The future development trends will be the influence of pH regulators on the carrier, the design of new non-protein-based carriers, the quantification of driving forces, the absorption mechanism of encapsulated nutrients, and the molecular interaction between the wall material and the intestinal mucosa. In conclusion, pH-driven biopolymer-based nanoencapsulation of functional food ingredients will have broad prospects for development.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
16
|
Gum Arabic Nanoparticles as Green Corrosion Inhibitor for Reinforced Concrete Exposed to Carbon Dioxide Environment. MATERIALS 2021; 14:ma14247867. [PMID: 34947461 PMCID: PMC8704704 DOI: 10.3390/ma14247867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
The inhibiting effect of Gum Arabic-nanoparticles (GA-NPs) to control the corrosion of reinforced concrete that exposed to carbon dioxide environment for 180 days has been investigated. The steel reinforcement of concrete in presence and absence of GA-NPs were examined using various standard techniques. The physical/surface changes of steel reinforcement was screened using weight loss measurement, electrochemical impedance spectroscopy (EIS), atomic force microscopy and scanning electron microscopy (SEM). In addition, the carbonation resistance of concrete as well screened using visual inspection (carbonation depth), concrete alkalinity (pH), thermogravimetric analysis (TGA), SEM, energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The GA-NPs inhibitor size was also confirmed by transmission electron microscopy (TEM). The results obtained revealed that incorporation of 3% GA-NPs inhibitor into concrete inhibited the corrosion process via adsorption of inhibitor molecules over the steel reinforcement surface resulting of a protective layer formation. Thus, the inhibition efficiency was found to increase up-to 94.5% with decreasing corrosion rate up-to 0.57 × 10−3 mm/year. Besides, the results also make evident the presence of GA-NPs inhibitor, ascribed to the consumption of calcium hydroxide, and reduced the Ca/Si to 3.72% and 0.69% respectively. Hence, C-S-H gel was developed and pH was increased by 9.27% and 12.5, respectively. It can be concluded that green GA-NPs have significant corrosion inhibition potential and improve the carbonation resistance of the concrete matrix to acquire durable reinforced concrete structures.
Collapse
|
17
|
Pinilla CMB, Lopes NA, Brandelli A. Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials. Molecules 2021; 26:molecules26123587. [PMID: 34208209 PMCID: PMC8230829 DOI: 10.3390/molecules26123587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.
Collapse
Affiliation(s)
- Cristian Mauricio Barreto Pinilla
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
| | - Nathalie Almeida Lopes
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.M.B.P.); (N.A.L.)
- Center of Nanoscience and Nanotechnology (CNANO), Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Correspondence: ; Tel.: +55-51-3308-6249
| |
Collapse
|