1
|
Yang C, Yan R, He Y, Yang B, Zheng K, Guan Z, Qiao Y, Wang L, Wang J. Ca 2+ induced irregular spherical oat protein-shellac nanoparticles as Pickering emulsions stabilizer to improve emulsion storage stability. Food Chem 2025; 480:143975. [PMID: 40147276 DOI: 10.1016/j.foodchem.2025.143975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Oat protein isolate (OPI) - shellac (S) nanoparticles were prepared to stabilize Pickering emulsion to improve its storage stability. OPI bound approximately twenty-one S molecules mainly through hydrophobic interaction. Then, OPI/S nanoparticles (200-800 nm) were fabricated through Ca2+ cross-linking by changing the mass ratio of OPI and S. Specifically, in OPI/S2:1 (289 nm), S saturated the binding sites of OPI, and Ca2+ shielded the negative charge to tightly cross-link OPI with S. Additionally, OPI/S2:1 stabilized Pickering emulsions exhibited the smallest particle size (18.13 μm and 16.63 μm) and outstanding storage stability without phase separation or significant changes in particle size after being stored at 25 °C for 14 days when the particle concentration was 2.5 % and 3 %. This research established a stable Pickering emulsion system stabilized by OPI/S nanoparticles, which can be used as delivery carriers for nutrients and as substitutes for fats in the future.
Collapse
Affiliation(s)
- Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Youzifu (Tianjin) Food Technology Co., LTD, Tianjin 300450, China; Weihai Biohigh Biotechnology Co., LTD, Shandong 264200, China
| | - Ruizhe Yan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajun He
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bingqiu Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaiwen Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zikuan Guan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yening Qiao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lina Wang
- Weihai Biohigh Biotechnology Co., LTD, Shandong 264200, China
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Guo X, Wu X, Sun Z, Li D, Jia H, Zhang K, Zhao Y, Zheng H. Preparation, characterization, and binding mechanism of pH-driven gliadin/soy protein isolate nanoparticles. Food Res Int 2025; 208:116289. [PMID: 40263867 DOI: 10.1016/j.foodres.2025.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Protein nanoparticles have attracted significant attention due to their low cost and high bioavailability; however, their poor stability limits their functional applications. To address this challenge, hydrophobic gliadin (G) and hydrophilic soy protein isolate (SPI) were co-assembled using the pH-driven method to evaluate the impact of different G/SPI ratios on their structural and functional properties. The results revealed that at G/SPI ratios between 1:1 and 1:8, the nanoparticles exhibited smaller particle sizes and higher zeta potentials. Spectroscopic analysis showed that protein interactions, primarily hydrogen bonding, hydrophobic interactions, and electrostatic interaction, led to a more compact spatial structure. Functional analysis identified a 1:3 ratio as optimal, offering excellent emulsifying properties (EAI: 28.95 m2/g; ESI: 90.53%) and superior foaming properties (FC: 837.46 %; FS: 87.62 %). Additionally, this ratio significantly enhanced solubility by 75.6 % and improved physical stability compared to gliadin nanoparticles (GNPs). Mechanistic analysis revealed that the assembly of G/SPI nanoparticles was primarily driven by hydrogen bonding, hydrophobic interactions, and electrostatic interactions, with hydrophobic interactions playing a dominant role. Notably, a key turning point in protein folding was identified as the pH shifted from 10 to 9. Molecular docking further pinpointed the binding site, elucidating the assembly process at the molecular level. These findings establish a solid foundation for the development of dual-protein nanoparticles with tailored properties, opening new possibilities for their application in bioactive compound delivery.
Collapse
Affiliation(s)
- Xiaohang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinghui Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhouliang Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Jia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kaili Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanjie Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
3
|
Yan C, Zhu X, Ren Y, Guan S, He S, Qiu F, Huang M, Qu X, Liu H. Protein-based nano delivery systems focusing on protein materials, fabrication strategies and applications in ischemic stroke intervention: A review. Int J Biol Macromol 2025; 311:143645. [PMID: 40311959 DOI: 10.1016/j.ijbiomac.2025.143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Ischemic stroke (IS), characterized by acute cerebral vascular occlusion and narrow therapeutic windows, poses formidable clinical challenges due to the blood-brain barrier (BBB) restriction, reperfusion injury risks, and limited efficacy of conventional thrombolytic therapies. These hurdles necessitate advanced delivery systems capable of precise BBB penetration, remodeled circulation, and neuroprotection. Proteins and peptides emerge as universal biomaterials for constructing nano-delivery platforms, leveraging their biocompatibility, biodegradability, low toxicity, and receptor-specific targeting. This review systematically explores protein-based nanomaterials in stroke intervention, emphasizing material selection, fabrication strategies, and therapeutic applications. Various structural proteins are analyzed for their unique advantages in carrier design, while peptide modifications are highlighted for enhancing targeted delivery. Critical fabrication techniques are discussed to balance stability and functionality. Furthermore, the applications of protein-based nanomaterials in IS therapy are summarized. Advanced preparation and application of protein-based nanomaterials, from delivery vehicles to ligand modification, potentially prolong the therapeutic window for IS and provide effective neuroprotection.
Collapse
Affiliation(s)
- Chao Yan
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - XuChun Zhu
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing 100036, China
| | | | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China; Guizhou Institute of Technology, Guizhou 550000, China.
| |
Collapse
|
4
|
Xu Y, Guo J, Wei Z, Xue C. Cellulose-based delivery systems for bioactive ingredients: A review. Int J Biol Macromol 2025; 299:140072. [PMID: 39842568 DOI: 10.1016/j.ijbiomac.2025.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Considering the outstanding advantages including abundant resources, structure-performance designability, impressive mechanical strength, and 3D network structure-forming ability, cellulose is an ideal material for encapsulating bioactive ingredients. Due to its low solubility in water, large-scaled morphology and poor flexibility, cellulose is unsuitable for the construction of carriers. Consequently, the majority of cellulose is employed following physical or chemical modification. Cellulose and its derivatives are extensively employed in the food industry, including fat replacement, food packaging composites, food additives, 3D-printed food and delivery systems. Their benefits in food delivery systems are particularly pronounced. Therefore, the distinguishing features, preparation methods, recent developments and effectiveness of different cellulose-based delivery systems for bioactive ingredients are discussed. Cellulose-based delivery systems offer unique advantages in terms of environmental impact reduction, modification facilitation, stimuli-responsive release as well as tailored design, and their application has gained widespread recognition. However, they are facing challenges in the application process comprising modification methods for cellulose-based materials, new methods for commercial preparation on a wide scale, cellulose-based multifunctional conveyance systems and systematic evaluation using in vivo experiments. In conclusion, this review provides theoretical references for the development of novel delivery carriers as well as the efficient application and popularization of cellulose-based delivery systems.
Collapse
Affiliation(s)
- Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Jiarui Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Moon SH, Cho SJ. Binding mechanism and structural characteristics of alloyed protein complex for enhanced solubility of hemp seed protein isolate. Food Chem 2025; 464:141416. [PMID: 39406148 DOI: 10.1016/j.foodchem.2024.141416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/11/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
Despite the numerous health benefits and high digestibility of hemp seed protein isolate (HPI), its low solubility at neutral pH limits its utilization in the food industry. Therefore, we subjected insoluble HPI and soluble mung bean protein isolate (MBPI) to pH co-shifting under extremely alkaline conditions to form an alloyed protein complex (A-HM). At a mass ratio of HPI:MBPI of 50:50, A-HM exhibited the highest solubility (95.30 ± 0.99 %), and also had high resistance to heat treatment. Native PAGE demonstrated the formation of alloyed protein complexes, and particle size analysis revealed that A-HM exhibited small particle sizes and dispersion in water without aggregation of HPI. Owing to their small size, numerous hydrophobic residues and aromatic ring of HPI were exposed on the surface. Hydrophobic interactions predominantly governed the binding force involved in the formation of A-HM. Our findings may enhance HPI applications in the food industry, particularly in plant-based beverages.
Collapse
Affiliation(s)
- Su-Hyeon Moon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea,.
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea,.
| |
Collapse
|
6
|
Huang M, Song Y, Wang H, Li H, Zhou R, Cao Q, Dong L, Ren G, Wu D, Lei Q, Fang W, Deng D, Xie H. Fabrication and characterization of lysozyme fibrils/Zein complexes for resveratrol encapsulation: Improving stability, antioxidant and antibacterial activities. Food Chem 2025; 464:141746. [PMID: 39454440 DOI: 10.1016/j.foodchem.2024.141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Resveratrol (Res), a naturally occurring hydrophobic polyphenol, boasts numerous health-promoting bio-functionalities. However, its limited water solubility and stability impede further applications in the food industry. This study aims to address these challenges by fabricating stable Res-loaded lysozyme fibrils/zein (Ly-F/Z) complexes. The complexes were prepared using an antisolvent precipitation method. The interaction mechanism between Ly-F and zein was elucidated through dynamic light scattering, Fourier-transform infrared spectroscopy and dissociative experiments, revealing the involvement of hydrogen bonding, electrostatic forces and hydrophobic interactions in complex formation. The Ly-F/Z complexes were utilized to encapsulate Res, resulting in an encapsulation efficiency of 82.58 %. X-ray diffraction analysis confirmed the successful encapsulation of Res within Ly-F/Z complexes, presenting an amorphous state. The Ly-F/Z-Res complexes exhibited a "fruit tree" morphology with dense fruit, showcasing remarkable stability, antioxidant and antibacterial activities. Consequently, the Ly-F/Z complexes can serve as promising delivery systems for Res in functional foods.
Collapse
Affiliation(s)
- Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Han Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Rongmi Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lijuan Dong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Dan Deng
- Hangzhou Linping Hospital of Traditional Chinese and Western Medicine, Linping, 311100, Zhejiang, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Liu S, Yu L, Han Y, Wang S, Liu Z, Xu H. Preparation, characterization, formation mechanism, and stability studies of zein/pectin nanoparticles for the delivery of prodigiosin. Int J Biol Macromol 2025; 290:138915. [PMID: 39706435 DOI: 10.1016/j.ijbiomac.2024.138915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Prodigiosin (PG) is a natural compound produced by microorganisms, that is known for its promising bioactive properties. However, owing to its inherent water insolubility, low bioavailability, and poor stability, the practical application of prodigiosin remains challenging. In this work, the nanoparticles of prodigiosin-loaded zein-pectin were prepared using electrostatic deposition and antisolvent precipitation methods. The encapsulation efficiency and loading capacity of prodigiosin in Z-Pet/PG 2:1 nanoparticles were 89.05 % and 7.49 %, respectively, with a zeta potential of -23.03 mV, with a particle size was 184.13 nm. The nanoparticles were uniformly distributed and possessed a spherical morphology, as determined using scanning electron microscopy. The formation mechanism between nanoparticles has been investigated using circular dichroism, fluorescence spectroscopy, molecular docking, and Fourier-transform infrared spectroscopy, which indicated stabilization predominantly through electrostatic, hydrophobic, and hydrogen-bonding interactions. Furthermore, Z-Pet/PG 2:1 nanoparticles proved remarkable stability across a pH range from 3 to 7, NaCl concentrations below 50 mmol/L, at elevated temperatures (60, 70, and 80 °C) for 1 h, and at redispersion. Prodigiosin was progressively delivered by the nanoparticles in simulated gastrointestinal settings, with a cumulative release rate of 75.32 % in simulated intestinal fluid, thereby demonstrating enhanced bioavailability and allowing for a controlled and sustained-release in vitro. These findings indicate that Z-Pet/PG nanoparticles are a promising delivery platform for prodigiosin, and are potentially applicable to other hydrophobic compounds with limited bioavailability.
Collapse
Affiliation(s)
- Shuhua Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Leijuan Yu
- Shandong Polytechnic, Jinan 250104, China
| | - Yanlei Han
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Shanshan Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Zihao Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Hui Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China.
| |
Collapse
|
8
|
Feng Z, Shao B, Yang Q, Diao Y, Ju J. The force of Zein self-assembled nanoparticles and the application of functional materials in food preservation. Food Chem 2025; 463:141197. [PMID: 39276690 DOI: 10.1016/j.foodchem.2024.141197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Zein self-assembled nanoparticles (Z-NPs) are an excellent delivery carrier for bioactive components. However, the poor stability of its application in the food industry is the main problem. This paper focused on the self-assembly force of Z-NPs and the factors affecting the stability of Z-NPs. Meanwhile, the modification methods of zein and its interaction with food additives were analyzed. Additionally, its application in the field of food preservation was reviewed. The main interactions between zein and polyphenols encompass hydrogen bonding, non-covalent interactions, and hydrophobic interactions. Besides, the interactions with polysaccharides involve both covalent and non-covalent interactions. Furthermore, the protein interactions entail hydrophobic interactions, electrostatic interactions, hydrogen bonds, and π-π stacking. The primary driving forces governing zein self-assembly encompass electrostatic interactions, hydrogen bonding, van der Waals forces, hydrophobic interactions, and π-π stacking. Meanwhile, functionalized Z-NPs can be used in the food preservation industry to prolong the shelf life of food.
Collapse
Affiliation(s)
- Zhiruo Feng
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, People's Republic of China
| | - Bin Shao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, People's Republic of China
| | - Yuduan Diao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, People's Republic of China.
| |
Collapse
|
9
|
Huang R, Song H, Li S, Guan X. Selection strategy for encapsulation of hydrophilic and hydrophobic ingredients with food-grade materials: A systematic review and analysis. Food Chem X 2025; 25:102149. [PMID: 39867216 PMCID: PMC11758843 DOI: 10.1016/j.fochx.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods. Both lipid-based and biopolymer-based nanoparticles exhibit the capability to encapsulate hydrophilic or hydrophobic substances. Liposomes and nanoemulsions allow simultaneous encapsulation of hydrophilic and hydrophobic ingredients, while solid lipid nanoparticles and nanostructured lipid carriers are suited for hydrophobic ingredients. The three-dimensional network structure of nanogels can efficiently load hydrophilic substances, while the functional groups in polysaccharides improve the loading capacity of hydrophobic substances through intermolecular interactions. As for protein nanoparticles, the selection of proteins with solubility characteristics analogous to the bioactives is crucial to achieve high encapsulation efficiency.
Collapse
Affiliation(s)
- Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| |
Collapse
|
10
|
Wei Y, Huang Y, Wen C, Wei K, Peng L, Wei X. Theabrownin/whey protein isolate complex coacervate strengthens C 2C 12 cell proliferation via modulation of energy metabolism and mitochondrial apoptosis. Int J Biol Macromol 2024; 283:137686. [PMID: 39561831 DOI: 10.1016/j.ijbiomac.2024.137686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Theabrownin (TB)-whey protein isolate (WPI) complex coacervates (TW) were firstly prepared to investigate the regulatory effects on skeletal muscle. The binding of TB to WPI reached saturation with the strongest electrostatic interaction at the ratio of 10:1. The formation of TW was driven by electrostatic interactions with the aid of hydrogen bonding and hydrophobic interactions, and the digestion behavior of TW was investigated based on in vitro gastrointestinal and CaCO2 cell models. The regulatory effect of TW on muscle cells was investigated by C2C12 cell assay. Cell cycle analysis showed that TW promoted the transition of skeletal muscle cells from proliferative state to differentiated state. Immunofluorescence and gene expression revealed that TW positively regulated myogenic regulatory factors, contributing to myofiber formation. Moreover, TW activated the intracellular TCA cycling and oxidative phosphorylation, providing energy for skeletal muscle regeneration and repair. Mechanistically, TW inhibited the release of cytochrome C from mitochondria to cytoplasm through the Bcl-2/Cytochrome C/Cleaved-Caspase-3 pathway, exhibiting a protective effect on skeletal muscle cells. In the future, the molecular mechanism of TW enhancing skeletal muscle function should be validated through aging animal models and clinical trials and expand its therapeutic application for muscle health in functional food and dietary supplements.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yi Huang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
11
|
Yang L, Dong H, Wang J, Dadmohammadi Y, Zhou Y, Lin T, Khongkomolsakul W, Meletharayil G, Kapoor R, Abbaspourrad A. Fabrication and characterization of whey protein isolate-tryptophan nanoparticles by pH-shifting combined with heat treatment. Food Res Int 2024; 196:115031. [PMID: 39614541 DOI: 10.1016/j.foodres.2024.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
L-Tryptophan (Trp) is an essential amino acid with numerous health benefits. However, incorporating Trp into food products is limited due to its pronounced bitter taste. Encapsulating Trp in nanoparticles by using other natural biopolymers is a potential strategy to mask the bitter taste of Trp in the final products. Whey protein isolate (WPI), composed of alpha-lactalbumin (α-LA), bovine serum albumin (BSA), and beta-lactoglobulin (β-LG), has played a crucial role in delivering bioactive compounds. In order to incorporate Trp within WPI, the present study used a combination of pH-shifting andthermal treatment to fabricatewhey protein isolate-tryptophan nanoparticles (WPI-Trp-NPs). During the pH-shifting technique, WPI unfolds at high pH, such as pH 11, and the dissociated WPI molecules are refolded when pH is shifted back to neutral, creating particles with uniform dispersion and encapsulating smaller particles surrounding them in solution. Further, the well-distributed nanoparticles formed by pH-shifting might encourage the formation of more uniform nanoparticles during subsequent thermal treatment. TheWPI-Trp particles have an average particle size of 110.1 nm and a low average PDI of 0.20. Fluorescence spectroscopy confirmed the encapsulation of Trp by WPI, which shows higher fluorescence when the Trp is encapsulated by the WPI. Surface hydrophobicity, circular dichroism, particle size, free sulfhydryl, and antioxidant activity were used to characterize the WPI-Trp-NPs. WPI-Trp-NPs formed by pH-shifting combined with heating showed a higher surface hydrophobicity and free sulfhydryl content than the untreated WPI-Trp mixture. The conversion of α-helix into random coil in the WPI secondary structure indicated a more disordered structure of the modified whey protein. Molecular docking results indicate the interactions between Trp and WPI, including alpha-lactalbumin (α-LA), bovine serum albumin, and beta-lactoglobulin (β-LG), were mainly driven by hydrophobic interactions and hydrogen bonding. The binding affinity between Trp and these proteins was ranked as α-LA>BSA>β-LG. The combination of pH-shifting and heating improved the functionalityof WPI and was an effective way to fabricate WPI-Trp nanoparticles.
Collapse
Affiliation(s)
- Lixin Yang
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Hongmin Dong
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Junyi Wang
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yufeng Zhou
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Tiantian Lin
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Waritsara Khongkomolsakul
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Li C, Chen L, McClements DJ, Peng X, Xu Z, Meng M, Ji H, Qiu C, Long J, Jin Z. Encapsulation of polyphenols in protein-based nanoparticles: Preparation, properties, and applications. Crit Rev Food Sci Nutr 2024; 64:11341-11355. [PMID: 37486163 DOI: 10.1080/10408398.2023.2237126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Polyphenols have a variety of physiological activities, including antioxidant, antimicrobial, and anti-inflammatory properties. However, their applications are often limited because due to the instability of polyphenols. Encapsulation technologies can be employed to overcome these problems and increase the utilization of polyphenols. In this article, the utilization of protein-based nanoparticles for encapsulating polyphenols is reviewed due to their good biocompatibility, biodegradability, and functional attributes. Initially, the various kinds of animal and plant proteins available for forming protein nanoparticles are discussed, as well as the fabrication methods that can be used to assemble these nanoparticles. The molecular interaction mechanisms between proteins and polyphenols are then summarized. Applications of protein-based nanoparticles for encapsulating polyphenols are then discussed, including as nutrient delivery systems, in food packaging materials, and in the creation of functional foods. Finally, areas where further research is need on the development, characterization, and application of protein-based polyphenol-loaded nanoparticles are highlighted.
Collapse
Affiliation(s)
- Cuicui Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd, Zhongshan, China
| | - Hangyan Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Jiang L, Zhang Z, Qiu C, Wen J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024; 13:2453. [PMID: 39123644 PMCID: PMC11312236 DOI: 10.3390/foods13152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The efficacy of many edible bioactive agents is limited by their low water dispersibility and chemical instability in foods, as well as by their poor bioaccessibility, low absorption, and metabolism within the human gastrointestinal tract. Whey proteins are amphiphilic molecules that can be used to construct a variety of edible carrier systems that can improve the performance of bioactive ingredients. These carrier systems are being used by the food and biomedical industries to encapsulate, protect, and deliver a variety of bioactive agents. In this article, we begin by providing an overview of the molecular and functional characteristics of whey proteins, and then discuss their interactions with various kinds of bioactive agents. The ability of whey proteins to be used as building blocks to assemble different kinds of carrier systems is then discussed, including nanoparticles, hydrogels, oleogels, bigels, nanofibers, nanotubes, and nanoemulsions. Moreover, applications of these carrier systems are highlighted. Different kinds of whey protein-based carriers can be used to encapsulate, protect, and deliver bioactive agents. Each kind of carrier has its own characteristics, which make them suitable for different application needs in foods and other products. Previous studies suggest that whey protein-based carriers are particularly suitable for protecting chemically labile bioactive agents and for prolonging their release profiles. In the future, it is likely that the applications of whey protein-based carriers in the food and pharmaceutical fields will expand.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| |
Collapse
|
14
|
Wang X, Wang C, Ma M, Li Z, Zhang X, Jiang H, Yuan C. Investigating the impact of ultrasound-assisted treatment on the crafting of mulberry leaf protein and whey isolate complex: A comprehensive analysis of structure and functionality. ULTRASONICS SONOCHEMISTRY 2024; 108:106983. [PMID: 39002225 DOI: 10.1016/j.ultsonch.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Mulberry leaf protein (MLP) is a nutrient-rich protein, but its applicability is limited because of its poor solubility. To address this issue, this study combines MLP with whey protein isolates (WPI), known for the high nutritional value, and subsequently forms composite protein nanoparticles using the ultrasound-assisted pH shifting method. Microscopic observation and SDS-PAGE confirmed the binding between these two proteins. Fluorescence spectra and Fourier Transform infrared spectroscopy (FTIR) analysis supported the involvement of electrostatic interactions, hydrophobic attractions, and hydrogen bonding in the formation of stable complex nanoparticles. The interactions between the proteins became stronger after ultrasound-assisted pH-shifting treatment. Solubility, emulsification capacity, foaming, and antioxidant activity, among other indicators, demonstrate that the prepared composite nanoparticles exhibit favorable functional properties. The study successfully illustrates the creation of protein-based complex nanoparticles through the ultrasound-assisted pH shifting method, with potential applications in the delivery of bioactive compounds.
Collapse
Affiliation(s)
- Xipeng Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Cunfang Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Mengjia Ma
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Zhenghao Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Xiaoning Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Hua Jiang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Cunzhong Yuan
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
| |
Collapse
|
15
|
Lu Y, Jiang Y, Liu J, Yang X, Zhao Y, Fan F. Preparation and Properties of Walnut Protein Isolate-Whey Protein Isolate Nanoparticles Stabilizing High Internal Phase Pickering Emulsions. Foods 2024; 13:2389. [PMID: 39123580 PMCID: PMC11311381 DOI: 10.3390/foods13152389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
To enhance the functional properties of walnut protein isolate (WalPI), hydrophilic whey protein isolate (WPI) was selected to formulate WalPI-WPI nanoparticles (nano-WalPI-WPI) via a pH cycling technique. These nano-WalPI-WPI particles were subsequently employed to stabilize high internal phase Pickering emulsions (HIPEs). By adjusting the mass ratio of WalPI to WPI from 9:1 to 1:1, the resultant nano-WalPI-WPI exhibited sizes ranging from 70.98 to 124.57 nm, with a polydispersity index of less than 0.326. When the mass ratio of WalPI to WPI was 7:3, there were significant enhancements in various functional properties: the solubility, denaturation peak temperature, emulsifying activity index, and emulsifying stability index increased by 6.09 times, 0.54 °C, 318.94 m2/g, and 552.95 min, respectively, and the surface hydrophobicity decreased by 59.23%, compared with that of WalPI nanoparticles (nano-WalPI), with the best overall performance. The nano-WalPI-WPI were held together by hydrophobic interactions, hydrogen bonding, and electrostatic forces, which preserved the intact primary structure and improved resistance to structural changes during the neutralization process. The HIPEs stabilized by nano-WalPI-WPI exhibited an average droplet size of less than 30 μm, with droplets uniformly dispersed and maintaining an intact spherical structure, demonstrating superior storage stability. All HIPEs exhibited pseudoplastic behavior with good thixotropic properties. This study provides a theoretical foundation for enhancing the functional properties of hydrophobic proteins and introduces a novel approach for constructing emulsion systems stabilized by composite proteins as emulsifiers.
Collapse
Affiliation(s)
- Yanling Lu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Yuxin Jiang
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Jiongna Liu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Xiaoqin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China;
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yueliang Zhao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China;
| | - Fangyu Fan
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China;
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
16
|
Nafeh AAESAEK, Mohamed IMAEA, Foda MF. Ultrasonication-Assisted Green Synthesis and Physicochemical and Cytotoxic Activity Characterization of Protein-Based Nanoparticles from Moringa oleifera Seeds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1254. [PMID: 39120359 PMCID: PMC11313732 DOI: 10.3390/nano14151254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Moringa oleifera (M. oleifera) is globally recognized for its medicinal properties and offers high-quality, protein-rich seeds. This study aimed to explore the potential of M. oleifera seeds as a significant source of protein-based nanoparticles (PBNPs) using the ultrasonication technique after desolvation and to evaluate their cytotoxicity in the human leukemia cell line (THP-1) for the first time. The properties of the PBNPs were confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The extracted protein from moringa seed cake flour had a significant protein content of 54.20%, and the resulting PBNPs had an average size of 134.3 ± 0.47 nm with a robust zeta potential of -43.15 mV. Notably, our study revealed that PBNPs exhibited cytotoxic potential at high concentrations, especially against the THP-1 human leukemia cell line, which is widely used to study immunomodulatory properties. The inhibitory effect of PBNPs was quantitatively evidenced by a cytotoxicity assay, which showed that a concentration of 206.5 μg mL-1 (log conc. 2.315) was required to inhibit 50% of biological activity. In conclusion, our findings highlight the potential of M. oleifera seeds as a valuable resource in the innovative field of eco-friendly PBNPs by combining traditional medicinal applications with contemporary advancements in protein nanotechnology. However, further studies are required to ensure their biocompatibility.
Collapse
Affiliation(s)
| | | | - Mohamed Frahat Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Chen J, Zhang Z, Li H, Sun M, Tang H. Preparation, structural characterization, and functional attributes of zein-lysozyme-κ-carrageenan ternary nanocomposites for curcumin encapsulation. Int J Biol Macromol 2024; 270:132264. [PMID: 38734340 DOI: 10.1016/j.ijbiomac.2024.132264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The low water solubility and inadequate bioavailability of curcumin significantly hinder its broad biological applications in the realms of food and medicine. There is limited information currently available regarding the particle characteristics and functional capabilities of zein-lysozyme-based nanomaterials. Thereby, the primary goal of the current work is to effectively develop innovative zein-lysozyme-κ-carrageenan complex nanocomposites (ZLKC) as a reliable carrier for curcumin encapsulation. As a result, ZLKC nanoparticles showed a smooth spherical nanostructure with improved encapsulation efficiency. Fourier-transform infrared, fluorescence spectroscopy, dissociation assay, and circular dichroism analysis revealed that hydrophobic and electrostatic interactions and hydrogen bonding were pivotal in the construction and durability of these composites. X-ray diffraction examination affirmed the lack of crystallinity in curcumin encapsulated within nanoparticles. The incorporation of κ-carrageenan significantly improved the physicochemical stability of ZLKC nanoparticles in diverse environmental settings. Additionally, ZLKC nanocomposites demonstrated enhanced antioxidant and antimicrobial properties, as well as sustained release characteristics. Therefore, these findings demonstrate the potential application of ZLKC nanocomposites as delivery materials for encapsulating bioactive substances.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Mengchu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
18
|
de Almeida Campos LA, de Souza JB, de Queiroz Macêdo HLR, Borges JC, de Oliveira DN, Cavalcanti IMF. Synthesis of polymeric nanoparticles by double emulsion and pH-driven: encapsulation of antibiotics and natural products for combating Escherichia coli infections. Appl Microbiol Biotechnol 2024; 108:351. [PMID: 38819646 PMCID: PMC11142984 DOI: 10.1007/s00253-024-13114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
The design, development, and obtaining of nanostructured materials, such as polymeric nanoparticles, have garnered interest due to loading therapeutic agents and its broad applicability. Polymeric nanoparticle synthesis employs advanced techniques such as the double emulsion approach and the pH-driven method, allowing the efficient incorporation of active compounds into these matrices. These loading methods ensure compound stability within the polymeric structure and enable control of the release of therapeutic agents. The ability of loaded polymeric nanoparticles to transport and release therapeutic agents on target manner represents a significant advancement in the quest for effective therapeutic solutions. Amid escalating concerns regarding antimicrobial resistance, interventions using polymeric nanostructures stand out for the possibility of carrying antimicrobial agents and enhancing antibacterial action against antibiotic-resistant bacteria, making a new therapeutic approach or complement to conventional treatments. In this sense, the capability of these polymeric nanoparticles to act against Escherichia coli underscores their relevance in controlling bacterial infections. This mini-review provides a comprehensive synthesis of promising techniques for loading therapeutic agents into polymeric nanoparticles highlighting methodologies and their implications, addressing prospects of combating bacterial infections caused by E. coli. KEY POINTS: • The double emulsion method provides control over size and release of bioactives. • The pH-driven method improves the solubility, stability, and release of active. • The methods increase the antibacterial action of those encapsulated in PNPs.
Collapse
Affiliation(s)
- Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - Jaqueline Barbosa de Souza
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - Hanne Lazla Rafael de Queiroz Macêdo
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - Joyce Cordeiro Borges
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - David Nattan de Oliveira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE, 123550670-901, Brazil.
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
19
|
Yu Y, Yang D, Lin B, Zhu L, Li C, Li X. Readily Available Oral Prebiotic Protein Reactive Oxygen Species Nanoscavengers for Synergistic Therapy of Inflammation and Fibrosis in Inflammatory Bowel Disease. ACS NANO 2024; 18:13583-13598. [PMID: 38740518 DOI: 10.1021/acsnano.3c13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A significant gap exists in the demand for safe and effective drugs for inflammatory bowel disease (IBD), and its associated intestinal fibrosis. As oxidative stress plays a central role in the pathogenesis of IBD, astaxanthin (AST), a good antioxidant with high safety, holds promise for treating IBD. However, the application of AST is restricted by its poor solubility and easy oxidation. Herein, different protein-based nanoparticles (NPs) are fabricated for AST loading to identify an oral nanovehicle with potential clinical applicability. Through systematic validation via molecular dynamics simulation and in vitro characterization of properties, whey protein isolate (WPI)-driven NPs using a simple preparation method without the need for cross-linking agents or emulsifiers were identified as the optimal carrier for oral AST delivery. Upon oral administration, the WPI-driven NPs, benefiting from the intrinsic pH sensitivity and mucoadhesive properties, effectively shielded AST from degradation by gastric juices and targeted release of AST at intestinal lesion sites. Additionally, the AST NPs displayed potent therapeutic efficacy in both dextran sulfate sodium (DSS)-induced acute colitis and chronic colitis-associated intestinal fibrosis by ameliorating inflammation, oxidative damage, and intestinal microecology. In conclusion, the AST WPI NPs hold a potential therapeutic value in treating inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Dairong Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingru Lin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
20
|
Shao F, Zhang Y, Wan X, Duan Y, Cai M, Zhang H. Improving the properties of whey protein isolate-zein nanogels with novel acidifiers: Re-dispersity, stability and quercetin bioavailability. Int J Biol Macromol 2024; 266:131284. [PMID: 38569984 DOI: 10.1016/j.ijbiomac.2024.131284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Low bioavailability of quercetin (Que) reduces its preclinical and clinical benefits. In order to improve Que bioavailability, a novel whey protein isolate (WPI)-zein nanogel was prepared by pH-driven self-assembly and heat-induced gelatinization. The results showed that hydrochloric acid can be substituted by both acetic acid and citric acid during the pH-driven process. After encapsulation, the bioavailability of Que in nanogels (composed of 70 % WPI) induced by different acidifiers increased to 19.89 % (citric acid), 21.65 % (hydrochloric acid) and 24.34 % (acetic acid), respectively. Comparatively, nanogels induced by acetic acid showed higher stability (pH and storage stability), re-dispersibility (75.62 %), Que bioavailability (24.34 %), and antioxidant capacity (36.78 % for DPPH scavenging rates). s improved performance of nanogels. In mechanism, acetic acid significantly balanced different intermolecular forces by weakening "acid-induced denaturation" effect. Moreover, the faster binding of Que and protein as well as higher protein molecular flexibility and randomness (higher ratio of random coil) was also observed in nanogels induced by acetic acid. All of these changes contributed to improve nanogels performances. Overall, WPI-zein nanogels induced by acetic acid might be a safe, efficiency and stable delivery system to improve the bioavailability of hydrophobic active ingredients.
Collapse
Affiliation(s)
- Feng Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuanlong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Wan
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
21
|
Chen J, Zhang Z, Li R, Li H, Tang H. Investigating the interaction mechanism between gliadin and lysozyme through multispectroscopic analysis and molecular dynamic simulations. Food Res Int 2024; 180:114081. [PMID: 38395578 DOI: 10.1016/j.foodres.2024.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The development of stable nanocomplexes based on gliadin and other biopolymers shows potential applications as delivery vehicles in the food industry. However, there is limited study specifically targeting the gliadin-lysozyme system, and their underlying interaction mechanism remains poorly understood. Therefore, the objective of this study was to investigate the binding mechanism between gliadin and lysozyme using a combination of multispectroscopic methods and molecular dynamic simulations. Stable gliadin-lysozyme complex nanoparticles were prepared using an anti-solvent precipitation method with a gliadin-to-lysozyme mass ratio of 2:1 and pH 4.0. The characteristic changes in the UV-visible spectrum of gliadin induced by lysozyme confirmed the complex formation. The analyses of fluorescence, FT-IR spectra, and dissociation tests demonstrated the indispensability of hydrophobic, electrostatic, and hydrogen bonding interactions in the preparation of the composites. Scanning electron microscopy revealed that the surface morphology of the nanoparticles changed from smooth and spherical to rough and irregular with the addition of lysozyme. Furthermore, molecular dynamic simulations suggested that lysozyme bound to the hydrophobic region of gliadin and hydrogen bonding was crucial for the stability of the complex. These findings contribute to the advancement of gliadin-lysozyme complex nanoparticles as an efficient delivery system for encapsulating bioactive compounds in food industry.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Renjie Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
22
|
Lin H, Fu S, Hu C, Zhang W, He J. Characterization, interfacial rheology, and storage stability of Pickering emulsions stabilized by complex of whey protein isolate fiber and zein derived from micro-endosperm maize. Int J Biol Macromol 2024; 261:129948. [PMID: 38311140 DOI: 10.1016/j.ijbiomac.2024.129948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
In present study, we characterized the formation, interfacial rheology, and storage stability of emulsions stabilized by microendosperm maize-derived zein (M-Zein)/whey protein isolate fiber (WPIF) nanoparticles. Microendosperm maize is a newly developed, oleic acid-rich oilseed resource. Recent research has shown that M-Zein possesses unique hydrophobic properties. Combining it with WPIF may enhance its performance as a stabilizer. Optimization of weight ratios for M-Zein/WPIF composites, guided by particle size analysis, fluorescence spectroscopy, three-phase contact angle (θ), and interfacial rheological analysis, revealed that a 4: 6 mass ratio at pH 7 yielded favorable wettability (θ = 91.2°). Interfacial rheology analysis showed that the combination of WPIF reduced M-Zein's interfacial tension to 7.2 mN/m and 36.7 mN/m at oil-water and air-water interfaces, respectively. The M-Zein/WPIF complex exhibited an elastic protein layer at the oil-water interface. Further investigations into nanoparticle concentration, oil phase volume, and pH revealed that emulsions containing 3 % nanoparticles (w/w), 50 % oil phase volume, and pH 7 showed the best storage stability. This research highlights the development of M-Zein/WPIF composited nanoparticles with superior storage stability and interfacial rheology. Additionally, it introduces a novel application for M-Zein, which elevates the value proposition of microendosperm maize.
Collapse
Affiliation(s)
- Hong Lin
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China.
| | - Sihan Fu
- Wuhan Polytechnic University, School of Food Science and Engineering, China
| | - Chun Hu
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China
| | - Weinong Zhang
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China
| | - Junbo He
- Wuhan Polytechnic University, School of Food Science and Engineering, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, China; MOE Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, China.
| |
Collapse
|
23
|
Yang S, Jin Y, Li F, Shi J, Liang J, Mei X. Pickering Emulsion Stabilized by Hordein-Whey Protein Isolate Complex: Delivery System of Quercetin. Foods 2024; 13:665. [PMID: 38472777 DOI: 10.3390/foods13050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
As a lipophilic flavonol, quercetin has low bioavailability, which limits its application in foods. This work aimed to prepare a hordein-based system to deliver quercetin. We constructed hordein-whey isolate protein fibril (WPIF) complexes (H-Ws) by anti-solvent precipitation method at pH 2.5. The TEM results of the complexes showed that spherical-like hordein particles were wrapped in WPIF clusters to form an interconnected network structure. FTIR spectra revealed that hydrogen bonds and hydrophobic interactions were the main driving forces for the complex formation. H-W1 (the mass ratio of hordein to WPIF was 1:1) with a three-phase contact angle of 70.2° was chosen to stabilize Pickering emulsions with oil volume fractions (φ) of 40-70%. CLSM images confirmed that the oil droplets were gradually embedded in the three-dimensional network structure of H-W1 with the increase in oil volume fraction. The emulsion with φ = 70% showed a tight gel structure. Furthermore, this emulsion exhibited high encapsulation efficiency (97.8%) and a loading capacity of 0.2%, demonstrating the potential to deliver hydrophobic bioactive substances. Compared with free quercetin, the bioaccessibility of the encapsulated quercetin (35%) was significantly improved. This study effectively promoted the application of hordein-based delivery systems in the food industry.
Collapse
Affiliation(s)
- Songqi Yang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Yunan Jin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Feifan Li
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Jinfeng Shi
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Jiahui Liang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
| | - Xiaohong Mei
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100083, China
- Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
24
|
Wang L, Wang P, Li Y, Liu S, Wu L, Zhang W, Chen C. A Novel Strategy to Enhance the pH Stability of Zein Particles through Octenyl Succinic Anhydride-Modified Starch: The Role of Preparation pH. Foods 2024; 13:303. [PMID: 38254604 PMCID: PMC10815246 DOI: 10.3390/foods13020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Ensuring the stability of zein nanoparticles at different pH levels is crucial for their application as nanocarriers. In this study, octenyl succinic anhydride-modified starch (OSA-modified starch) was employed to enhance the stability of zein nanoparticles against different pH levels by forming complex nanoparticles with OSA-modified starch. The effect of preparation pH on the stability of the zein/OSA-modified starch nanoparticles was investigated. Sedimentation occurred in zein nanoparticles as the pH reached the isoelectric point. However, the stability of zein nanoparticles at various pH levels significantly improved after adding OSA-modified starch to form zein/OSA-modified starch nanoparticles regardless of whether they were prepared under acidic or alkaline pH conditions. Notably, the stability of zein/OSA-modified starch nanoparticles prepared at an acidic pH was higher than that of those prepared at an alkaline pH, thereby highlighting the critical role of the preparation pH for zein/OSA-modified starch in maintaining the stability of zein. The stable zein/OSA-modified starch nanoparticles developed in this study exhibit significant potential for use in delivery systems across various pH environments.
Collapse
Affiliation(s)
- Linlin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (S.L.); (W.Z.)
| | - Yi Li
- Jilin COFCO Biochemistry Co., Ltd., Changchun 130033, China; (Y.L.); (L.W.)
| | - Siyuan Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (S.L.); (W.Z.)
| | - Lida Wu
- Jilin COFCO Biochemistry Co., Ltd., Changchun 130033, China; (Y.L.); (L.W.)
| | - Weibo Zhang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (S.L.); (W.Z.)
| | - Chong Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (S.L.); (W.Z.)
| |
Collapse
|
25
|
Yu C, Shan J, Ju H, Chen X, Xu G, Wu Y. Construction of a Ternary Composite Colloidal Structure of Zein/Soy Protein Isolate/Sodium Carboxymethyl Cellulose to Deliver Curcumin and Improve Its Bioavailability. Foods 2023; 12:2692. [PMID: 37509784 PMCID: PMC10379602 DOI: 10.3390/foods12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This work presents the fabrication of ternary nanoparticles (Z/S/C NPs) comprising zein (Z), soy protein isolate (SPI) and carboxymethylcellulose sodium (CMC-Na) through a pH-driven method. The results showed that the smallest particle size (71.41 nm) and the most stable zeta potential, measuring -49.97 mV, were achieved with the following ratio of ternary nanoparticles Z/SPI/CMC-Na (2:3:3). The surface morphology of the nanoparticles was further analyzed using transmission electron microscopy, and the synthesized nanoparticles were utilized to encapsulate curcumin (Cur), a hydrophobic, bioactive compound. The nanoparticles were characterized using a particle size analyzer, infrared spectroscopy, and X-ray diffraction (XRD) techniques. The results revealed that the formation of nanoparticles and the encapsulation of Cur were driven by electrostatic, hydrogen-bonding and hydrophobic interactions. The drug loading efficiency (EE%) of Z/S/C-cur nanoparticles reached 90.90%. The Z/S/C ternary nanoparticles demonstrated enhanced storage stability, photostability and simulated the gastrointestinal digestion of Cur. The release of Cur and variations in the particle size of nanoparticles were investigated across different stages of digestion. The biocompatibility of the Z/S/C ternary nanoparticles was assessed by conducting cell viability assays on HepG2 and L-O2 cells, which showed no signs of cytotoxicity. These results suggested that the ternary composite nanoparticles have potential in delivering nutritional foods and health-promoting bioactive substances.
Collapse
Affiliation(s)
- Chong Yu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingyu Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Hao Ju
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiao Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Guangsen Xu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yanchao Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
26
|
Caicedo Chacon WD, Verruck S, Monteiro AR, Valencia GA. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res Int 2023; 168:112728. [PMID: 37120194 DOI: 10.1016/j.foodres.2023.112728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.
Collapse
|
27
|
Mao Y, Huang W, Jia R, Bian Y, Pan MH, Ye X. Correlation between Protein Features and the Properties of pH-Driven-Assembled Nanoparticles: Control of Particle Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5686-5699. [PMID: 37012896 DOI: 10.1021/acs.jafc.3c00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study sought to understand how the features of proteins impact the properties of nanoparticles assembled using the pH-shifting approach and the mechanism behind. Four legume protein isolates from faba bean, mung bean, soy, and pea were fractionated into natural aqueous-soluble (Sup) and aqueous-insoluble (Sed) fractions, which were proved to serve as shell and core, respectively, for the pH-driven-assembled nanoparticles. Using zein instead of Sed fractions as the core improved size uniformity, and particle size can be precisely controlled by adjusting core/shell ratios. Using the proteomic technique and silico characterization, the features of identified proteins indicated that hydrophobicity rather than molecular weight, surface charge, etc., mainly determined particle size. With molecular docking, structural analysis, and dissociation tests, the assembly of zein/Sup-based nanoparticles was dominantly driven by hydrophobic interactions. This study provides constructive information on the correlation between protein features and the properties of pH-driven-assembled nanoparticles, achieving a precise control of particle size.
Collapse
Affiliation(s)
- Yuhong Mao
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Wenting Huang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Rongju Jia
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yangyang Bian
- The College of Life Science, Northwest University, Xi'an 710069, P.R. China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
28
|
Bai Y, Li X, Xie Y, Wang Y, Dong X, Qi H. Ultrasound treatment enhanced the functional properties of phycocyanin with phlorotannin from Ascophyllum nodosum. Front Nutr 2023; 10:1181262. [PMID: 37090776 PMCID: PMC10115965 DOI: 10.3389/fnut.2023.1181262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionPhycocyanin offers advantageous biological effects, including immune-regulatory, anticancer, antioxidant, and anti-inflammation capabilities. While PC, as a natural pigment molecule, is different from synthetic pigment, it can be easily degradable under high temperature and light conditions.MethodsIn this work, the impact of ultrasound treatment on the complex of PC and phlorotannin structural and functional characteristics was carefully investigated. The interaction between PC and phlorotannin after ultrasound treatment was studied by UV–Vis, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, fourier transform infrared (FTIR) spectroscopy. Additionally, the antioxidant potential and in vitro digestibility of the complexes were assessed.ResultsThe result was manifested as the UV–Vis spectrum reduction effect, fluorescence quenching effect and weak conformational change of the CD spectrum of PC. PC was identified as amorphous based on the X-ray diffraction (XRD) data and that phlorotannin was embedded into the PC matrix. The differential scanning calorimetry (DSC) results showed that ultrasound treatment and the addition of phlorotannin could improve the denaturation peak temperatures (Td) of PC to 78.7°C. In vitro digestion and free radical scavenging experiments showed that appropriate ultrasound treatment and the addition of phlorotannin were more resistant to simulated gastrointestinal conditions and could improve DPPH and ABTS+ free radical scavenging performance.DiscussionUltrasound treatment and the addition of phlorotannin changed the structural and functional properties of PC. These results demonstrated the feasibility of ultrasound-assisted phlorotannin from A. nodosum in improving the functional properties of PC and provided a possibility for the application of PC-polyphenol complexes as functional food ingredients or as bioactive materials.
Collapse
Affiliation(s)
- Ying Bai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
| | - Xueting Li
- Haide College, Ocean University of China, Qingdao, China
| | - Yuqianqian Xie
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
| | - Yingzhen Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
| | - Xiuping Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
| | - Hang Qi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hang Qi,
| |
Collapse
|
29
|
Zein nanoparticles for drug delivery: Preparation methods and biological applications. Int J Pharm 2023; 635:122754. [PMID: 36812950 DOI: 10.1016/j.ijpharm.2023.122754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Zein, a vegetable protein extracted from corn (Zea mays L.), forms a gastro-resistant and mucoadhesive polymer that is cheap and easy to obtain and facilitates the encapsulation of bioactives with hydrophilic, hydrophobic, and amphiphilic properties. The methods used for synthesizing these nanoparticles include antisolvent precipitation/nanoprecipitation, pH-driven, electrospraying, and solvent emulsification-evaporation methods. Each method has its advantages in the preparation of nanocarriers, nevertheless, all of them enable the production of zein nanoparticles that are stable and resistant to environmental factors, with different biological activities required in the cosmetic, food, and pharmaceutical industries. Therefore, zein nanoparticles are promising nanocarriers that can encapsulate various bioactives with anti-inflammatory, antioxidant, antimicrobial, anticancer, and antidiabetic properties. This article reviews the principal methods for obtaining zein nanoparticles containing bioactives, the advantages and characteristics of each method, as well as the main biological applications of nanotechnology-based formulations.
Collapse
|
30
|
Zhao J, Zhou B, Wang P, Ren F, Mao X. Physicochemical properties of fluid milk with different heat treatments and HS-GC-IMS identification of volatile organic compounds. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
31
|
Chen P, Wang RM, Xu BC, Xu FR, Ye YW, Zhang B. Food emulsifier based on the interaction of casein and butyrylated dextrin for improving stability and emulsifying properties. J Dairy Sci 2023; 106:1576-1585. [PMID: 36631321 DOI: 10.3168/jds.2022-22532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/08/2022] [Indexed: 01/11/2023]
Abstract
Green hydrophobically modified butyrylated dextrin (BD) was used to modulate casein (CN). The CN/BD complex nanoparticles were formed at different CN-to-BD mass ratios based on a pH-driven technology. The interaction force, stability, and emulsifying properties of complex nanoparticles were investigated. The nanoparticles had a negative charge and a small particle size (160.03, 152.6, 155.9, 206.13, and 231.67 nm) as well as excellent thermal stability and environmental stability (pH 4.5, 5.5, 6.6, 7.5, 8.5, and 9.5; ionic strength, 50, 100, 200, and 500 mM). Transmission electron microscopy demonstrated the successful preparation of complex nanoparticles and their spherical shape. Fourier transform infrared spectroscopy, fluorescence spectroscopy, and dissociation analysis results showed that the main driving forces of formed CN/BD nanoparticles were hydrogen bonding and hydrophobic interaction. Furthermore, the CN/BD nanoparticles (CN/BD mass ratio, 1:1; weight/weight) exhibited the lowest creaming index, and optical microscopy showed that it has the most evenly dispersed droplets after 7 d of storage, which indicates that the CN/BD nanoparticles had excellent emulsifying properties. Butyrylated dextrin forms complex nanoparticles with CN through hydrogen bonding and hydrophobic interaction to endow CN with superior properties. The results showed that it is possible to use pH-driven technology to form protein-polysaccharide complex nanoparticles, which provides some information on the development of novel food emulsifiers based on protein-polysaccharide nanoparticles. The study provided significant information on the improvement of CN properties and the development of emulsions based on CN.
Collapse
Affiliation(s)
- Pin Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ru-Meng Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Fei-Ran Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Ying-Wang Ye
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
32
|
Shi T, Jia C, Wang X, Xia S, Wang X, Fan C, Zhang X, Swing CJ. Formation mechanism and stability of low environment-sensitive ternary nanoparticles based on zein-pea protein-pectin for astaxanthin delivery. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Sun Y, Wei Z, Xue C. Development of zein-based nutraceutical delivery systems: A systematic overview based on recent researches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
34
|
Development of doxorubicin hydrochloride-loaded whey protein nanoparticles and its surface modification with N-acetyl cysteine for triple-negative breast cancer. Drug Deliv Transl Res 2022; 12:3047-3062. [PMID: 35499714 DOI: 10.1007/s13346-022-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
Limited targeted therapies are available for triple-negative breast cancer (TNBC). Thus, the current research focused on developing a targeted protein nanoparticle for TNBC. First, the doxorubicin hydrochloride (Dox)-loaded genipin-crosslinked whey protein nanoparticles (WD) were prepared and optimised by the QbD method using BBD. The hydrodynamic diameter of WD was found to be 364.38 ± 49.23 nm, zeta potential -27.59 ± 1.038 mV, entrapment 63.03 ± 3.625% and Dox loading was found to be 1.419 ± 0.422%. The drug recovery after 18 months of storage was 69%. Then, it was incubated with NAC to obtain modified WD (CyWD). WD followed first-order release kinetics, whereas CyWD followed the Higuchi model. Hemagglutination and hemolysis were not found qualitatively in WD and CyWD. Upon injecting the nanoformulations to 4T1-induced mice, the highest efficacy was found to be in CyWD followed by WD and Dox injection. Upon histopathological observance, it was found that the CyWD group gave the most significant damage to the 4T1 tumour tissue. Thus, NAC-modified protein nanoparticles carrying chemotherapeutic agents can be an excellent targeted therapeutic system against TNBC.
Collapse
|
35
|
Theoretical and experimental perspectives of interaction mechanism between zein and lysozyme. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Improving interface properties of zein hydrolysis and its application in salad dressing through dispersion improvement assisted by potassium oleate aqueous solution. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zhou C, Zhao T, Chen L, Yagoub AEA, Chen H, Yu X. Effect of dialysate type on ultrasound-assisted self-assembly Zein nanocomplexes: Fabrication, characterization, and physicochemical stability. Food Res Int 2022; 162:111812. [DOI: 10.1016/j.foodres.2022.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
|
38
|
Wang C, Cui B, Sun Y, Wang C, Guo M. Preparation, stability, antioxidative property and in vitro release of cannabidiol (CBD) in zein-whey protein composite nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Yuan Y, Ma M, Wang D, Xu Y. A review of factors affecting the stability of zein-based nanoparticles loaded with bioactive compounds: from construction to application. Crit Rev Food Sci Nutr 2022; 63:7529-7545. [PMID: 35253532 DOI: 10.1080/10408398.2022.2047881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zein-based nanoparticles loaded with bioactive compounds have positive prospects in the food industry, but an important limiting factor for development is colloidal instability. Currently, extensive researches are focused on solving the instability of zein nanoparticles, but since the beginning of the studies, there has not been a summary of the factors affecting the stability of zein-based nanoparticles. In the present work, the factors were reviewed comprehensively from the perspective of carrier construction and application evaluation. The former mainly includes type, quantity, and characteristics of biopolymer, the mass ratio of biopolymer/bioactive compound to zein, blending sequence of biopolymer, and location of encapsulated bioactive compounds. The latter mainly includes pH, heating, ionic strength, storage, freeze-drying, and gastrointestinal digestion. The former is the prerequisite for the success of the latter. The challenge is that stability research is limited to the laboratory level, and it is difficult to ensure that the stability results are suitable for commercial food matrices due to their complexity. At the laboratory level, the future trends are the influence of external energy and the cross-complexity and uniformity of stability research. The review is expected to provide systematic understanding and guidance for the development of zein-based nanoparticles stability.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
40
|
Surface coating of zein nanoparticles to improve the application of bioactive compounds: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Enhanced Stability and Oral Bioavailability of Cannabidiol in Zein and Whey Protein Composite Nanoparticles by a Modified Anti-Solvent Approach. Foods 2022; 11:foods11030376. [PMID: 35159526 PMCID: PMC8833932 DOI: 10.3390/foods11030376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Wide applications of cannabidiol (CBD) in the food and pharmaceutical industries are limited due to its low bioavailability, sensitivity to environmental pressures and low water solubility. Zein nanoparticles were stabilized by whey protein (WP) for the delivery of cannabidiol (CBD) using a modified anti-solvent approach. Particle size, surface charge, encapsulation efficiency, and re-dispersibility of nanoparticles were influenced by the zein to WP ratio. Under optimized conditions at 1:4, zein–WP nanoparticles were fabricated with CBD (200 μg/mL) and further characterized. WP absorbed on zein surface via hydrogen bond, hydrophobic forces, and electrostatic attraction. The zein–WP nanoparticles showed excellent storage stability (4 °C, dark) and effectively protected CBD degradation against heat and UV light. In vivo pharmacokinetic study demonstrated that CBD in zein–WP nanoparticles displayed 2-times and 1.75-fold enhancement in maximum concentration (C max) and the area under curve (AUC) as compared to free-form CBD. The data indicated the feasibility of developing zein–WP based nanoparticles for the encapsulation, protection, and delivery of CBD.
Collapse
|
42
|
Effect of sodium chloride on formation and structure of whey protein isolate/hyaluronic acid complex and its ability to loading curcumin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Yuan Y, Ma M, Xu Y, Wang D. Construction of biopolymer-based nanoencapsulation of functional food ingredients using the pH-driven method: a review. Crit Rev Food Sci Nutr 2021; 63:5724-5738. [PMID: 34969342 DOI: 10.1080/10408398.2021.2023858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biopolymer-based nanoencapsulation presents great performance in the delivery of functional food ingredients. In recent years, the pH-driven method has received considerable attention due to its unique characteristics of low energy and organic solvent-free during the construction of biopolymer-based nanoencapsulation. This review summarized the fundamental knowledge of pH-driven biopolymer-based nanoencapsulation. The principle of the pH-driven method is the protonation reaction of functional food ingredients that change with pH. The stability of functional food ingredients in an alkaline environment is a prerequisite for the adoption of this method. pH regulator is also an important influencing factor. Different coating materials used to the pH-driven nanoencapsulation were discussed, including single and composite materials, mainly focusing on proteins. Besides, the application evaluations of pH-driven nanoencapsulation in food were analyzed. The future development trends will be the influence of pH regulators on the carrier, the design of new non-protein-based carriers, the quantification of driving forces, the absorption mechanism of encapsulated nutrients, and the molecular interaction between the wall material and the intestinal mucosa. In conclusion, pH-driven biopolymer-based nanoencapsulation of functional food ingredients will have broad prospects for development.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
44
|
Zhang J, Hassane Hamadou A, Chen C, Xu B. Encapsulation of phenolic compounds within food-grade carriers and delivery systems by pH-driven method: a systematic review. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34730038 DOI: 10.1080/10408398.2021.1998761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In comparison to conventional encapsulation methods of phenolic compounds (PCs), pH-driven method is green, simple and requires low energy consumption. It has a huge potential for industrial applications, and can overcome more effectively the aqueous solubility, stability and bioavailability issues related to PCs by changing pH to induce the encapsulation of PCs. This review aims to shed light on the use of pH-driven method for encapsulating PCs. The preparation steps and principles governing pH-driven method using various carriers and delivery systems are provided. A comparison of pH-driven with other methods is also presented. To circumvent the drawbacks of pH-driven method, improvement strategies are proposed. The essence of pH-driven method relies simultaneously on alkalization and acidification to bind PCs and carriers. It is used for the development of nanoemulsions, liposomes, edible films, nanoparticles, nanogels and functional foods. As a result of pH-driven method, PCs-loaded carriers may have smaller size, high encapsulation efficiency, more sustained-release and good bioavailability, due mainly to effects of pH change on the structure and properties of PCs as well as carriers. Finally, modification of wall materials and type of acidifier are considered as efficient approaches to improve the pH-driven method.
Collapse
Affiliation(s)
- Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Fabrication and characterization of zein-alginate oligosaccharide complex nanoparticles as delivery vehicles of curcumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116937] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Akhtar A, Aslam S, Khan S, McClements DJ, Khalid N, Maqsood S. Utilization of diverse protein sources for the development of protein-based nanostructures as bioactive carrier systems: A review of recent research findings (2010-2021). Crit Rev Food Sci Nutr 2021; 63:2719-2737. [PMID: 34565242 DOI: 10.1080/10408398.2021.1980370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Consumer awareness of the relationship between health and nutrition has caused a substantial increase in the demand for nutraceuticals and functional foods containing bioactive compounds (BACs) with potential health benefits. However, the direct incorporation of many BACs into commercial food and beverage products is challenging because of their poor matrix compatibility, chemical instability, low bioavailability, or adverse impact on food quality. Advanced encapsulation technologies are therefore being employed to overcome these problems. In this article, we focus on the utilization of plant and animal derived proteins to fabricate micro and nano-particles that can be used for the oral delivery of BACs such as omega-3 oils, vitamins and nutraceuticals. This review comprehensively discusses different methods being implemented for fabrications of protein-based delivery vehicles, types of proteins used, and their compatibility for the purpose. Finally, some of the challenges and limitations of different protein matrices for encapsulation of BACs are deliberated upon. Various approaches have been developed for the fabrication of protein-based microparticles and nanoparticles, including injection-gelation, controlled denaturation, and antisolvent precipitation methods. These methods can be used to construct particle-based delivery systems with different compositions, sizes, surface hydrophobicity, and electrical characteristics, thereby enabling them to be used in a wide range of applications.
Collapse
Affiliation(s)
- Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sadia Aslam
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
47
|
Wei Y, Guo A, Liu Z, Mao L, Yuan F, Gao Y, Mackie A. Structural design of zein-cellulose nanocrystals core-shell microparticles for delivery of curcumin. Food Chem 2021; 357:129849. [PMID: 33915467 DOI: 10.1016/j.foodchem.2021.129849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/28/2022]
Abstract
The novel core-shell microparticles were fabricated to deliver curcumin by using hydrophobic zein microparticles as the core and hydrophilic cellulose nanocrystals (CNCs) as the shell. Different concentrations (0.10-1.50%, w/v) of CNCs were utilized to regulate the microstructure, physicochemical stability, and in vitro digestion of the core-shell microparticles. The size of the microparticles ranged from 1017.3 to 3663.7 nm. Electrostatic attraction and hydrophobic interactions were responsible for the assembly of zein-CNCs core-shell microparticles. The microstructure of the microparticles was dependent on the CNCs level. The retention rate of curcumin in the core-shell microparticles was increased by 76.41% after UV radiation. Furthermore, the rise of CNCs level delayed the release of curcumin from the microparticles in gastrointestinal tract and reduced its bioaccessibility. The potential of utilizing hydrophilic nanoparticles was explored to stabilize hydrophobic microparticles through interparticle interactions, which was useful to develop the novel core-shell microparticles for the application in functional foods.
Collapse
Affiliation(s)
- Yang Wei
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Aixin Guo
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zikun Liu
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Yuan
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Alan Mackie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|