1
|
Sanprasert S, Kumnerdsiri P, Seubsai A, Lueangjaroenkit P, Pongsetkul J, Indriani S, Petcharat T, Sai-ut S, Hunsakul K, Issara U, Pawde SV, Rawdkuen S, Karbowiak T, Jung YH, Kingwascharapong P. Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients. Foods 2025; 14:1279. [PMID: 40238625 PMCID: PMC11988969 DOI: 10.3390/foods14071279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
The utilization of gelatin capsule waste (GCW) poses a challenge for the industry. This study investigates its potential as a functional food ingredient by evaluating the physico-chemical, rheological, and techno-functional properties of gelatin capsule waste powder (GCWP). To achieve this, the gelatin capsule waste (GCW) was mixed with maltodextrin at varying ratios (1:1, 1:2, 1:3, 1:4, and 1:5) and subjected to spray drying. The findings highlight maltodextrin's crucial role in stabilizing the drying process, reducing stickiness, and enhancing handling and storage properties. All the obtained GCWP samples appeared light white and had a slightly sticky texture. The 1:5 (w/w) GCW-to-maltodextrin ratio produced the highest powder recovery with minimal stickiness, indicating enhanced drying efficiency. Increasing maltodextrin reduced gel strength, texture, and foaming properties while raising the glass transition temperature. The FTIR analysis indicated a decline in protein-protein interactions and increased polysaccharide interactions at higher maltodextrin levels. The rheological analysis demonstrated lower elastic and loss moduli with increased maltodextrin, affecting GCWP's structural behavior. For overall properties, the GCW mixed with maltodextrin at a 1:1 ratio (GCW-1M) is recommended for future applications, particularly for its gelling characteristics. The GCW-1M, being rich in amino acids, demonstrates its potential as a functional food ingredient. However, certain properties, such as gel strength and powder stability (hygroscopicity and stickiness), require further optimization to enhance its industrial applicability as a functional food ingredient.
Collapse
Affiliation(s)
- Sasina Sanprasert
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (P.K.)
| | - Pudthaya Kumnerdsiri
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (P.K.)
| | - Anusorn Seubsai
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.P.); (S.I.)
| | - Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.P.); (S.I.)
| | - Tanyamon Petcharat
- Professional Culinary Arts Program, School of Management, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand;
| | - Samart Sai-ut
- Department of Food Science, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Kanrawee Hunsakul
- Division of Agro-Industrial Product Development, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Chonburi 22210, Thailand;
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand;
| | - Subhash V. Pawde
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saroat Rawdkuen
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Thomas Karbowiak
- Université Bourgogne Europe, Institut Agro, INRAE, UMR PAM, F-21000 Dijon, France;
| | - Young Hoon Jung
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Passakorn Kingwascharapong
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (P.K.)
| |
Collapse
|
2
|
Yang X, Tan Z, Zhao W, Zheng Y, Ling S, Guo X, Dong X. Molecular interactions and gel network modulation in ionic polysaccharide-gelatin hydrogels for improved texture of skipjack tuna products. Food Chem 2025; 482:144002. [PMID: 40184742 DOI: 10.1016/j.foodchem.2025.144002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
The present study investigates the enhancement of skipjack tuna (Katsuwonus pelamis) texture by incorporating ionic polysaccharide-bovine bone gelatin (BBG) hydrogels. Three ionic polysaccharides, namely carboxymethyl chitosan (CMCS), konjac glucomannan (KGM), and oat β-glucan (OBG), were utilized in BBG-based hydrogels. And their effects on the rheological, structural, and protein properties of the composite gels were explored. Results showed that charge density influenced pore size, wall thickness, and cross-linking density in hydrogels. Structural analyses revealed that all polysaccharides promoted ordered rearrangements in protein secondary structure, increasing surface hydrophobicity and β-sheet content, with OBG having the pronounced effect by mediating gelation through enhanced hydrophobic interactions and hydrogen bonding. The incorporation of BBG + OBG-20 % hydrogels significantly enhanced water-holding capacity, and texture while reducing oral processing energy (p < 0.05). These findings provide insights for improving the texture of skipjack tuna products and demonstrate the potential application of polysaccharide-BBG hydrogels in enhancing the quality of fish products.
Collapse
Affiliation(s)
- Xiaoqing Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weiping Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yunfang Zheng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siqi Ling
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiaoming Guo
- Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Su XN, Khan MF, Xin-Ai, Liu DL, Liu XF, Zhao QL, Cheong KL, Zhong SY, Li R. Fabrication, modification, interaction mechanisms, and applications of fish gelatin: A comprehensive review. Int J Biol Macromol 2025; 288:138723. [PMID: 39672411 DOI: 10.1016/j.ijbiomac.2024.138723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Fish gelatin (FG) is an essential natural biopolymer isolated from aquatic sources and has been considered as a feasible substitute for mammalian gelatins. However, its inferior mechanical and gelling properties limit its applications. Consequently, FG has been modified using various methods. This review summarizes the extraction techniques (including traditional acid and alkaline methods, as well as newer technologies such as ultrasonic-assisted and microwave-assisted extraction), modification strategies (mechanical treatments, physical mixing with polysaccharides, utilization of the Hofmeister effect, chemical modifications, etc.), along with their mechanisms of action. Additionally, we discussed the applications of FG and its modified products. Furthermore, this review highlights the safety and prospects for FG and its derivatives. The mechanical properties and biological functions of FGs are enhanced after modification. Thus, modified FG composites exhibit diverse applications in areas such as foaming agents and emulsifiers, food packaging, three-dimensional printing, drug delivery systems and tissue engineering. This paper aims to provide comprehensive information for future research on FG with the intention of broadening its applicability within the industries of food, cosmetics, and pharmaceuticals. Nevertheless, the development of tough gels, aerogels, and stimuli-responsive hydrogels based on FG requires further investigation.
Collapse
Affiliation(s)
- Xian-Ni Su
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Muhammad Fahad Khan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xin-Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Dan-Lei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Qiao-Li Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China.
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| |
Collapse
|
4
|
Wang Y, Zhang L, Cao G, Li Z, Du M. Effect of Heat Treatment on Gelatin Properties and the Construction of High Internal Phase Emulsions for 3D Printing. Foods 2024; 13:4009. [PMID: 39766952 PMCID: PMC11728344 DOI: 10.3390/foods13244009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The effect of tilapia skin gelatin properties on the characteristics of high internal phase emulsions (HIPEs) and the quality of 3D printing remains unidentified. In this work, HIPEs were constructed by gelatin with various properties that were obtained by heat treatment. The results indicated that the gelatin undergoes degradation gradually with an increase in heating intensity. The highest values of intrinsic fluorescence intensity, surface hydrophobicity, and emulsification were obtained when the heating time was 5 h. The gel strength and hardness of gelatin hydrogels were negatively correlated with heat treatment temperature. HIPEs constructed by gelatin extracted at 70 °C demonstrated a suitable material for 3D printing. The storage modulus (G') and viscosity of HIPEs exhibited a similar tendency as the gel strength of gelatin. The microstructure of HIPEs revealed that gelatin established a gel network around oil droplets, and the higher G' of HIPEs corresponded to a more compact network structure. This study elucidated the correlation between the structure and properties of gelatin, offering essential insights for the formulation of HIPEs by natural gelatin, which is suitable for applications across several domains.
Collapse
Affiliation(s)
| | - Ling Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (G.C.); (Z.L.)
| | | | | | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (G.C.); (Z.L.)
| |
Collapse
|
5
|
Liu B, Zheng Y, Peng J, Wang D, Zi Y, Wang Z, Wang X, Zhong J. Fish oil-loaded multicore submillimeter-sized capsules prepared with monoaxial electrospraying, chitosan-tripolyphosphate ionotropic gelation, and Tween blending. Int J Biol Macromol 2024; 268:131921. [PMID: 38679265 DOI: 10.1016/j.ijbiomac.2024.131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
In order to load fish oil for potential encapsulation of fat-soluble functional active substances, fish oil-loaded multicore submillimeter-sized capsules were prepared with a combination method of three strategies (monoaxial electrospraying, chitosan-tripolyphosphate ionotropic gelation, and Tween blending). The chitosan-tripolyphosphate/Tween (20, 40, 60, and 80) capsules had smaller and evener fish oil cores than the chitosan-tripolyphosphate capsules, which resulted from that Tween addition induced smaller and evener fish oil droplets in the emulsions. Tween addition decreased the water contents from 56.6 % to 35.0 %-43.4 %, increased the loading capacities from 10.4 % to 12.7 %-17.2 %, and increased encapsulation efficiencies from 97.4 % to 97.8 %-99.1 %. In addition, Tween addition also decreased the highest peroxide values from 417 meq/kg oil to 173-262 meq/kg oil. These properties' changes might result from the structural differences between the chitosan-tripolyphosphate and chitosan-tripolyphosphate/Tween capsules. All the results suggested that the obtained chitosan-tripolyphosphate/Tween capsules are promising carriers for fish oil encapsulation. This work also provided useful knowledge to understand the preparation, structural, and physicochemical properties of the chitosan-tripolyphosphate capsules.
Collapse
Affiliation(s)
- Bolin Liu
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulu Zheng
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Deqian Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhengquan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
6
|
Xu J, Zhang J, Wu P, Wang F, Tu Z, Wang H, Guo D. Effects of Maillard reaction of different monosaccharide-modified on some functional properties of fish gelatin. Food Res Int 2024; 182:114176. [PMID: 38519189 DOI: 10.1016/j.foodres.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
In this work, the effects of Maillard reaction of different monosaccharide-modified fish gelatin were studied. The changes of gel properties, rheology and structure of fish gelatin before and after modification were compared and analyzed, and oil-in-woter emulsions were prepared. The results showed that the five-carbon monosaccharide had stronger modification ability than the six-carbon monosaccharide, which was mainly due to the different steric hindrance of the amino acids in the nuclear layer and the outer layer to the glycosylation reaction. With the progress of the Maillard reaction, the color of fish gelatin gradually became darker. The attachment of sugar chains inhibited the gelation process of fish gelatin, decreased the gelation rate, changed the secondary structure, increased the content of β-turn or α-helix, increased the degree of fluorescence quenching, and enhanced the emulsifying properties and emulsion stability. This study provides useful information for the preparation of different types of monosaccharide-modified proteins and emulsions.
Collapse
Affiliation(s)
- Jinghong Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Peihan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Feifei Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Debin Guo
- Jiangxi Huangshanghuang Group Food Co., Ltd, Nanchang, Jiangxi 330001, China
| |
Collapse
|
7
|
Xu J, Tu Z, Wang H, Hu Y, Wen P, Huang X, Wang S. Discrimination and characterization of different ultrafine grinding times on the flavor characteristic of fish gelatin using E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Chem 2024; 433:137299. [PMID: 37660600 DOI: 10.1016/j.foodchem.2023.137299] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Three different methods were used to identify and analyze the flavor of fish gelatin with different ultrafine grinding time (0, 2, 4 and 8 h). The results of electronic nose showed that overall flavor of the samples changed. HS-SPME-GC-MS identified 65 volatile compounds, including 18 aldehydes, 7 ketones, 7 alkanes, 11 alcohols, 8 esters, 7 phenols, and 7 acids. HS-GC-IMS identified 46 volatile compounds, including 21 aldehydes, 5 ketones, 5 alcohols, 6 esters, 7 acids, 1 ether, and 1 amine. The particle size analysis results indicate that the size distribution decreases from 918.97-1167.16 and 1388.81-1780.40 nm to 157.63-177.37 and 285.90-344.55 nm with the increased of grinding time. The SEM analysis results indicate that the change in flavor characteristics of FG is due to the different storage and release abilities of volatile compounds in FG with different particle sizes.
Collapse
Affiliation(s)
- Jinghong Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoliang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
8
|
Huang X, Liu Q, Wang P, Song C, Ma H, Hong P, Zhou C. Tapioca Starch Improves the Quality of Virgatus nemipterus Surimi Gel by Enhancing Molecular Interaction in the Gel System. Foods 2024; 13:169. [PMID: 38201197 PMCID: PMC10779019 DOI: 10.3390/foods13010169] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The gel prepared using Nemipterus virgatus (N. virgatus) surimi alone still has some defects in texture and taste. Complexing with polysaccharides is an efficient strategy to enhance its gel properties. The main objective of this study was to analyze the relationship between the gel quality and molecular interaction of N. virgatus surimi gel after complexing with tapioca starch. The results make clear that the gel strength, hardness, and chewiness of surimi gel were increased by molecular interaction with tapioca starch. At the appropriate addition amount (12%, w/w), the surimi gel had an excellent gel strength (17.48 N), water-holding capacity (WHC) (89.01%), lower cooking loss rate (CLR) (0.95%), and shortened T2 relaxation time. Microstructure analysis indicated that the addition of tapioca starch facilitated even distribution in the gel network structure, resulting in a significant reduction in cavity diameter, with the minimum diameter reduced to 20.33 μm. In addition, tapioca starch enhanced the hydrogen bonding and hydrophobic interaction in the gel system and promoted the transformation of α-helix to β-sheet (p < 0.05). Correlation analysis showed that the increased physicochemical properties of surimi gel were closely related to the enhanced noncovalent interactions. In conclusion, noncovalent complexation with tapioca starch is an efficient strategy to enhance the quality of surimi gel.
Collapse
Affiliation(s)
- Xiaobing Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.H.); (Q.L.); (P.W.); (C.S.); (H.M.); (P.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.H.); (Q.L.); (P.W.); (C.S.); (H.M.); (P.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Pengkai Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.H.); (Q.L.); (P.W.); (C.S.); (H.M.); (P.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Chunyong Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.H.); (Q.L.); (P.W.); (C.S.); (H.M.); (P.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Huanta Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.H.); (Q.L.); (P.W.); (C.S.); (H.M.); (P.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.H.); (Q.L.); (P.W.); (C.S.); (H.M.); (P.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.H.); (Q.L.); (P.W.); (C.S.); (H.M.); (P.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| |
Collapse
|
9
|
Demircan E, Aydar EF, Mertdinc Mertdinç Z, Kasapoglu Kasapoğlu KN, Ozcelik Özçelik B. 3D printable vegan plant-based meat analogue: Fortification with three different mushrooms, investigation of printability, and characterization. Food Res Int 2023; 173:113259. [PMID: 37803572 DOI: 10.1016/j.foodres.2023.113259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 07/08/2023] [Indexed: 10/08/2023]
Abstract
In this study, a meat analogue formulation prepared using different protein sources as a printable ink for 3D printers and fortified with three different mushroom cultivars (reishi, Ganoderma lucidum (GL); saffron milk-cap, Lactarius deliciosus (LD); and oyster, Pleurotus ostreatus (PO)). 3D printing performance of the prepared inks was evaluated by factorial design in terms of nozzle height, printing speed, and flow compensation. New methods of maximum layer height and reprintability of plant-based meat analogues were conducted for the first time. Inks were characterized by analyzing rheological properties, microstructure, color characteristics, texture profile, cooking loss, amino acid content, and sensory evaluation. Results showed that the nozzle height and printing speed were found to be most effective on accuracy of prints and smoothness of layers. All inks (C, GL, LD and PO) represented shear-thinning and gel-like viscoelastic behavior (G' > G″) with predominant elasticity (tan δ < 1). Therefore they were suited for 3D printing and possessed supporting the following layers for additive manufacturing as well as meeting the criteria for a stable structure. Meat analogue was printed successfully without perceived defects in all formulations, except the GL was looking linty. LD and PO inks brought the advantage of recycling as a result of their re-printability whereas GL could not. Moreover, mushroom fortification reduced hardness, stiffness, springiness, and chewiness properties of the meat analogues whereas it increased the juiciness with reasonable overall acceptance. Mushroom fortification also enhanced the nutritional value and improved release of umami amino acids. The findings of the study demonstrated that mushrooms could be a functional and nutritious candidate for 3D printable plant-based meat analogues.
Collapse
Affiliation(s)
- Evren Demircan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye.
| | - Elif Feyza Aydar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye.
| | - Zehra Mertdinc Mertdinç
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye.
| | - Kadriye Nur Kasapoglu Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye.
| | - Beraat Ozcelik Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye; Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer 34467, Istanbul, Turkiye.
| |
Collapse
|
10
|
Dalabasmaz S, Melayim ME, Konar N. Effects of gelatin concentration, adding temperature and mixing rate on texture and quality characteristics of model gels. J Texture Stud 2023. [PMID: 37718251 DOI: 10.1111/jtxs.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
In this study, the effects of gelatin concentrations (GC) (5.0-10.0 g/100 g), mixing rate (MR) (100-1100 rpm), and gelatin addition temperature (GAT) (55, 60, and 65°C) were investigated on the main textural and various physicochemical properties of model gels (n = 72) prepared using sucrose and glucose syrup (40-42 DE). Considering the p-value of the F-statistic calculated by analysis of variance and the 5% significance level, the production parameters and their interactions had a significant effect on the quality parameters. The influence of the production parameters GC, MR, and GAT, and the interaction of these parameters, GC * MR, GC * GAT, MR * GAT, and GC * MR * GAT of the model gels on the quality characteristic were expressed by converting the Type III SS values into percent values. When all quality characteristics were considered together, MR was the most influential with a score of 58%. PCAmix, a combination of factorial analysis with PCA, was used to visualize the correlations between the production parameters and the quality characteristics of the modeled gels. A great influence was observed between MR and moisture content, color properties, and texture parameters, except springiness. A moderate effect of GC and a minor effect of GAT could be characterized. With the 2D-map of observations, the model gels could be clearly divided into two groups according to the MRs. In accordance with the observations diagram of PCAmix, the similarity dendrogram of AHC also formed two clusters, one cluster for the samples with MR 100 and 200 rpm and one cluster for the samples with MR 500 and 1100 rpm.
Collapse
Affiliation(s)
- Sevim Dalabasmaz
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
| | - Mehmet Erhan Melayim
- Faculty of Engineering, Department of Food Engineering, Siirt University, Siirt, Turkey
| | - Nevzat Konar
- Faculty of Agriculture, Department of Dairy Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Su K, Sun W, Li Z, Huang T, Lou Q, Zhan S. Complex Modification Orders Alleviate the Gelling Weakening Behavior of High Microbial Transglutaminase (MTGase)-Catalyzed Fish Gelatin: Gelling and Structural Analysis. Foods 2023; 12:3027. [PMID: 37628026 PMCID: PMC10453174 DOI: 10.3390/foods12163027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In this paper, the effects of different modification orders of microbial transglutaminase (MTGase) and contents of pectin (0.1-0.5%, w/v) on the gelling and structural properties of fish gelatin (FG) and the modification mechanism were studied. The results showed that the addition of pectin could overcome the phenomenon of high-MTGase-induced lower gelling strength of gelatin gels. At a low pectin content, the modification sequences had non-significant influence on the gelling properties of modified FG, but at a higher pectin content (0.5%, w/v), P0.5%-FG-TG had higher gel strength (751.99 ± 10.9 g) and hardness (14.91 ± 0.33 N) values than those of TG-FG-P0.5% (687.67 ± 20.98 g, 12.18 ± 0.45 N). Rheology analysis showed that the addition of pectin normally improved the gelation points and melting points of FG. The structural results showed that the fluorescence intensity of FG was decreased with the increase in pectin concentration. Fourier transform infrared spectroscopy analysis indicated that the MTGase and pectin complex modifications could influence the secondary structure of FG, but the influenced mechanisms were different. FG was firstly modified by MTGase, and then pectin (P-FG-TG) had the higher gelling and stability properties.
Collapse
Affiliation(s)
- Kaiyuan Su
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Wanyi Sun
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Zhang Li
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Qiaoming Lou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Shengnan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Wang Y, Wu C, Jia H, Mráz J, Zhao R, Li S, Dong X, Pan J. Modified Structural and Functional Properties of Fish Gelatin by Glycosylation with Galacto-Oligosaccharides. Foods 2023; 12:2828. [PMID: 37569097 PMCID: PMC10417800 DOI: 10.3390/foods12152828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to investigate the effects of galacto-oligogalactose (GOS) glycosylation on the structural and functional properties of fish gelatin (FG). Results showed that with the increase of glycosylation time, grafting degree and browning increased, and new protein bands with increased molecular weight were observed by SDS-PAGE. Structural analysis showed that glycosylation reduced intrinsic fluorescence intensity and increased surface hydrophobicity of FG. FTIR analysis showed α-helix content decreased while random coil content increased in glycosylated FG. Emulsion activity index and emulsion stability index along with foam activity and foam stability were significantly elevated in GOS-4 and GOS-8, but FG glycosylated longer than 12 h exhibited less pronounced improvement. Glycosylated FG showed lower gel strength than control. The results indicate that moderate glycosylation could be applied to improve interfacial properties of FG.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Caiyun Wu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Hui Jia
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (H.J.); (J.M.)
| | - Jan Mráz
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (H.J.); (J.M.)
| | - Ran Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Shengjie Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Xiuping Dong
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Jinfeng Pan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| |
Collapse
|
13
|
Wang C, Su K, Sun W, Huang T, Lou Q, Zhan S. Comparative investigations of various modification methods on the gelling, rheological properties and mechanism of fish gelatin. Food Chem 2023; 426:136632. [PMID: 37336099 DOI: 10.1016/j.foodchem.2023.136632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
In this study, κ-carrageenan(κC) and Transglutaminase (TG) were used to modify fish gelatin (FG). Three types of modified gelatin groups FG-κC, FG-TG and FG-κC-TG were prepared. The results showed that the gel strength and textural properties of FG gels were greatly enhanced by κC modification and κC-TG complex modification, whilst pure TG modification weakened the gelling properties. And the pure 0.1 % κC modified FG had the highest gel strength and hardness, respectively. Rheological behavior showed that the complex modified FG samples had the highest viscosity, gelling points, melting points and G'∞. Fourier infrared spectra and LF-NMR analysis showed that κC and κC-TG modification respectively improved the contents of hydrogen and isopeptide that decreased the water mobility but stabilized the helical structure of gelatin gels. Fluorescence intensity showed that three types of modification decreased fluorescence intensity. While, the formation of aggregates and denser gel networks decreased in vitro digestibility of FG.
Collapse
Affiliation(s)
- Chengcheng Wang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Kaiyuan Su
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Wanyi Sun
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Qiaoming Lou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
14
|
Ding K, Geng H, Guo W, Sun W, Zhan S, Lou Q, Huang T. Ultrasonic-assisted glycosylation with κ-carrageenan on the functional and structural properties of fish gelatin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37016806 DOI: 10.1002/jsfa.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Fish gelatin (FG) has multifunctional properties similar to mammalian gelatin (MG), and it has been recognized as the optimal alternative to MG. While its poor surface-active and gelling properties significantly limit its application values, glycosylation has been successfully used to increase surface-active properties of FG, but the influence of ultrasonic-associated glycosylation (UAG) on the gelling and structural characteristics of FG is still rarely reported. This article explores UAG (100-200 W, 0.5-1 h) with κ-carrageenan (κC) on the functional properties (emulsifying, gelling and rheological properties) and structural characteristics of FG. RESULTS The longer time and higher power of ultrasonics accelerated the glycosylation reaction with an increase in glycosylation degree and browning index values. Compared with original FG, FG-κC mixture and bovine gelatin, UAG-modified FG possessed higher emulsification activity index, emulsion stability index, gel strength, hardness and melting temperature values. Among them, gelatin modified by appropriate ultrasonic conditions (200 W, 0.5 h) had the highest emulsifying and gelling properties. Rheological results showed that UAG contributed to the gelation process of gelatin with advanced gelation time and endowed it with high viscosity. Structural analysis indicated that UAG promoted κC to link with FG by the formation of covalent and hydrogen bonds, restricting more bound and immobilized water in the gels, exhibiting higher gelling properties. CONCLUSION This work showed that UAG with κC is a promising method to produce high gelling and emulsifying properties of FG that could replace MG. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keying Ding
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Hulin Geng
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Wenwen Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Wanyi Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| |
Collapse
|
15
|
Ultrasonic-Assisted Glycosylation with Glucose on the Functional and Structural Properties of Fish Gelatin. Gels 2023; 9:gels9020119. [PMID: 36826288 PMCID: PMC9956054 DOI: 10.3390/gels9020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The effects of ultrasound-assisted glycosylation (UG) with glucose (GLU) on the emulsifying properties, foaming properties, gelling properties, and structural properties of fish gelatin (FG) were investigated. It was shown that UG with high power and a long duration facilitated the Maillard reaction through the reduction of the free amino acid contents. UG significantly improved the emulsifying ability index and foaming capacity of FG whilst decreasing the gel strength. Rheological analysis showed that UG modification prolonged the gelling time by hindering the triple-helix formation and decreasing the apparent viscosity of the gelatin solution. Structural analysis showed that UG treatment changed the secondary structure of the gelatin molecule by the formation of Millard reaction products (MRPs). Moreover, the UG treatment generally decreased the bound water contents of the gelatin gels with an increase in free water.
Collapse
|
16
|
Chang J, Yang X, Li J, Fu Q, Zhou J, Zhao J, Zhang N, Liu Q, Wang T, Wang H. Improvement of physicochemical and gel properties of chlorogenic acid-modified oxidized myofibrillar proteins by transglutaminase. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Kang X, Guo W, Ding K, Zhan S, Lou Q, Huang T. Microwave processing technology influences the functional and structural properties of fish gelatin. J Texture Stud 2023; 54:127-135. [PMID: 36176227 DOI: 10.1111/jtxs.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the effects of microwave processing technology (MPT, 240-800 W, 1 and 4 min) on the functional and structural properties of fish gelatin (FG). It showed that MPT could increase gel strength and texture properties of FG, especially for 240 W. MPT greatly increased emulsifying activity index (EAI) of FG, but decreased its emulsion stability index (ESI). Rheology results showed that MPT increased viscosity of FG, but decreased gelation times. Intrinsic fluorescence and Fourier transform infrared (FTIR) spectroscopy results indicated that MPT could unfold gelatin, contributing to the formation of H-bonds. Scanning electron microscopy (SEM) analysis revealed that low power and short time of MPT-treated gelatin gels had much more dense and less voids. This work provided guidance for the applications of MPT to improve the functional properties of FG, and the results show that MPT-treated FG can replace mammalian gelatin and meet the religious requirement.
Collapse
Affiliation(s)
- Xinzi Kang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Keying Ding
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
18
|
Zeng L, Lee J, Jo YJ, Choi MJ. Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion–gelatin composite gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
He J, Zhang J, Xu Y, Ma Y, Guo X. The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods 2022; 11:foods11243960. [PMID: 36553702 PMCID: PMC9777772 DOI: 10.3390/foods11243960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
In this paper, gelatin was extracted from the scales of Coregonus peled, Carp and Bighead carp by the acid method, and the structure and functional properties of the obtained scale gelatin and food-grade pigskin gelatin (FG) were compared. The results showed that all gelatins exhibited relatively high protein (86.81-93.61%), and low lipid (0.13-0.39%) and ash (0.37-1.99%) contents. FG had the highest gel strength, probably because of its high proline content (11.96%) and high average molecular weight distribution. Low β-antiparallel was beneficial to the stability of emulsion, which led FG to have the best emulsifying property. The high content of hydrophobic amino acids may be one of the reasons for the superior foaming property of Bighead carp scales gelatin (BCG). The gel strength of Carp scales gelatin (CG) and BCG, the ESI of Coregonus peled scales gelatin (CPG) and the foaming property of BCG indicate that fish gelatin has the potential to be used in food industry as a substitute for pig skin gelatin.
Collapse
|
20
|
Feng J, Tian H, Chen X, Cai X, Shi X, Wang S. Interaction between fish gelatin and tremella polysaccharides from aqueous solutions to complex coacervates: Structure and rheological properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Yuan K, Luo S, Zhang H, Yang X, Zhang S, Yang X, Guo Y. Physical modification on gelation of fish gelatin by incorporating Nicandra physalodes (Linn.) Gaertn. pectin: Effect of monovalent and divalent cation ions. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Hu Y, Zhang Y, Xu J, Zi Y, Peng J, Zheng Y, Wang X, Zhong J. Fish gelatin-polysaccharide Maillard products for fish oil-loaded emulsion stabilization: Effects of polysaccharide type, reaction time, and reaction pH. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Xia Y, Meng F, Wang S, Li P, Geng C, Zhang X, Zhou Z, Kong F. Tough, antibacterial fish scale gelatin/chitosan film with excellent water vapor and UV-blocking performance comprising liquefied chitin and silica sol. Int J Biol Macromol 2022; 222:3250-3260. [DOI: 10.1016/j.ijbiomac.2022.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
24
|
Yuan K, Yang X, Li D, Wang G, Wang S, Guo Y, Yang X. Incorporation of Nicandra physalodes (Linn.) Gaertn. pectin as a way to improve the textural properties of fish gelatin gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Cen S, Zhang L, Liu L, Lou Q, Wang C, Huang T. Phosphorylation modification on functional and structural properties of fish gelatin: The effects of phosphate contents. Food Chem 2022; 380:132209. [PMID: 35093657 DOI: 10.1016/j.foodchem.2022.132209] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
The gel, rheological and structural properties of fish gelatin (FG) were investigated through phosphorylation with different ratios of sodium pyrophosphate (TSPP) (FG:TSPP = 40:0, 40:1, 40:2, 40:4, and 40:6). It showed that phosphorylation modification significantly increased gel strength, textural properties, emulsification, and emulsification stability of FG. The surface hydrophobicity and intrinsic fluorescence of phosphorylated FG were also significantly increased. Rheological results revealed that the apparent viscosity, melt/gel points, and gel strength of FG were increased by phosphorylation with TSPP, but shortened the gelation time. Low field nuclear magnetic resonance (LF-NMR) showed that phosphorylation reduced mobility of water in FG. FTIR results indicated that phosphorylation increased the β-sheet/β-turn contents but reduced the random coil contents. This study might provide a new guideline for the exploration of TSPP phosphorylation increased the functional properties of FG.
Collapse
Affiliation(s)
- Shijie Cen
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Lingyue Zhang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China; School of Life Sciences and Materials Chemistry, College of Science and Technology Ningbo University, Ningbo, Zhejiang 315800, China
| | - Liwei Liu
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.
| | - Qiaoming Lou
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Chengcheng Wang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Tao Huang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315800, China.
| |
Collapse
|
26
|
Effect of carbon numbers and structures of monosaccharides on the glycosylation and emulsion stabilization ability of gelatin. Food Chem 2022; 389:133128. [PMID: 35512506 DOI: 10.1016/j.foodchem.2022.133128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
Herein, the effect of saccharide glycosylation by nine monosaccharides on bovine bone gelatin for the stabilization of fish oil-loaded emulsions was explored. The gelatin modification was analyzed and then the emulsifying properties of monosaccharide-modified gelatins were analyzed at pH 9.0 and 3.0. The results demonstrated that glycosylated gelatin structure, droplet stability, creaming stability, and liquid-gel transition time were dependent on monosaccharide carbon numbers, monosaccharide structures, and solution pH. Glycosylation modification of gelatins did not obviously change the emulsion droplet stability at pH 9.0, whereas it increased the emulsion droplet stability at pH 3.0. Glycosylation modification of gelatins did not obviously change the emulsion creaming index values (5.1%-8.4% at pH 9.0 and 25.8%-33.1% at pH 3.0). Three-carbon and four-carbon monosaccharides glycosylation significantly increased emulsion liquid-gel transition times. This work provided useful information to understand the effects of carbon numbers and structures of monosaccharides on the protein modification.
Collapse
|
27
|
Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107173] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Venezia V, Avallone PR, Vitiello G, Silvestri B, Grizzuti N, Pasquino R, Luciani G. Adding Humic Acids to Gelatin Hydrogels: A Way to Tune Gelation. Biomacromolecules 2021; 23:443-453. [PMID: 34936338 PMCID: PMC8753605 DOI: 10.1021/acs.biomac.1c01398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exploring the chance to convert biowaste into a valuable resource, this study tests the potential role of humic acids (HA), a class of multifunctional compounds obtained by oxidative decomposition of biomass, as physical agents to improve gelatin's mechanical and thermal properties. To this purpose, gelatin-HA aqueous samples were prepared at increasing HA content. HA/gelatin concentrations changed in the range 2.67-26.67 (wt/wt)%. Multiple techniques were employed to assess the influence of HA content on the gel properties and to unveil the underlying mechanisms. HAs increased gel strength up to a concentration of 13.33 (wt/wt)% and led to a weaker gel at higher concentrations. FT-IR and DSC results proved that HAs can establish noncovalent interactions through H-bonding with gelatin. Coagulation phenomena occur because of HA-gelatin interactions, and at concentrations greater than 13.33 (wt/wt)%, HAs established preferential bonds with water molecules, preventing them from coordinating with gelatin chains. These features were accompanied by a change in the secondary structure of gelatin, which lost the triple helix structure and exhibited an increase in the random coil conformation. Besides, higher HA weight content caused swelling phenomena due to HA water absorption, contributing to a weaker gel. The current findings may be useful to enable a better control of gelatin structures modified with composted biowaste, extending their exploitation for a large set of technological applications.
Collapse
Affiliation(s)
- Virginia Venezia
- DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Pietro Renato Avallone
- DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Giuseppe Vitiello
- DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Brigida Silvestri
- DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Nino Grizzuti
- DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Rossana Pasquino
- DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Giuseppina Luciani
- DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
29
|
Liu Z, Bhandari B, Guo C, Zheng W, Cao S, Lu H, Mo H, Li H. 3D Printing of Shiitake Mushroom Incorporated with Gums as Dysphagia Diet. Foods 2021; 10:foods10092189. [PMID: 34574299 PMCID: PMC8465407 DOI: 10.3390/foods10092189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
With the speeding tendency of aging society, the population experienced dysphagia is increasing quickly. Desirable dysphagic diets should be safe, visually appealing and nutritious. 3D printing allows for creation of personalized nutritious foods with regular-like appearance. Shiitake mushroom, rich in protein and bioactive compounds, is suitable for elderly, but its hard texture was not friendly to the elderly with dysphagia. This study investigated the feasibility of production of dysphagic product using shiitake mushroom by 3D printing with various gums addition, including arabic gum (AG), xanthan gum (XG) and k-carrageenan gum (KG) at concentrations of 0.3%, 0.6% and 0.9% (w/w). Data suggested that XG and KG incorporation significantly increased inks’ mechanical strength by decreasing water mobility and promoting the formation of hydrogen bond, enabling 3D printed objects with great self-supporting capacity. The XG containing and KG-0.3% samples were categorized into level 5—minced and moist dysphagia diet within international dysphagia diet standardization initiative (IDDSI) framework. AG addition decreased mechanical strength and viscosity, hardness and self-supporting capacity of 3D printed constructions. AG-0.3% and AG-0.6% samples could not be classified as dysphagia diets based on IDDSI tests. This study provides useful information for dysphagia diet development with appealing appearance by 3D printing.
Collapse
Affiliation(s)
- Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Chaofan Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Wenqi Zheng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
| | - Shangqiao Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
| | - Hongyu Lu
- Jiangsu Provincial Supervising and Testing Research Institute for Products’ Quality, Nanjing 210000, China;
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
- Correspondence:
| | - Hongbo Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
| |
Collapse
|
30
|
Tong L, Kang X, Fang Q, Yang W, Cen S, Lou Q, Huang T. Rheological properties and interactions of fish gelatin-κ-carrageenan polyelectrolyte hydrogels: The effects of salt. J Texture Stud 2021; 53:122-132. [PMID: 34427935 DOI: 10.1111/jtxs.12624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/27/2022]
Abstract
This study mainly explored the effects of low-concentration salts (0.1, 0.5 mM NaCl and Na2 SO4 ) on the gel, rheological and structural properties of fish gelatin (FG)-κ-carrageenan (κC) polyelectrolyte hydrogels. The results showed that κC could increase the gel strength, hardness, and chewiness of the FG-κC polyelectrolyte hydrogels, while the addition of salts had a negative effect. The rheological behaviors showed that the addition of salts reduced the apparent viscosity, gel, and melting points of the FG-κC polyelectrolyte hydrogels. Compared with NaCl, Na2 SO4 -treated FG-κC had lower gel strength, hardness, viscosity, gelation, and melting points, while the addition of salts increased the fluorescence intensity by unfolding FG molecules. The secondary structure analysis results showed that the addition of NaCl and Na2 SO4 decreased α-helix and β-sheet contents of FG-κC by destroying the hydrogen bond of FG-κC.
Collapse
Affiliation(s)
- Lu Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xinzi Kang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Qi Fang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shijie Cen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
31
|
Cen S, Yu W, Yang W, Lou Q, Huang T. Reversibility of the gel, rheological, and structural properties of alcohol pretreated fish gelatin: Effect of alcohol types. J Texture Stud 2021; 53:266-276. [PMID: 34426973 DOI: 10.1111/jtxs.12626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
The reversibility of gel property of alcohol (methanol, ethanol)-pretreated fish gelatin (FG) were investigated through removing alcohol solutions by freeze drying. Results showed that the gel strength and the hardness of FG could be retained (1%, 40%) or even improved (1% methanol) using low or high concentration alcohol solutions, while decreased in medium concentration alcohol solutions. Compared with untreated FG, rheology results showed that, all alcohol solutions pretreated FG had lower apparent viscosity, while higher alcohol solutions pretreated ones decreased the gel and melt points and shorten the gelation time. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis showed that methanol pretreated FG had the higher α contents than those of ethanol pretreated. Circular dichroism spectra results indicated that β-sheet could be decreased after removing ethanol solutions, whereas the β-sheet increased after removing the methanol solutions. Moreover, low field nuclear magnetic resonance relaxation test showed that pretreated FG had lower transverse relaxation times of internal water (T21 and T22 ) compared to that of the untreated FG. Overall, FG still retains higher gel properties after removing the low or high alcohol concentrations.
Collapse
Affiliation(s)
- Shijie Cen
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Guangzhou City, China
| | - Wenge Yang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
32
|
Lin D, Xiao L, Wen Y, Qin W, Wu D, Chen H, Zhang Q, Zhang Q. Comparison of apple polyphenol-gelatin binary complex and apple polyphenol-gelatin-pectin ternary complex: Antioxidant and structural characterization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Xu J, Zhang T, Zhang Y, Yang L, Nie Y, Tao N, Wang X, Zhong J. Silver carp scale gelatins for the stabilization of fish oil-loaded emulsions. Int J Biol Macromol 2021; 186:145-154. [PMID: 34246667 DOI: 10.1016/j.ijbiomac.2021.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023]
Abstract
Herein, three types of silver carp scale gelatins were extracted, and their molecular weight distribution, structural properties, functional properties and emulsifying properties were investigated and discussed. Acetic acid-extracted gelatin (AAG), hot water-extracted gelatin (HWG), and pepsin enzyme-extracted gelatin (PEG) showed similar and four clear bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern, whereas they showed different β chain amounts and β-sheet percentages. The water-holding capacity values (g/g of gelatin) were: AAG (16.8 ± 1.1) > HWG (14.0 ± 0.7) ≈ PEG (13.5 ± 1.6). The fat-binding capacity values (g/g of gelatin) were: AAG (11.8 ± 0.3) > HWG (9.5 ± 1.3) > PEG (5.3 ± 0.4). Emulsion droplet sizes and creaming index values decreased with the increase of gelatin concentrations for all the fish oil-loaded emulsions stabilized by three types of gelatins. Compared with PEG, AAG and HWG show similar and higher emulsion stability at high gelatin concentration (10 mg/mL). The stabilization mechanism of fish oil-loaded silver carp scale gelatin-stabilized emulsions involved an "extraction method-protein molecular weight distribution-protein molecular structure-molecular interaction-emulsibility-droplet structure-emulsion stability" route. This work would be beneficial for the research on the relationship of structure and function of gelatin and to the comprehensive utilization of aquatic products.
Collapse
Affiliation(s)
- Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyi Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
34
|
Liao W, Zhu Y, Lu Y, Wang Y, Dong X, Xia G, Shen X. Effect of extraction variables on the physical and functional properties of tilapia gelatin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|