1
|
Wang H, Yuan J, Wu Y, Wen Y, Lin Y, Chen Y, Lin H. Bacillus amyloliquefaciens LY-1 culture broth enhances the storage properties of fresh litchi through acting on ROS metabolism. Food Chem 2025; 480:143811. [PMID: 40117812 DOI: 10.1016/j.foodchem.2025.143811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
The impacts of Bacillus amyloliquefaciens LY-1 culture broth (BLCB) on the fruit storage properties and reactive oxygen species (ROS) metabolism of postharvest 'Wuye' litchis were studied. In comparation with control fruit, BLCB-treated litchis showed a lower fruit disease index, a higher rate of commercially acceptable fruit, higher amounts of pericarp pigments (total phenolics, anthocyanin, carotenoid, chlorophyll and flavonoid), higher chromaticity C, a*, b* and L* values but lower hue angle h° of fruit surface. Additionally, BLCB-treated litchis exhibited lower malonaldehyde (MDA) accumulation and superoxide anion radical (O2.-) production rate, higher APX, CAT and SOD activities, higher GSH and AsA amounts, higher reducing power, and higher ability of scavenging DPPH radical. Furthermore, the pericarp browning index and fruit disease index were positively correlated with O2.- production rate. These findings suggested that BLCB treatment increased the storability of postharvest litchi fruit through enhancing scavenging capacity of ROS and inhibiting overaccumulation of ROS.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Junhui Yuan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yijing Wu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yifan Wen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Tang S, Xu Z, Chen C, Xie J. Effect of Different Postharvest Pre-Cooling Treatments on Quality of Water Bamboo Shoots ( Zizania latifolia) during Refrigerated Storage. PLANTS (BASEL, SWITZERLAND) 2024; 13:2856. [PMID: 39458803 PMCID: PMC11510961 DOI: 10.3390/plants13202856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Post-harvest pre-cooling of water bamboo shoots (WBS) [Zizania latifolia] can effectively delay its quality deterioration. Six types of pre-cooling treatments were used to pre-cooling post-harvest WBS, including cold slightly acidic electrolytic water pre-cooling (CSAEW), cold water pre-cooling (CWPC), vacuum pre-cooling (VPC), strong wind pre-cooling (SWPC), refrigerator pre-cooling (RPC), and fluid ice pre-cooling (FIPC). The effects of different pre-cooling treatments on the quality of refrigerated WBS were investigated. The results showed that the FIPC treatment was harmful to the storage quality of WBS, while the other five pre-cooling treatments could extend the shelf life of WBS to some extent. These pre-cooling treatments can inhibit the respiration of WBS, slow down its weight loss and lignification process, and maintain its relatively high levels of nutrient content and antioxidant activity. The CSAEW treatment outperformed other treatments in terms of bactericidal action and microbiological content control for WBS during storage. The protective effect of CSAEW treatment on the storage quality of WBS was relatively the best, and extended the shelf life of WBS by 12 days compared to the control group. This study indicated that the CSAEW pre-cooling treatment offers a new choice for pre-cooling root vegetables.
Collapse
Affiliation(s)
- Shuwen Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhongyi Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
3
|
Zhang X, Liu Y, Zhang W, Yang W, An S, Guo M, Chen G. Salicylic Acid Treatment Ameliorates Postharvest Quality Deterioration in 'France' Prune ( Prunus domestica L. 'Ximei') Fruit by Modulating the Antioxidant System. Foods 2024; 13:2871. [PMID: 39335799 PMCID: PMC11430936 DOI: 10.3390/foods13182871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The potential of salicylic acid (SA) in delaying postharvest fruit senescence has been extensively documented; nevertheless, its effect on antioxidant activity and quality of 'France' prune fruit is largely unknown. The study investigated the effects of SA (0.5 mM) on postharvest quality deterioration of 'France' prune fruit. Results indicated that SA impeded the increase in respiration rate and weight loss, and mitigated the decrease of soluble solids content (SSC), titratable acidity (TA) content, firmness, and hue angle. SA sustained the ascorbate-glutathione cycle by inducing the production of ascorbic acid (AsA) and glutathione (GSH) and attenuates flavonoids, total phenols, and anthocyanins degradation by inhibiting polyphenol oxidase (PPO) activity and PdPPO. Moreover, SA significantly improved superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and glutathione reductase (GR) activities and gene expression levels, sustained higher 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging capacity, ferric reducing antioxidant power (FRAP), and hydroxyl radical (·OH) inhibition capacity, and impeded the production of hydrogen peroxide (H2O2) and superoxide anion (O2•-). Overall, SA improved the antioxidant capacity by inducing the synthesis of defense response-related substances and promoting antioxidant enzyme activities to sustain the storage quality of 'France' prune fruit.
Collapse
Affiliation(s)
- Xinling Zhang
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yuxing Liu
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weida Zhang
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Wanting Yang
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Shuaibing An
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Minrui Guo
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi 832000, China
| | - Guogang Chen
- College of Food Science and Technology, Shihezi University, Shihezi 832000, China; (X.Z.); (Y.L.); (W.Z.); (W.Y.); (S.A.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi 832000, China
| |
Collapse
|
4
|
Iqbal Z, Zahoor T, Pasha I, Shahid M. Eco-safe hot water dip alleviates antioxidant level and sensory quality of Indian jujube fruits. Heliyon 2024; 10:e34400. [PMID: 39114000 PMCID: PMC11304006 DOI: 10.1016/j.heliyon.2024.e34400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Indian jujube (Ber) is highly perishable climacteric fruit owing to high decay index limiting its marketability and demands interventions to prolong shelf life. Fungicides are normally used to control rot during postharvest storage, however, residues left necessitate eco-safe alternatives like hot water dipping. Mature, pre-climacteric jujubes were dipped in 45, 50 or 55 °C water for 8, 6 or 4 min, respectively and then stored at 5 °C for periodic quality evaluation. Dipping fruits in 55 °C water resulted in 32.69 and 35.27, 64.21 and 58.57, 30.41 and 30.42, 38.50 and 52.20 % lower weight loss, decay index, malondialdehyde (MDA) and electrolyte leakage, whereas 15.40 and 16.77, 19.51 and 20.48 % greater antioxidant activity and ascorbic acid respectively for Umran and Pakwhite compared to 25 °C water dip. The highest glucose, fructose, malic, citric, and tartaric acids were 23.44 ± 1.04 and 29.9 ± 0.95, 30.68 ± 1.72 and 41.17 ± 2.34 mg/100 g, 138.1 ± 6.45 and 112.97 ± 6.16, 57.49 ± 1.71 and 53.78 ± 1.90, 79.58 ± 5.1 and 65.3 ± 4.83 μg/100 g whereas lower sucrose 12.34 ± 0.94 and 16.33 ± 1.05 mg/100 g were respectively recorded in 55 °C water dipped Umran and Pakwhite fruits. High dip water temperature (55 °C) exhibited better quality with the lowest decay index and weight loss, greater membrane integrity, bioactives content and sensory acceptance scores. Hence, hot water dipping was shown to be an effective residue-free option to extend the marketable period of jujubes to capture distant markets.
Collapse
Affiliation(s)
- Zafar Iqbal
- National Institute of Food Science and Technology (NIFSAT), University of Agriculture, Faisalabad (UAF), Pakistan
- Food Technology Section, Post Harvest Research Centre, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Tahir Zahoor
- National Institute of Food Science and Technology (NIFSAT), University of Agriculture, Faisalabad (UAF), Pakistan
| | - Imran Pasha
- National Institute of Food Science and Technology (NIFSAT), University of Agriculture, Faisalabad (UAF), Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Liu P, Chen J, Wen X, Shi X, Yin X, Yu J, Qian Y, Gou C, Xu Y. Investigation into Antioxidant Mechanism of Lycium barbarum Extract in Carbendazim-Induced PC12 Cell Injury Model through Transcriptomics and Metabolomics Analyses. Foods 2024; 13:2384. [PMID: 39123576 PMCID: PMC11311554 DOI: 10.3390/foods13152384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Lycium barbarum L., an important functional food in China, has antioxidant and antiaging activity. However, the exact antioxidant activity mechanism of Lycium barbarum extracts (LBE) is not well understood. Therefore, a carbendazim (CBZ)-induced PC12 cell injury model was constructed and vitrificated to study the antioxidant activity of fresh LBE on the basis of extraction parameter optimization via the full factorial design of experiments (DOE) method. The results showed that the pretreatment of PC12 cells with LBE could reduce the reactive oxygen species (ROS) level by 14.6% and inhibited the mitochondrial membrane potential (MMP) decline by 12.0%. Furthermore, the integrated analysis revealed that LBE played an antioxidant role by activating oxidative phosphorylation (OXPHOS) and restoring MMP, maintaining the tricarboxylic acid (TCA) cycle stability, and regulating the GSH metabolic pathway. The results of the present study provide new ideas for the understanding of the antioxidant function of LBE from a global perspective.
Collapse
Affiliation(s)
- Pingxiang Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ju Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
- Faculty of Printing and Packaging and Digital Media, Xi’an University of Technology, Xi’an 710048, China;
| | - Xing Wen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
- Faculty of Printing and Packaging and Digital Media, Xi’an University of Technology, Xi’an 710048, China;
| | - Xin Shi
- Institute of Quality Standard and Testing Technology for Agro-Products of NingXia, Yinchuan 750002, China;
| | - Xiaoqian Yin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi’an University of Technology, Xi’an 710048, China;
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
| | - Chunlin Gou
- Institute of Quality Standard and Testing Technology for Agro-Products of NingXia, Yinchuan 750002, China;
| | - Yanyang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
| |
Collapse
|
6
|
Wang H, Li Y, Wassie M, Huo L, Shi H. Salicylic Acid Spray Delays Sand Pear Fruit Senescence during Room Temperature Shelf Life by Regulating Antioxidant Capacity and Senescence-Related Genes. PLANTS (BASEL, SWITZERLAND) 2024; 13:848. [PMID: 38592916 PMCID: PMC10975672 DOI: 10.3390/plants13060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
'Whangkeumbae' (Pyrus pyrifolia) is a variety of sand pear fruit well-known for its smooth surface and good taste. However, the fruit quality is adversely affected by postharvest ethylene production. Therefore, improving postharvest shelf life by regulating fruit senescence is critical to promoting the 'Whangkeumbae' fruit industry. Here, we investigated the effect of salicylic acid (SA) spray on fruit senescence in sand pears during room temperature shelf life. Exogenous SA reduced polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content during room temperature shelf life. Additionally, SA effectively maintained the fruit skin coloration and increased the activity of antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). SA treatment inhibited PpPPO1 expression and upregulated PpSOD1, PpAPX6, and PpGST2 expression. Furthermore, SA application downregulated the expression of PpACO2, PpEIN3a, PpNCED1, and PpAOC2, while upregulating PpNPR-1, PpTAR2, and PpCOMT1 during room temperature shelf life. SA treatment also influenced cell wall metabolism and modification genes by inhibiting PpPG1, PpPME2, and PpCEL3 and inducing PpPGIP1 expression. Additionally, SA treatment affected sugar and acid metabolism genes and increased the expression of PpSPS1, PpSUS1, PpSOT1, PpTMT4, PpSWEET15, and PpcyNAD-MDH, but suppressed the expression of PpcyNADP-ME. The Pearson correlation analysis indicated that PPO activity and MDA content were positively correlated with the expression of PpPPO1, PpACO2, PpEIN3a, PpNCED1, PpAOC2, PpPG1, PpPME2, PpCEL3, and PpcyNDA-MDH. Conversely, these factors were negatively associated with the activities of SOD, POD, CAT, and APX, as well as the expression levels of PpSOD1, PpPOD1, PpCAT1, PpAPX6, PpGST2, PpNPR-1, PpTAR2, PpCOMT1, PpPGIP1, PpSPS1, PpSUS1, PpSOT1, PpTMT4, PpSWEET15, and PpcyNAD-MDH. Our results reveal that exogenous SA could delay fruit senescence in sand pear fruit by regulating various biochemical and molecular mechanisms and can be used to effectively extend fruit shelf life during room temperature storage. However, further research is necessary to determine whether the fruits sprayed with SA are suitable for direct human consumption.
Collapse
Affiliation(s)
- Huiying Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Yawei Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Misganaw Wassie
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 666300, China
| | - Liyue Huo
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Haiyan Shi
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
7
|
Xiang N, Zhang B, Hu J, Li K, Guo X. Modulation of carotenoid biosynthesis in maize (Zea mays L.) seedlings by exogenous abscisic acid and salicylic acid under low temperature. PLANT CELL REPORTS 2023; 43:1. [PMID: 38108914 DOI: 10.1007/s00299-023-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023]
Abstract
KEY MESSAGE Abscisic acid could regulate structural genes in the carotenoid biosynthesis pathway and alleviate the decrease of carotenoids in maize seedlings under low-temperature stress. Low temperature often hampers the development of maize seedlings and hinders the accumulation of carotenoids, which are functional against chilling stress for plants and providing health benefits for human. To explore effective approaches in reducing chilling stress and enhancing the potential nutritional values of maize seedlings, exogenous plant hormones abscisic acid (ABA) and salicylic acid (SA) that may affect carotenoid biosynthesis were applied on low-temperature-stressed maize seedlings. Results showed that low temperature significantly reduced the carotenoid levels in maize seedlings, only preserving 62.8% in comparison to the control. The applied ABA probably interacted with the ABA-responsive cis-acting elements (ABREs) in the promoter regions of PSY3, ZDS and CHYB and activated their expressions. Consequently, the total carotenoid concentration was apparently increased to 1121 ± 47 ng·g-1 fresh weight (FW), indicating the stress alleviation by ABA. The application of SA did not yield positive results in alleviating chilling stress in maize seedlings. However, neoxanthin content could be notably boosted to 52.12 ± 0.45 ng·g-1 FW by SA, offering a biofortification strategy for specific nutritional enhancement. Structural gene PSY1 demonstrated positive correlations with β-carotene and zeaxanthin (r = 0.93 and 0.89), while CRTISO was correlated with total carotenoids (r = 0.92), indicating their critical roles in carotenoid accumulation. The present study exhibited the effectiveness of ABA to mitigate chilling stress and improve the potential nutritional values in low-temperature-stressed maize seedlings, thereby promoting the production of plant-based food sources.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Bing Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kun Li
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Research Institute for Food Nutrition and Human Health, South China University of Technology, Guangzhou, China.
| |
Collapse
|
8
|
Wang J, Zhang H, Hou J, Yang E, Zhao L, Zhou Y, Ma W, Ma D, Li J. Metabolic Profiling and Molecular Mechanisms Underlying Melatonin-Induced Secondary Metabolism of Postharvest Goji Berry ( Lycium barbarum L.). Foods 2023; 12:4326. [PMID: 38231790 DOI: 10.3390/foods12234326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Postharvest decay of goji berries, mainly caused by Alternaria alternata, results in significant economic losses. To investigate the effects of melatonin (MLT) on resistance to Alternaria rot in goji berries, the fruits were immersed in the MLT solutions with varying concentrations (0, 25, 50, and 75 μmol L-1) and then inoculated with A. alternata. The results showed that the fruits treated with 50 μmol L-1 MLT exhibited the lowest disease incidence and least lesion diameter. Meanwhile, endogenous MLT in the fruits treated with 50 μmol L-1 MLT showed higher levels than in the control fruits during storage at 4 ± 0.5 °C. Further, the enzymatic activities and expressions of genes encoding peroxidase, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate-CoA ligase, chalcone synthase, chalcone isomerase, and cinnamyl alcohol dehydrogenase were induced in the treated fruit during storage. UPLC-ESI-MS/MS revealed that secondary metabolites in the fruits on day 0, in order of highest to lowest levels, were rutin, p-coumaric acid, chlorogenic acid, ferulic acid, caffeic acid, naringenin, quercetin, kaempferol, and protocatechuic acid. MLT-treated fruits exhibited higher levels of secondary metabolites than the control. In conclusion, MLT treatment contributed to controlling the postharvest decay of goji fruit during storage by boosting endogenous MLT levels, thus activating the antioxidant system and secondary metabolism.
Collapse
Affiliation(s)
- Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Huaiyu Zhang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jie Hou
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - En Yang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Lunaike Zhao
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Yueli Zhou
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Wenping Ma
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Danmei Ma
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiayi Li
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
9
|
Wang Y, Guo M, Zhang W, Gao Y, Ma X, Cheng S, Chen G. Exogenous melatonin activates the antioxidant system and maintains postharvest organoleptic quality in Hami melon ( Cucumis. melo var. inodorus Jacq.). FRONTIERS IN PLANT SCIENCE 2023; 14:1274939. [PMID: 37965030 PMCID: PMC10642945 DOI: 10.3389/fpls.2023.1274939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
Hami melon is prone to postharvest perishing. Melatonin is a signaling molecule involved in a variety of physiological processes in fruit, and it improves fruit quality. We hypothesized that melatonin treatment would improve the storage quality of Hami melon by altering its respiration and reactive oxygen species (Graphical abstract). Our results indicated that optimal melatonin treatment (0.5 mmol L-1) effectively slowed the softening, weight loss, and respiratory rate of the Hami melon fruit. Furthermore, melatonin markedly improved the antioxidant capacity of the fruit and protected it from oxidative damage by decreasing its contents of superoxide anions, hydrogen peroxide, and malondialdehyde. Melatonin significantly enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase. The total phenol, total flavonoids, and ascorbic acid contents were maintained by melatonin treatment. This treatment also repressed the activities of lipase, lipoxygenase, and phospholipase D, which are related to lipid metabolism. Thus, exogenous melatonin can maintain postharvest organoleptic quality of Hami melon fruit by increasing its antioxidant activity and inhibiting reactive oxygen species production.
Collapse
Affiliation(s)
- Yue Wang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Minrui Guo
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Weida Zhang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Yujie Gao
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Xiaoqin Ma
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Shaobo Cheng
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| | - Guogang Chen
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang, China
| |
Collapse
|
10
|
Lyousfi N, Legrifi I, Ennahli N, Blenzar A, Amiri S, Laasli SE, Handaq N, Belabess Z, Ait Barka E, Lahlali R. Evaluating Food Additives Based on Organic and Inorganic Salts as Antifungal Agents against Monilinia fructigena and Maintaining Postharvest Quality of Apple Fruit. J Fungi (Basel) 2023; 9:762. [PMID: 37504750 PMCID: PMC10381578 DOI: 10.3390/jof9070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
A set of commonly used food additives was evaluated for their antifungal activity against the brown rot disease of fruits caused by the fungal pathogen Monilinia fructigena, which is one of the most economically important agents, causing important damage to pome fruits, such as pears and apples. The radial mycelial growth of the fungal pathogen was assessed in PDA amended with different concentrations (0.5, 2, 2.5, and 5%) of each additive. The results underlined that most of the additives displayed a significant inhibition of mycelial growth, with the extent of inhibition varying depending on the specific additive and concentration used. Five food additives showed high inhibition rates (above 88%), of which sodium bicarbonate, sodium carbonate, copper sulphate, and sodium hydroxide were the most effective, whereas ammonium carbonate, magnesium chlorite, and citric acid were the least effective. Interestingly, the coatings containing sodium bicarbonate, copper sulphate, and ammonium bicarbonate significantly reduced the incidence of brown rot disease in apples, but other additives were not effective, such as ammonium carbonate and magnesium sulphate. The anhydrous sodium sulphate used at a concentration of 2%, was found to be one of the least effective additives, with a reduction rate of 20%. Subsequently, food additives showing good growth inhibition rates and reduction in disease severity were then tested in semi-commercial trials at temperatures of 4 °C and 22 °C. The results indicated that these additives demonstrate effectiveness in controlling M. fructigena at specific concentrations, and lower temperatures (4 °C) can improve the efficiency of the control measures. In addition, the selected food additives exhibited significant antimicrobial activity against M. fructigena, suggesting their application as a promising alternative for managing brown rot disease in apple fruits.
Collapse
Affiliation(s)
- Nadia Lyousfi
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Laboratory of Plant Protection and Environment, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknès 11201, Morocco
| | - Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez 30000, Morocco
| | - Nabil Ennahli
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Abdelali Blenzar
- Laboratory of Plant Protection and Environment, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknès 11201, Morocco
| | - Said Amiri
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
| | - Nadia Handaq
- Equipe de Recherche, Valorization et Protection des Plantes, Laboratoire de Biologie d'Environnement et Developpement Durable, Ecole Normale Supérieure de Tétouan, Abdelmalek Essaadi University, Tetouan BP 209 Martil, Martil 93150, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, Meknes 50001, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et BioProtection des Plantes-EA 4707-USC INRAe1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole National d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco
- Plant Pathology Laboratory, AgroBioSciences, College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
11
|
Ju Y, Wang Y, Ma L, Kang L, Liu H, Ma X, Zhao D. Comparative Analysis of Polyphenols in Lycium barbarum Fruits Using UPLC-IM-QTOF-MS. Molecules 2023; 28:4930. [PMID: 37446592 DOI: 10.3390/molecules28134930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Variety, geographical origin, and harvest season are important factors affecting the accumulation of polyphenols in Lycium barbarum. In this study, the effects of these factors on the polyphenolic components of this species were analyzed using ultra-performance liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry. Moreover, the in vitro antioxidant activities of fruit extracts from this species were evaluated. The total polyphenolic contents of L. barbarum fruits from Jinghe County in Xinjiang and Zhongning County in Ningxia were 5.52-11.72 and 7.06-9.37 mg (gallic acid equivalent)/g dry weight, while the total flavonoid contents of L. barbarum fruits from these regions were 12.52-30.29 and 12.67-20.77 mg (rutin equivalent)/g dry weight, respectively. Overall, 39 types of polyphenols were identified in the fruit extracts, including 26 flavonoids, 10 phenolic acids, and three tannins. Of these, 11 polyphenols were quantitatively analyzed, which revealed rutin to be the most dominant polyphenolic component in fruits from Jinghe and Zhongning. There were significant differences (p < 0.05) in the polyphenolic contents and antioxidant activities of L. barbarum fruit extracts, depending on the geographical origin, variety, and harvest season. The antioxidant activity of this species was found to be significantly positively correlated with the polyphenolic contents. This study provided scientific guidance for comprehensive applications of polyphenols from different varieties of L. barbarum from separate geographical origins.
Collapse
Affiliation(s)
- Yanjun Ju
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yujie Wang
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Lei Ma
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Lu Kang
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Hejiang Liu
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xue Ma
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Duoyong Zhao
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
12
|
Zhang J, Yao J, Mao L, Li Q, Wang L, Lin Q. Low temperature reduces potato wound formation by inhibiting phenylpropanoid metabolism and fatty acid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1109953. [PMID: 36743579 PMCID: PMC9889875 DOI: 10.3389/fpls.2022.1109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Potato tubers have the healing capacity to prevent surface water transpiration and pathogen invasion after mechanical damage. Previous research has shown the inability to form healing periderm in potatoes under low temperatures, but the potential mechanism is still unclear. METHODS To explore the effects and mechanisms of low-temperature potato healing, wounded potatoes were stored at low temperature (4°C) and room temperature (22°C), respectively. RESULTS In this study, compared with 22°C healing, low temperature reduced the content of hydrogen peroxide, and the down-regulation of StAMY23 inhibited the conversion of starch to sugar, alleviated the degradation of starch, and reduced the content of soluble sugars and sucrose. Meanwhile, inhibition of phenylalanine metabolism by suppression of StPAL1 and St4CL expression reduced lignin accumulation. Low temperature also down-regulated the expression of StKCS6, StFAOH, StGPAT5, and StPrx, causing the lower deposition amount of suberin in wounds of potato tubers. DISCUSSION The above results suggested that low temperature led to less wound tissue deposition at the wound surfaces via suppressing phenylpropanoid metabolism and fatty acid biosynthesis in potato tubers.
Collapse
Affiliation(s)
- Jiadi Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Yao
- School of Biomedicine, Beijing City University, Beijing, China
| | - Linli Mao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingpeng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixia Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Huang Q, Huang L, Chen J, Zhang Y, Kai W, Chen C. Maintenance of postharvest storability and overall quality of 'Jinshayou' pummelo fruit by salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2023; 13:1086375. [PMID: 36714761 PMCID: PMC9875116 DOI: 10.3389/fpls.2022.1086375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The loss of postharvest storability of pummelo fruit reduces its commodity value for long run. To maintain its storability, the effects of postharvest dipping treatment by salicylic acid (SA) with different concentrations (0, 0.1, 0.2, or 0.3%) were investigated on pummelo fruit (Citrus maxima Merr. cv. Jinshayou) during the room temperature storage at 20 ± 2°C for 90 d. RESULTS AND DISCUSSION Among all treatments, pre-storage SA treatment at 0.3% demonstrated the most significant ability to reduce fruit decay incidence, decrease weight loss, delay peel color-turned process, and inhibit the declines in total soluble solids (TSS) as well as titratable acid (TA) content. The increases in electrolyte leakage, hydrogen peroxide (H2O2), and malondialdehyde (MDA) content of the 0.3% SA-treated pummelo fruit were reduced compared to the control (dipped in distilled water). Pummelo fruit treated with 0.3% SA exhibited the most outstanding ability to excess reactive oxygen species (ROS) accumulation, as evidenced by promoted the increases in glutathione (GSH), total phenolics and flavonoids contents, delayed the AsA decline, and enhanced the activities of antioxidant enzymes and their encoding genes expression. CONCLUSION Pre-storage treatment dipped with SA, particularly at 0.3%, can be used as a useful and safe preservation method to maintain higher postharvest storability and better overall quality of 'Jinshayou' pummelo fruit, and thus delaying postharvest senescence and extend the storage life up to 90 d at room temperature.
Collapse
Affiliation(s)
| | | | - Jinyin Chen
- *Correspondence: Jinyin Chen, ; Chuying Chen,
| | | | | | | |
Collapse
|
14
|
Fatchurrahman D, Amodio ML, Colelli G. Quality of Goji Berry Fruit ( Lycium barbarum L.) Stored at Different Temperatures. Foods 2022; 11:3700. [PMID: 36429292 PMCID: PMC9689676 DOI: 10.3390/foods11223700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Goji berries are widely known for their outstanding nutritional and medicinal properties; they are usually found in the market as dried fruit or as juice because the fruit has a short shelf-life, and little information is available about its postharvest behavior at low temperatures. This study aimed to determine the storage performance of goji berry fruit by evaluating physicochemical, and sensorial attributes during storage at three different temperatures (0, 5, and 7 °C) for 12 days in a range that has not been extensively studied before. In addition, fruit respiration and ethylene production rates were also measured at the three temperatures. Fruit stored at 0 °C showed the lowest respiration rate and ethylene production (5.8 mg CO2 kg-1h-1 and 0.7 µg C2H4 kg-1h-1, respectively); however, at this temperature, the incidence and severity of pitting and electrolytic leakage were the highest. In contrast, 5 °C was found to be the best storage temperature for goji berry fruit; the fruit appeared fresh and healthy, had the highest scores during sensory analysis with an acceptable general impression, and had the lowest amount of damage attributable to chilling injury, with 17.1% fruit presenting with shriveling, 12.5% pitting, 6.7% mold, and 35% electrolytic leakage on day 9 of storage. Storage of goji berries at 7 °C resulted in the lowest marketability and the highest incidence of decay. Significant differences were also found in the phytochemical attributes, vitamin C content, soluble solid content (SSC), titratable acidity (TA), SSC/TA ratio, total polyphenol content, 2,2-diphenylpicrylhydrazy (DPPH), and anthocyanin content. This study revealed that a storage temperature of 5 °C for 9 days is recommended to maintain the quality of fresh goji berry. Thus, broadening the existing knowledge of the postharvest behavior of fresh goji berries; our results can help improve the commercial life of goji berries and ensure high-quality attributes throughout distribution.
Collapse
Affiliation(s)
- Danial Fatchurrahman
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | | | | |
Collapse
|
15
|
He X, Wu C, Lu L, Yan X, Yu H, Kang N. Influence of acidic electrolyzed water combined with vacuum precooling treatment on quality and antioxidant performance of fresh
Lycium barbarum L.. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoling He
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Chen Wu
- Development Planning and Discipline Construction Division of Ningxia University Yinchuan Ningxia People's Republic of China
| | - Ling Lu
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Xiaoxia Yan
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Hao Yu
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| | - Ningbo Kang
- School of Food & Wine, Ningxia University Yinchuan Ningxia People's Republic of China
| |
Collapse
|
16
|
Tang J, Zhao Y, Qi S, Dai Q, Lin Q, Duan Y. Abscisic acid alleviates chilling injury in cold-stored peach fruit by regulating ethylene and hydrogen peroxide metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:987573. [PMID: 36147223 PMCID: PMC9488807 DOI: 10.3389/fpls.2022.987573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 05/02/2023]
Abstract
Peach (Prunus persica (L.) Batsch) is susceptible to chilling injury under improper low-temperature storage (2°C-5°C). Previous research has shown that abscisic acid (ABA) alleviates chilling injury in fruits and vegetables, but the potential mechanism is still unclear. To explore its effectiveness and potential mechanism in alleviating chilling injury during cold storage, exogenous ABA was applied to peach fruit by immersion in 100 μmol L-1 solutions for 10 min. In our experiment, ABA alleviated chilling injury by reducing hydrogen peroxide (H2O2) content and ethylene production. In addition, ABA inhibited the expression of the ethylene synthesis-related genes PpACO1 and PpEIN2. At the same time, ABA activated the antioxidant enzymatic pathway and the ascorbate-glutathione (AsA-GSH) cycle, the transcript abundance encoding genes related to antioxidant enzyme activities also changed correspondingly. The results suggested that ABA alleviated chilling injury by scavenging excessive H2O2 by promoting antioxidant enzymes and the AsA-GSH pathway.
Collapse
Affiliation(s)
- Jixing Tang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaoyao Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuning Qi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Dai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuquan Duan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Zhang W, Kang J, Yang W, Guo H, Guo M, Chen G. Incorporation of 1-methylcyclopropene and salicylic acid improves quality and shelf life of winter jujube ( Zizyphus jujuba Mill. cv. Dongzao) through regulating reactive oxygen species metabolism. Front Nutr 2022; 9:940494. [PMID: 35958245 PMCID: PMC9358253 DOI: 10.3389/fnut.2022.940494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Winter jujube fruit is susceptible to aging, peel reddening, dehydration, shrinkage, and tissue softening during shelf life after it is removed from the cold storage conditions. In this study, the effects of 1-methylcyclopropene (1-MCP) and salicylic acid (SA) on the quality of winter jujube fruit during shelf life were investigated by measuring physiological indexes and the activities of antioxidant enzymes and enzymes related to reactive oxygen species (ROS) metabolism of winter jujube fruit. The results showed that 1-MCP treatment and SA treatment suppressed weight loss, respiratory rate, malondialdehyde (MDA) content, H2O2 content, and O2-· production rate, but improved firmness, color difference (ΔE), soluble solid content (SSC), titratable acidity (TA), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), phenylalanine ammonia-lyase (PAL) activities, ascorbic acid content, glutathione content, total phenolic content, and total flavonoid content in comparison with the control. Particularly, the combined treatment of 1-MCP and SA (1-MCP+SA treatment) showed the maximum efficacy compared to the 1-MCP treatment and SA treatment alone. 1-MCP+SA treatment exhibited the best preservation effect, followed by SA treatment and 1-MCP treatment. Thus, the combined treatment of 1-MCP and SA is an effective approach to maintain the postharvest quality of winter jujube fruit and extend the shelf life.
Collapse
Affiliation(s)
- Weida Zhang
- College of Food Science and Technology, Shihezi University, Shihezi, China
| | - Jiawei Kang
- College of Food Science and Technology, Shihezi University, Shihezi, China
| | - Wanting Yang
- College of Food Science and Technology, Shihezi University, Shihezi, China
| | - Huijing Guo
- Institute of Agricultural Products Processing, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Minrui Guo
- College of Food Science and Technology, Shihezi University, Shihezi, China
| | - Guogang Chen
- College of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Carreño-Vega O, Vargas-Zamarripa M, Salas P, Ramírez-García G. Poly(allylamine)-copper(II) coordination complex grafted on core@shell upconversion nanoparticles for ultrafast and sensitive determination of the phytohormone salicylic acid in plant extracts. Dalton Trans 2022; 51:11630-11640. [PMID: 35861610 DOI: 10.1039/d2dt01392d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salicylic acid (SA) is a phenolic phytohormone with critical roles in plant growth regulation and resistance to biotic and abiotic stress. Since low SA concentrations can modulate many plant biochemical responses, innovative analytical tools are required to deeply understand its activity and to control its exogenous application in modern agricultural systems. Herein, a NIR-activated composite based on NaYF4:Yb,Er@NaYF4 core@shell upconversion nanoparticles decorated with the poly(allylamine)-Cu(II) complex [UCNPs-PAAm-Cu(II)] was developed to sensitively determine the SA molecule in plant-derived samples. Accordingly, the PAAm-Cu(II) complex grafted on the UCNPs induces a strategic charge transfer band which triggers a quenching process through a resonance energy transfer (RET) mechanism. Such process is gradually deactivated upon the addition of SA and the consequent formation of the SA-Cu(II) complex, allowing a luminescence recovery in the 1-800 nM linear range. This mechanism is promoted by the strong stability of the SA-Cu(II) complex (log β2-SA/Cu = 19.01) which is over twelve orders of magnitude stronger than the PAAm-Cu2+ counterpart. Furthermore, the equilibrium and kinetic studies on the involved mononuclear Cu2+ complexes formation permitted instantaneous analytical responses and excellent selectivity against other representative phytohormones and metallic cations. The reliability of this method was demonstrated by determining the SA content of some edible fruits and vegetables comprising apple, lemon, kiwi, tomato, and cucumber, whose concentrations ranged from 0.30 to 2.99 μg g-1, with percent recoveries between 94.6 to 102.3%. Thereby, the reported nanocomplex can help to understand the SA activity in plants with significant applications in crop yield improvement and food quality assessment.
Collapse
Affiliation(s)
- Osvaldo Carreño-Vega
- Universidad Nacional Autónoma de México. Centro de Física Aplicada y Tecnología Avanzada, Biofunctional Nanomaterials Laboratory. 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico.
| | - Marlene Vargas-Zamarripa
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Av. Juárez 77, C.P. 36000, Guanajuato, Mexico
| | - Pedro Salas
- Universidad Nacional Autónoma de México. Centro de Física Aplicada y Tecnología Avanzada, Biofunctional Nanomaterials Laboratory. 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico.
| | - Gonzalo Ramírez-García
- Universidad Nacional Autónoma de México. Centro de Física Aplicada y Tecnología Avanzada, Biofunctional Nanomaterials Laboratory. 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico.
| |
Collapse
|
19
|
Effect of salicylic acid treatment on antioxidant capacity and endogenous hormones in winter jujube during shelf life. Food Chem 2022; 397:133788. [DOI: 10.1016/j.foodchem.2022.133788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/18/2023]
|
20
|
Lv YM, Elnur E, Wang W, Thakur K, Du J, Li HN, Ma WP, Liu YQ, Ni ZJ, Wei ZJ. Hydrogen sulfide treatment increases the antioxidant capacity of fresh Lingwu Long Jujube (Ziziphus jujuba cv. Mill) fruit during storage. Curr Res Food Sci 2022; 5:949-957. [PMID: 35677650 PMCID: PMC9168060 DOI: 10.1016/j.crfs.2022.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) has been identified as an important gaseous signal molecule in plants. Here, we investigated the effects of H2S on postharvest senescence and antioxidant metabolism of Lingwu Long Jujube (Ziziphus jujuba cv. Mill) fruits (LLJF). Fumigation of Jujube fruits with H2S released from 0.4 mm NaHS could significantly prolong the postharvest shelf life of jujube fruits, reduce the decay rate of fruit, the weight loss of fruit, and inhibit the fruit loss, hardness, color, soluble solids, and titratable acidity. Compared with the control group, exogenous H2S fumigation significantly decreased the loss of chlorophyll, carotenoids, soluble protein, ascorbic acid, phenols, and flavonoids in jujube fruits during post-harvest storage. At the same time, H2S could significantly delay the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2∙−) and promote catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD) activity, and inhibit polyphenol oxidase (PPO) activity. To summarize, H2S can effectively alleviate postharvest senescence and decay of jujube fruits by regulating the ROS accumulation and antioxidant enzymes, and prolong the storage period of postharvest. H2S treatment could significantly prolong the postharvest shelf life of jujube fruits. H2S could significantly delay the accumulation of MDA, H2O2 and O2∙− during storage of jujube fruits. H2S treatment promote CAT, SOD, APX, POD activity, and inhibit PPO activity during storage of jujube fruits. Provides a new method for storage of post-harvest jujube fruits.
Collapse
|
21
|
Peçanha JDS, Santos NMD, Maróstica Júnior MR, Micheletti AC, Lião LM, Alcantara GB. NMR-based metabolomics of dried berries in comparison with dietary supplements. J Pharm Biomed Anal 2021; 209:114494. [PMID: 34864595 DOI: 10.1016/j.jpba.2021.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Consumption of dried berries is increasing worldwide due to their health benefits. This popularity has introduced berry-based supplements as an easier way to take in berry nutrients. The chemical composition of six dried berries (blueberry, cranberry, goji berry, golden berry, maqui berry, and raspberry) were compared to their berry-based supplements by metabolomics using nuclear magnetic resonance spectroscopy (NMR). Thirty-three metabolites were identified and 23 were quantified. Chemometric analysis of berries revealed that goji berry showed the highest content of amino and organic acids, while cranberry and golden berry showed a high carbohydrate content. Fatty acids were predominant in blueberry, golden berry, maqui berry, and raspberry. Additionally, an exploratory analysis of phenolic compounds in berry extracts were conducted. phenolic compounds in berry extracts could be correlated with their antioxidant activity. Additionally, derived supplements did not show similarities with their respective berry, suggesting the minimal addition of dried berry in their formulation. Thus, non-declared additives have highlighted the importance of food safety investigation.
Collapse
Affiliation(s)
- Juliana de Souza Peçanha
- Instituto de Química, Universidade Federal de Mato Grosso do Sul (UFMS), CP 549, 79074-460, Campo Grande, MS, Brazil
| | - Nathalia Medina Dos Santos
- Faculdade de Engenharia de Alimentos, Departamento de Alimentos e Nutrição, Universidade de Campinas (UNICAMP), CP 80, 13083-862, Campinas, SP, Brazil
| | - Mário Roberto Maróstica Júnior
- Faculdade de Engenharia de Alimentos, Departamento de Alimentos e Nutrição, Universidade de Campinas (UNICAMP), CP 80, 13083-862, Campinas, SP, Brazil
| | - Ana Camila Micheletti
- Instituto de Química, Universidade Federal de Mato Grosso do Sul (UFMS), CP 549, 79074-460, Campo Grande, MS, Brazil
| | - Luciano Morais Lião
- Instituto de Química, Universidade Federal de Goiás (UFG), Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Glaucia Braz Alcantara
- Instituto de Química, Universidade Federal de Mato Grosso do Sul (UFMS), CP 549, 79074-460, Campo Grande, MS, Brazil.
| |
Collapse
|
22
|
Yield, Fruit Quality, and Storability of 'Canino' Apricot in Response to Aminoethoxyvinylglycine, Salicylic Acid, and Chitosan. PLANTS 2021; 10:plants10091838. [PMID: 34579371 PMCID: PMC8468234 DOI: 10.3390/plants10091838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Ethylene plays a pivotal role in the climacteric fruit ripening and senescence process. The effect of three ethylene inhibitors on the yield, quality, and storability of ‘Canino’ apricot fruit was studied. Foliar sprays of distilled water (control), aminoethoxyvinylglycine (AVG) (150 and 100 mg·L−1), salicylic acid (SA) (4 and 2 mM), and chitosan (2.5% and 1.5%) were applied 30 and 15 days before harvest. Results indicated that the high concentrations of AVG and SA recorded the lowest percentage of preharvest fruit drop and, hence, the highest yield. Trees receiving either concentration of AVG showed the highest fruit firmness. High concentrations of all three ethylene inhibitors reduced fruit weight loss, total carotenoids, and soluble solid content (SSC), but increased total acidity (TA) during cold storage (2 °C). A high score of overall taste acceptability was observed with a higher concentration of SA, which was also recorded the lowest fruit malondialdehyde content (MDA) at harvest and during storage. The highest concentrations of SA and chitosan recorded no decay for 28 days of storage. Gene expression analysis reflected higher expression of PaACS1 gene with the highest concentrations of ethylene inhibitors, suggesting that SA (4 mM) is recommended for optimal yield, quality, and storability of ‘Canino’ apricot fruit grown under Egyptian conditions.
Collapse
|
23
|
Wang P, Wang J, Zhang H, Wang C, Zhao L, Huang T, Qing K. Chemical Composition, Crystal Morphology, and Key Gene Expression of the Cuticular Waxes of Goji ( Lycium barbarum L.) Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7874-7883. [PMID: 34251203 DOI: 10.1021/acs.jafc.1c02009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cuticular wax of fruit is closely related to quality, storability, and pathogen susceptibility after harvest. However, little is known about the cuticular wax of goji berry (Lycium barbarum L.) cultivars. In the present study, the chemical composition, crystal structures, and expression levels of associated genes of the cuticular wax of six goji cultivars were investigated. We detected 70 epicuticular wax compounds in six goji cultivars. Among them, fatty acids, alkanes, and primary alcohols were the major components of the cuticular wax of goji berries, which were related to the formation of irregular lamellar crystal structures. The terpenoid compounds in the cuticular wax of goji berries were highly resistant to Alternaria rot. Moreover, the CER1, CER6, LACS1, MAH1, LTP4, ABC11, MYB96, and WIN1 genes in goji berries might be closely related to wax synthesis. These results provide valuable information for breeding and screening goji cultivars suitable for postharvest storage.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Huaiyu Zhang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Cong Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Lunaike Zhao
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Ting Huang
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Ken Qing
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|