1
|
Chen L, Shi Y, Wang M, Li Y, Si Z. Comprehensive epidemiological profiling of poultry-derived Salmonella spp. in Shandong, China, 2019-2022: a longitudinal study of prevalence, antibiotic resistances, virulence factors and molecular characteristics. Front Microbiol 2025; 16:1541084. [PMID: 40109969 PMCID: PMC11920138 DOI: 10.3389/fmicb.2025.1541084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Salmonella spp., as a major foodborne pathogen, pose significant threats to public health globally and has been an important zoonotic contamination for poultry industry that should receive increasing attentions. This study aimed to comprehensively investigate the prevalence, antimicrobial resistances, virulence factors, and plasmid types of Salmonella isolates collected from chickens, ducks, and geese across eight cities in Shandong between 2019 and 2022. Out of 300 samples, 53 Salmonella strains (17.67%) were isolated, with varied prevalence from 8.33% to 25.00% in different cities of Shandong. A total of seven serotypes were identified among the 53 Salmonella isolates, wherein the S. Enteritidis (45.28%), S. Pullorum (22.64%) and S. Typhimurium (16.98%) were identified as the most prevalent. Whole-genome sequencing analysis revealed that ST11, ST92, and ST19 were the predominant sequence types for S. Enteritidis, S. Pullorum, and S. Typhimurium, respectively. Phylogenetic analysis indicated that potential clonal spread of S. Enteritidis, S. Pullorum, and S. Typhimurium occurred across different regions, particularly the evidences supported that the S. Typhimurium isolates were dispersed in a cross-species manner. Finally, the phenotypic and genotypic profiling of antibiotic resistance among the isolates revealed that these isolates were multidrug resistant with corresponding antibiotic resistance genes (ARGs) including bla TEM, aac, aph, tet(A), and tet(B) to confer them with resistances to commonly-used veterinary drugs such as β-lactams, quinolones, macrolides. To sum, this study provides valuable insights into the current epidemiology of Salmonella in poultry industry in one of the biggest provinces in China, and shedding the light on the urgent necessity for further approaches to prevent and decontaminate such MDR Salmonella in livestock under One Health concept.
Collapse
Affiliation(s)
- Lele Chen
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Yuxia Shi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Minge Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, China
| | - Zhenshu Si
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
- Phage Research Center, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Jia K, Zhu H, Wang J, Qin X, Wang X, Dong Q. Fitness cost and compensatory evolution of penicillin-induced resistant Staphylococcus aureus. Food Res Int 2025; 203:115841. [PMID: 40022365 DOI: 10.1016/j.foodres.2025.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
Staphylococcus aureus is a widespread pathogen in nature, with staphylococcal enterotoxins being a major cause of foodborne illness. The extensive use of antibiotics on farms has contributed to the spread of antibiotic-resistant S. aureus. Understanding the fitness cost and compensatory evolution of antibiotic-resistant isolates is crucial for assessing the consequences of resistance acquisition and predicting the potential spread of resistant mutants in various environments. In this study, penicillin (PEN) was used to induce resistance in antibiotic-sensitive S. aureus, resulting in PEN-resistant mutants. We evaluated and compared the growth and thermal inactivation characteristics at different temperatures, virulence potential, and relative fitness of S. aureus isolates before and after PEN exposure under various stress conditions. The results revealed that PEN induction led to the acquisition of multidrug resistance and cross-resistance in S. aureus. Compared to the parent sensitive isolates, PEN-resistant S. aureus exhibited altered biological characteristics, including reduced phenotypes related to invasion (hemolysis activity, serum resistance) and toxin production (staphyloxanthin formation), but increased characteristics linked to colonization (biofilm formation) and gene transfer (autolytic activity). Fitness advantages were either maintained or enhanced in resistant isolates, with PEN serial passaging showing a more pronounced effect in improving fitness and driving compensatory evolution. These findings underscore the importance of investigating fitness costs and compensatory evolution following resistance acquisition to better understand the risks posed by resistant S. aureus to the food chain and human health.
Collapse
Affiliation(s)
- Kai Jia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China
| | - Huajian Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China
| | - Jun Wang
- College of Food Science and Technology, Guangdong Ocean University, No. 1, Haida Road, Mazhang District, Zhanjiang, Guangdong 524088, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093 China.
| |
Collapse
|
3
|
Pan X, Shen J, Hong Y, Wu Y, Guo D, Zhao L, Bu X, Ben L, Wang X. Comparative Analysis of Growth, Survival, and Virulence Characteristics of Listeria monocytogenes Isolated from Imported Meat. Microorganisms 2024; 12:345. [PMID: 38399749 PMCID: PMC10891628 DOI: 10.3390/microorganisms12020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen with worldwide prevalence. Understanding the variability in the potential pathogenicity among strains of different subtypes is crucial for risk assessment. In this study, the growth, survival, and virulence characteristics of 16 L. monocytogenes strains isolated from imported meat in China (2018-2020) were investigated. The maximum specific growth rate (μmax) and lag phase (λ) were evaluated using the time-to-detection (TTD) method and the Baranyi model at different temperatures (25, 30, and 37 °C). Survival characteristics were determined by D-values and population reduction after exposure to heat (60, 62.5, and 65 °C) and acid (HCl, pH = 2.5, 3.5, and 4.5). The potential virulence was evaluated via adhesion and invasion to Caco-2 cells, motility, and lethality to Galleria mellonella. The potential pathogenicity was compared among strains of different lineages and subtypes. The results indicate that the lineage I strains exhibited a higher growth rate than the lineage II strains at three growth temperatures, particularly serotype 4b within lineage I. At all temperatures tested, serotypes 1/2a and 1/2b consistently demonstrated higher heat resistance than the other subtypes. No significant differences in the log reduction were observed between the lineage I and lineage II strains at pH 2.5, 3.5, and 4.5. However, the serotype 1/2c strains exhibited significantly low acid resistance at pH 2.5. In terms of virulence, the lineage I strains outperformed the lineage II strains. The invasion rate to Caco-2 cells and lethality to G. mellonella exhibited by the serotype 4b strains were higher than those observed in the other serotypes. This study provides meaningful insights into the growth, survival, and virulence of L. monocytogenes, offering valuable information for understanding the correlation between the pathogenicity and subtypes of L. monocytogenes.
Collapse
Affiliation(s)
- Xinye Pan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Lina Zhao
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Xiangfeng Bu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Leijie Ben
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.P.); (Y.H.); (X.B.); (L.B.)
| |
Collapse
|
4
|
Wang X, Chen P, Wang J, Wang Y, Miao Y, Wang X, Li Q, Zhang X, Duan J. Acetolactate Decarboxylase as an Important Regulator of Intracellular Acidification, Morphological Features, and Antagonism Properties in the Probiotic Lactobacillus reuteri. Mol Nutr Food Res 2024; 68:e2300337. [PMID: 38048544 DOI: 10.1002/mnfr.202300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/01/2023] [Indexed: 12/06/2023]
Abstract
SCORE This study identifies the coding gene (aldB) of acetolactate decarboxylase (ALDC) as an important regulatory gene of the intracellular pH in Lactobacillus reuteri (L. reuteri), uncovering the important role of ALDC in regulating intracellular pH, morphological features, and antagonism properties in the probiotic organism L. reuteri. METHODS AND RESULTS The aldB mutant (ΔaldB) of L. reuteri is established using the homologous recombination method. Compare to the wild-type (WT) strain, the ΔaldB strain shows a smaller body size, grows more slowly, and contains more acid in the cell cytoplasm. The survival rate of the ΔaldB strain is much lower in low pH and simulated gastric fluid (SGF) than that of the WT strain, but higher in simulated intestinal fluid (SIF). The antagonism test demonstrates the ΔaldB strain can inhibit Listeria monocytogenes (L. monocytogenes) and Salmonella more effectively than the WT strain. Additionally, there is a dramatic decrease in the adhesion rate of Salmonella to Caco-2 and HT-29 cells in the presence of the ΔaldB strain compared to the WT strain. Simultaneously analyze, the auto-aggregation, co-aggregation, cell surface hydrophobicity (CSH), hemolytic, temperature, NaCl, oxidative stress, and antibiotic susceptibility of the ΔaldB strain are consistent with the features of probiotics. CONCLUSION This study highlights that the aldB gene plays a significant role in the growth and antibacterial properties of L. reuteri.
Collapse
Affiliation(s)
- Xueqing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, 843300, China
| | - Jing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Miao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinling Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiulei Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Hong Y, Wu Y, Xie Y, Ben L, Bu X, Pan X, Shao J, Dong Q, Qin X, Wang X. Effects of antibiotic-induced resistance on the growth, survival ability and virulence of Salmonella enterica. Food Microbiol 2023; 115:104331. [PMID: 37567636 DOI: 10.1016/j.fm.2023.104331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 08/13/2023]
Abstract
Salmonella enterica is an important foodborne pathogen that constitutes a major health hazard. The emergence and aggravation of antibiotic-resistant Salmonella has drawn attention widely around the world. Conducting a risk assessment of antibiotic-resistant foodborne pathogens throughout the food chain is a pressing requirement for ensuring food safety. The growth, survival capability, and virulence of antibiotic-resistant Salmonella represent crucial biological characteristics that play an important role in microbial risk assessment. In this study, eight antibiotic-sensitive S. enterica strains were induced by Ampicillin (Amp) and Ciprofloxacin (CIP), respectively, and AMP-resistant and CIP-resistant mutants were obtained. The growth characteristics under different temperatures (25, 30, 35 °C), viability after exposure to heat (55, 57.5, 60 °C) and acid (HCl, pH = 3.0), the virulence potential (adhesion and invasion to Caco-2 cells, biofilm formation and motility) and the lethality in a model species (Galleria mellonella) were evaluated and compared for S. enterica strains before and after antibiotic exposure. The induction by AMP and CIP are likely to promote cross-antibiotic resistance to their antibiotic classes, β-lactams and quinolones, as well as some compound antibiotics. It was observed that generally the antibiotic-induction-resistant strains showed decreased growth ability and lower heat resistance, although the differences were not significant at all the conditions tested. The AMP-resistant strains were significantly less acid resistance than the sensitive and the CIP-resistant ones, while exhibiting increased biofilm formation ability. In general, the antibiotic-induced resistance did not significantly affect the motility, adherence, or invasion ability of Caco-2 cells. However, CIP-resistant strains displayed lower lethality in G. mellonella infection, whereas AMP-resistant strains did not, and even two strains improved lethality. The study of the biological characteristics of antibiotic-resistant S. enterica is essential in better understanding the microbial risks to both the food chain and human health, thereby facilitating a more accurate risk assessment.
Collapse
Affiliation(s)
- Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yani Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leijie Ben
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiangfeng Bu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinye Pan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingdong Shao
- Technology Center of Zhangjiagang Customs, Suzhou, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
6
|
Van Looveren N, Verbaet L, Frooninckx L, Van Miert S, Van Campenhout L, Van Der Borght M, Vandeweyer D. Effect of heat treatment on microbiological safety of supermarket food waste as substrate for black soldier fly larvae (Hermetia illucens). WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:209-218. [PMID: 37075543 PMCID: PMC10162384 DOI: 10.1016/j.wasman.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Supermarket food waste, constituting 13% of global food waste, can be upcycled as substrate for black soldier fly larvae (BSFL) and converted into larval biomass. Since presence of food pathogens in supermarket food waste is likely, microbiological safety should be ensured when using waste as insect substrate. Heat treatment provides a suitable pre-treatment to reduce microbiological contaminations. This study investigated the effect of different temperature-time combinations on the microbiological safety of supermarket food waste as BSFL substrate. Artificial supermarket food waste without meat and fish (SFW) was inoculated with both Salmonella and Staphylococcus aureus (7.0log cfu/g) and treated at 50 and 60 °C for 10, 20 and 30 min. While 50 °C was insufficient for adequate pathogen reduction, 60 °C only required 10 min to reduce the Enterobacteriaceae and S.aureus counts to < 1.0logcfu/g and for absence of Salmonella in 25 g. Heat-treated SFW could be stored for two days at ambient temperature or refrigerated without pathogen growth. Treatment of supermarket food waste containing meat and fish at 60 °C for 10 min caused similar results as for SFW, but S.aureus persisted (2.4logcfu/g), possibly by protective effects of fat and/or proteins. Finally, BSFL rearing experiments on SFW revealed significantly higher larval mass, bioconversion efficiency and waste reduction than on Gainesville diet, with no notable differences between untreated and heat-treated SFW. Rearing BSFL on supermarket food waste is possible, and unsafe food waste can be heated to obtain safety without eliminating nutrients necessary for rearing.
Collapse
Affiliation(s)
- Noor Van Looveren
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M(2)S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Lotte Verbaet
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M(2)S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Lotte Frooninckx
- Thomas More University of Applied Sciences, RADIUS, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Sabine Van Miert
- Thomas More University of Applied Sciences, RADIUS, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Leen Van Campenhout
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M(2)S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Mik Van Der Borght
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M(2)S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Dries Vandeweyer
- KU Leuven, Geel Campus, Department of Microbial and Molecular Systems (M(2)S), Research Group for Insect Production and Processing, Kleinhoefstraat 4, 2440 Geel, Belgium.
| |
Collapse
|
7
|
Manafi L, Aliakbarlu J, Dastmalchi Saei H. Susceptibility of Salmonella serotypes isolated from meat and meat contact surfaces to thermal, acidic, and alkaline treatments and disinfectants. Food Sci Nutr 2023; 11:1882-1890. [PMID: 37051333 PMCID: PMC10084953 DOI: 10.1002/fsn3.3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The present study was conducted to evaluate the response of 29 Salmonella isolates to exposure to thermal (60°C for 2 min), acidic (pH 2.9 for 30 min), and alkaline (pH 11 for 60 min) treatments and investigate the susceptibility of the isolates and their biofilms to disinfectants. The reductions of Salmonella isolates populations subjected to each treatment were analyzed according to their isolation source, serotype, antibiotic resistance pattern, and biofilm formation ability. Median reductions for all of Salmonella isolates populations after thermal, acidic, and alkaline treatments were 1.8, 2.1, and 0.7 log CFU/ml, respectively. The isolates behavior under stress conditions were not related to their isolation source, serotype, or biofilm formation ability. The median reduction after alkaline treatment in non-MDR (multidrug- resistant) isolates populations was significantly (p < .05) higher than MDR isolates. The median reduction in biofilms of moderate biofilm producers by disinfectants was significantly (p < .05) higher than that of strong biofilm producers. In conclusion, Salmonella isolates showed the highest susceptibility to acidic treatment and MDR isolates were more resistant to alkaline treatment than non-MDR ones. The current study also revealed that the strong biofilm producer isolates were more resistant to disinfectants than moderate biofilm producers. This study facilitated the understanding of the relationship between Salmonella characteristics (isolation source, serotype, antibiotic resistance pattern, and biofilm formation ability) and its susceptibility to thermal, acidic, and alkaline treatments and disinfectants. The findings are helpful for the prevention and control of Salmonella.
Collapse
Affiliation(s)
- Leila Manafi
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
| | - Javad Aliakbarlu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
| | | |
Collapse
|
8
|
Kim S, Chang Y. Anti-Salmonella polyvinyl alcohol coating containing a virulent phage PBSE191 and its application on chicken eggshell. Food Res Int 2022; 162:111971. [DOI: 10.1016/j.foodres.2022.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
|
9
|
Van Looveren N, Vandeweyer D, Van Campenhout L. Impact of Heat Treatment on the Microbiological Quality of Frass Originating from Black Soldier Fly Larvae ( Hermetia illucens). INSECTS 2021; 13:22. [PMID: 35055865 PMCID: PMC8778178 DOI: 10.3390/insects13010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Since black soldier fly larvae (BSFL, Hermetia illucens) are being produced at substantial volumes, concomitantly large amounts of the resulting by-product, called frass, are generated. This frass can potentially be applied as valuable plant fertilizer or soil improver. Since frass carries high microbial counts, potentially including foodborne pathogens, safety problems for consumers should be prevented. A heat treatment of 70 °C for 60 min is proposed to reduce harmful organisms in insect frass, based on EU regulations ((EU) No. 2021/1925). This study evaluated for the first time the impact of the proposed heat treatment on BSFL frass. This was done by applying the treatment on uninoculated frass as well as on frass inoculated with Salmonella or Clostridium perfringens at 5.0 log cfu/g. The heat treatment resulted in a reduction (maximum one log-cycle) of total viable counts and did not noticeably reduce bacterial endospores. In contrast, Enterobacteriaceae counts were reduced to below the detection limit (10 cfu/g). Heat treatment of inoculated frass resulted in absence of Salmonella in 25 g of frass and reduction of vegetative C. perfringens to below the detection limit (1 cfu/g). The proposed heat treatment appears to be appropriate to meet the microbiological regulations for insect frass.
Collapse
Affiliation(s)
- Noor Van Looveren
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M2S), Geel Campus, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium; (N.V.L.); (D.V.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 2463, 3001 Leuven, Belgium
| | - Dries Vandeweyer
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M2S), Geel Campus, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium; (N.V.L.); (D.V.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 2463, 3001 Leuven, Belgium
| | - Leen Van Campenhout
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M2S), Geel Campus, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium; (N.V.L.); (D.V.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 2463, 3001 Leuven, Belgium
| |
Collapse
|