1
|
Xia C, Xu X, Zhang R, Su D, Jia X, Deng M, Lee YK, Zhang M, Huang F. Effects of molecular weight on simulated digestion and fecal fermentation of polysaccharides from longan pulp in vitro. Int J Biol Macromol 2025; 306:141711. [PMID: 40043979 DOI: 10.1016/j.ijbiomac.2025.141711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 05/03/2025]
Abstract
The gastrointestinal digestion and fermentation in vitro of longan polysaccharide (LP) and its degraded products (DLP-1, DLP-4, and DLP-8) with different molecular weights (Mw) were investigated. Results indicated that four polysaccharides were only slightly degraded in the gastrointestinal digestion and mainly utilized by gut microbiota in the colon. Among them, DLP-8 with the lowest Mw was easily utilized by intestinal bacteria accompanied by the highest production of acetic and butyric acids. The DLP-8 group exhibited the best growth of beneficial bacteria including Dialister, Bifidobacterium, and Bacteroides. Correlation analysis further verified that the modulatory effect of longan polysaccharide on gut microbiota was structure-dependent, and Mw performed a key role in selectively regulating gut microbial composition. These results showed the smaller Mw longan polysaccharides were more readily fermented leading to modulation of gut microbiota in vitro.
Collapse
Affiliation(s)
- Chunmei Xia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
2
|
Chen YH, Li YC, Chang SC, Lin MJ, Lin LJ, Lee TT. Effects of dietary Bacillus velezensis fermented soybean hull supplementation on antioxidant capacity, suppressing pro-inflammatory, and modulating microbiota composition in broilers. Poult Sci 2025; 104:104827. [PMID: 40043671 PMCID: PMC11927686 DOI: 10.1016/j.psj.2025.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 03/24/2025] Open
Abstract
This study aimed to ferment soybean hulls (SBH) with Bacillus velezensis and evaluate their effects on broiler diets, specifically focusing on intestinal antioxidant capacity, immune modulation, and microbiota composition. The animal trial involved 400 one-day-old Arbor Acres broilers, randomly assigned to a control group (basic diet, Control) and groups receiving 5 % and 10 % unfermented soybean hulls (5 % USBH, 10 % USBH) and 5 % and 10 % fermented soybean hulls (5 % FSBHB, 10 % FSBHB) as replacements for the basic diet. Each group contained 80 birds, divided into four pens with 20 birds per pen, and the trial lasted for 35 days. In the jejunum, the 5 % FSBHB group tended to suppress pro-inflammatory gene expression, while the 10 % FSBHB group tended to enhance antioxidant gene expression. In terms of jejunum protein levels, the 10 % FSBHB group exhibited significantly lower (P < 0.05) TNF-α protein levels compared to the control and other treatment groups. Furthermore, intestinal microbiota analysis showed that ileum and cecum microbial counts in the 10 % USBH and 10 % FSBHB groups were higher than those in the control group. Species richness indices also revealed that both the 10 % USBH and 10 % FSBHB groups were significantly higher (P < 0.05) than the control group. In conclusion, soybean hulls fermented with Bacillus velezensis improved intestinal antioxidant capacity, suppressed pro-inflammatory gene expression, and modulated microbiota composition in broilers, with the 10 % FSBHB group demonstrating the most pronounced effects.
Collapse
Affiliation(s)
- Yung Hao Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi Chen Li
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; Professional Master Program of Agricultural Business Management, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shen Chang Chang
- Southern Region Branch, Taiwan Livestock Research Institute, Ministry of Agriculture, Executive Yuan, Pingtung 91201, Taiwan
| | - Min Jung Lin
- Bachelor of Program in Scientific Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Li Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; Professional Master Program of Agricultural Business Management, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan; Smart Sustainable New Agriculture Research Center (SMARTer), Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Chu Z, Liu L, Mu D, Chen X, Zhang M, Li X, Wu X. Research on pear residue dietary fiber and Monascus pigments extracted through liquid fermentation. J Food Sci 2024; 89:4136-4147. [PMID: 38778561 DOI: 10.1111/1750-3841.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Pear residue, a byproduct of pear juice extraction, is rich in soluble sugar, vitamins, minerals, and cellulose. This study utilized Monascus anka in liquid fermentation to extract dietary fiber (DF) from pear residue, and the structural and functional characteristics of the DF were analyzed. Soluble DF (SDF) content was increased from 7.9/100 g to 12.6 g/100 g, with a reduction of average particle size from 532.4 to 383.0 nm by fermenting with M. anka. Scanning electron microscopy and infrared spectroscopic analysis revealed more porous and looser structures in Monascus pear residue DF (MPDF). Water-, oil-holding, and swelling capacities of MPDF were also enhanced. UV-visible spectral analysis showed that the yield of yellow pigment in Monascus pear residue fermentation broth (MPFB) was slightly higher than that in the Monascus blank control fermentation broth. The citrinin content in MPFB and M. anka seed broth was 0.90 and 0.98 ug/mL, respectively. Therefore, liquid fermentation with M. anka improved the structural and functional properties of MPDF, suggesting its potential as a functional ingredient in food.
Collapse
Affiliation(s)
- Zhaolin Chu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lanhua Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Dongdong Mu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, China
| | - Min Zhang
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Anhui Huafeng Plant Perfume Co. Ltd., Fuyang, China
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
4
|
Xiao M, Jia X, Kang J, Liu Y, Zhang J, Jiang Y, Liu G, Cui SW, Guo Q. Unveiling the breadmaking transformation: Structural and functional insights into Arabinoxylan. Carbohydr Polym 2024; 330:121845. [PMID: 38368117 DOI: 10.1016/j.carbpol.2024.121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
To understand the changes in arabinoxylan (AX) during breadmaking, multi-step enzyme digestion was conducted to re-extract arabinoxylan (AX-B) from AX-fortified bread. Their structural changes were compared using HPSEC, HPAEC, FT-IR, methylation analysis, and 1H NMR analysis; their properties changes in terms of enzymatic inhibition activities and in vitro fermentability against gut microbiota were also compared. Results showed that AX-B contained a higher portion of covalently linked protein while the molecular weight was reduced significantly after breadmaking process (from 677.1 kDa to 15.6 kDa); the structural complexity of AX-B in terms of the degree of branching was increased; the inhibition activity against α-amylase (76.81 % vs 73.89 % at 4 mg/mL) and α-glucosidase (64.43 % vs 58.08 % at 4 mg/mL) was improved; the AX-B group produced a higher short-chain fatty acids concentration than AX (54.68 ± 7.86 mmol/L vs 44.03 ± 4.10 mmol/L). This study provides novel knowledge regarding the structural and properties changes of arabinoxylan throughout breadmaking, which help to predict the health benefits of fibre-fortified bread and achieve precision nutrition.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yueru Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Jiang C, Zeng X, Wei X, Liu X, Wang J, Zheng X. Improvement of the functional properties of insoluble dietary fiber from corn bran by ultrasonic-microwave synergistic modification. ULTRASONICS SONOCHEMISTRY 2024; 104:106817. [PMID: 38394824 PMCID: PMC10906511 DOI: 10.1016/j.ultsonch.2024.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
A comprehensive investigation aimed to access the impacts of ultrasonic, microwave, and ultrasonic-microwave synergistic modification on the physicochemical properties, microstructure, and functional properties of corn bran insoluble dietary fiber (CBIDF). Our findings revealed that CBIDF presented a porous structure with loose folds, and the particle size and relative crystallinity were slightly decreased after modification. The CBIDF, which was modified by ultrasound-microwave synergistic treatment, exhibited remarkable benefits in terms of its adsorption capacity, and cholate adsorption capacity. Furthermore, the modification improved the in vitro hypoglycemic activity of the CBIDF by enhancing glucose absorption, retarding the starch hydrolysis, and facilitating the diffusion of glucose solution. The findings from the in vitro probiotic activity indicate that ultrasound-microwave synergistic modification also enhances the growth-promoting ability and adsorbability of Lactobacillus acidophilus and Bifidobacterium longum. Additionally, the level of soluble dietary fiber was found to be positively correlated with CBIDF adsorbability, while the crystallinity of CBIDF showed a negative correlation with α-glucosidase and α-amylase inhibition activity, as well as water-holding capacity, and oil-holding capacity.
Collapse
Affiliation(s)
- Caixia Jiang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiangrui Zeng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xuyao Wei
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaolan Liu
- Heilongjiang Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Juntong Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products and Utilization of Ministry of Education, Daqing 163319, China
| | - Xiqun Zheng
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products and Utilization of Ministry of Education, Daqing 163319, China.
| |
Collapse
|
6
|
Liikonen V, Gomez-Gallego C, Kolehmainen M. The effects of whole grain cereals on tryptophan metabolism and intestinal barrier function: underlying factors of health impact. Proc Nutr Soc 2024; 83:42-54. [PMID: 37843435 DOI: 10.1017/s0029665123003671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This review aims to investigate the relationship between the health impact of whole grains mediated via the interaction with intestinal microbiota and intestinal barrier function with special interest on tryptophan metabolism, focusing on the role of the intestinal microbiota and their impact on barrier function. Consuming various types of whole grains can lead to the growth of different microbiota species, which in turn leads to the production of diverse metabolites, including those derived from tryptophan metabolism, although the impact of whole grains on intestinal microbiota composition results remains inconclusive and vary among different studies. Whole grains can exert an influence on tryptophan metabolism through interactions with the intestinal microbiota, and the presence of fibre in whole grains plays a notable role in establishing this connection. The impact of whole grains on intestinal barrier function is closely related to their effects on the composition and activity of intestinal microbiota, and SCFA and tryptophan metabolites serve as potential links connecting whole grains, intestinal microbiota and the intestinal barrier function. Tryptophan metabolites affect various aspects of the intestinal barrier, such as immune balance, mucus and microbial barrier, tight junction complexes and the differentiation and proliferation of epithelial cells. Despite the encouraging discoveries in this area of research, the evidence regarding the effects of whole grain consumption on intestine-related activity remains limited. Hence, we can conclude that we are just starting to understand the actual complexity of the intestinal factors mediating in part the health impacts of whole grain cereals.
Collapse
Affiliation(s)
- Vilma Liikonen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Carlos Gomez-Gallego
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
7
|
Herkenhoff ME, de Medeiros IUD, Garutti LHG, Salgaço MK, Sivieri K, Saad SMI. Cashew By-Product as a Functional Substrate for the Development of Probiotic Fermented Milk. Foods 2023; 12:3383. [PMID: 37761092 PMCID: PMC10528859 DOI: 10.3390/foods12183383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cashew (Anacardium occidentale) processing generates a by-product (CB) with potential for health benefits and that could be a favorable ingredient to be added to a probiotic food matrix. This study aimed to assess the functional attributes of CB in fermented milk with a probiotic and a starter culture using in vitro gastrointestinal conditions. Two formulations were tested, without CB (Control Formulation-CF) and with CB (Test Formulation-TF), and the two strains most adapted to CB, the probiotic Lacticaseibacillus paracasei subsp. paracasei F19® and the starter Streptococcus thermophilus ST-M6®, were chosen to be fermented in the CF and the TF. During a 28-day period of refrigeration (4 °C), both strains used in the CF and TF maintained a population above 8.0 log CFU/mL. Strains cultured in the TF had a significant increase in total phenolic compounds and greater antioxidant potential during their shelf life, along with improved survival of F19® after in vitro-simulated gastrointestinal conditions. Our study revealed the promising potential of CB in the probiotic beverage. The CB-containing formulation (TF) also exhibited higher phenolic content and antioxidant activity. Furthermore, it acted as a protector for bacteria during gastrointestinal simulation, highlighting its potential as a healthy and sustainable product.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Igor Ucella Dantas de Medeiros
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Luiz Henrique Grotto Garutti
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Mateus Kawata Salgaço
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 s/n, Araraquara 14800-903, SP, Brazil; (M.K.S.); (K.S.)
| | - Katia Sivieri
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 s/n, Araraquara 14800-903, SP, Brazil; (M.K.S.); (K.S.)
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
8
|
Chen D, Chen C, Guo C, Zhang H, Liang Y, Cheng Y, Qu H, Wa Y, Zhang C, Guan C, Qian J, Gu R. The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7. Microb Cell Fact 2023; 22:170. [PMID: 37660047 PMCID: PMC10474686 DOI: 10.1186/s12934-023-02174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/09/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Oro-gastrointestinal stress in the digestive tract is the main stress to which orally administered probiotics are exposed. The regulation of oro-gastrointestinal transit (OGT) stress on the adhesion and survival of probiotics under continuous exposure to simulated salivary-gastric juice-intestinal juice was researched in this study. RESULTS Lactobacillus plantarum S7 had a higher survival rate after exposure to simulated OGT1 (containing 0.15% bile salt) stress and OGT2 (containing 0.30% bile salt) stress. The adhesion ability of L. plantarum S7 was significantly increased by OGT1 stress (P < 0.05) but was not changed significantly by OGT2 stress (P > 0.05), and this trend was also observed in terms of the thickness of the surface material of L. plantarum S7 cells. The expression of surface proteins of L. plantarum S7, such as the 30 S ribosomal proteins, mucus-binding protein and S-layer protein, was significantly downregulated by OGT stress (P < 0.05); meanwhile, the expression of moonlight proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycorate kinase (PGK), beta-phosphoglucomutase (PGM1), GroEL and glucose-6-phosphate isomerase (PGI), was significantly upregulated (P < 0.05). However, the upregulation of GAPDH, PGK, PGM1 and PGI mediated by OGT1 stress was greater than those mediated by OGT2 stress. The quorum sensing pathway of L. plantarum S7 was changed significantly by OGT stress compared with no OGT stress cells (P < 0.05), and the expression of Luxs in the pathway was significantly upregulated by OGT1 stress (P < 0.05). The ABC transportation pathway was significantly altered by OGT1 stress (P < 0.05), of which the expression of the peptide ABC transporter substrate-binding protein and energy-coupling factor transporter ATP-binding protein EcfA was significantly upregulated by OGT stress (P < 0.05). The glycolide metabolism pathway was significantly altered by OGT1 stress compared with that in response to OGT2 stress (P < 0.05). CONCLUSION L. plantarum S7 had a strong ability to resist OGT stress, which was regulated by the proteins and pathways related to OGT stress. The adhesion ability of L. plantarum S7 was enhanced after continuous exposure to OGT1 stress, making it a potential probiotic with a promising future for application.
Collapse
Affiliation(s)
- Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
- Jiangsu Yuhang Food Technology Co., Ltd, Yancheng, 224000, Jiangsu, China
| | - Chunmeng Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Congcong Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Hui Zhang
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, 225127, Jiangsu, China
| | - Yating Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Yue Cheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Jianya Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
9
|
Lei J, Zhang Y, Guo D, Meng J, Feng C, Xu L, Cheng Y, Liu R, Chang M, Geng X. Extraction optimization, structural characterization of soluble dietary fiber from Morchella importuna, and its in vitro fermentation impact on gut microbiota and short-chain fatty acids. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2093979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Yuting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Agricultural University, Shanxi Key Laboratory of Edible Fungi for Loess Plateau Taigu, Shanxi, China
| |
Collapse
|
10
|
Wu X, Luo M, Zhao L, Wang S, Zhu D, Yang L, Liu H. Emulsification characteristics of soy hull polysaccharides obtained by membrane separation. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Membrane separation technology was used to separate and purify the microwave-assisted oxalic acid extraction of soy hull polysaccharides (MOSP) in order to obtain samples of different molecular weights. The emulsification characteristics of the MOSP were investigated including protein adsorption, polysaccharide adsorption, interfacial tension, emulsion index, and particle size; optical microscopy and Phenom electron microscopy were used to elucidate the emulsion structures. In addition, Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and high-performance gel-filtration chromatography (HPGFC) were used to study the differences in the components and structures of MOSP in different molecular weights. The molecular weight had several important effects on the emulsifying properties of MOSP. The adsorption capacities of the emulsion droplets containing low molecular weight MOSP (L-MOSP), middle molecular weight MOSP (M-MOSP), and high molecular weight MOSP (H-MOSP) were relatively low, and those of H-MOSP were slightly higher than those of L-MOSP. With extended storage time, the particle sizes of the emulsions rich in L-MOSP, M-MOSP, and H-MOSP increased. L-MOSP, M-MOSP, and H-MOSP were mainly composed of furans. The conformation of the molecular chain was spherical. The emulsions formed with H-MOSP were the most stable.
Collapse
|
11
|
Cai W, Zhang H, Chen X, Yan S, Yang L, Song H, Li J, Liu J, Yu H, Liu H, Zhu D. Effect of microwave‐assisted acid extraction on the physicochemical properties and structure of soy hull polysaccharides. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenqi Cai
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
- Grain and Cereal Food Bioefficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Hongyun Zhang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - XinRu Chen
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Shiyu Yan
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
- Grain and Cereal Food Bioefficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Hong Song
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
- Grain and Cereal Food Bioefficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Jun Li
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
- Grain and Cereal Food Bioefficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Jun Liu
- Shandong Yuwang Ecogical Food Industry Co. Ltd. Yucheng 251200 China
| | - Hansong Yu
- College of Food Science and Technology Jilin Agricultural University Changchun 130118 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
- Grain and Cereal Food Bioefficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Danshi Zhu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| |
Collapse
|
12
|
Li L, Zhang H, Chen X, Yan S, Yang L, Song H, Li J, Liu J, Yu H, Liu H, Zhu D. Chemical composition and sugar spectroscopy of soy hull polysaccharides obtained by microwave‐assisted salt extraction. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Li
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Hongyun Zhang
- College of Food Science and Technology Bohai University Jinzhou China
| | - Xinru Chen
- College of Food Science and Technology Bohai University Jinzhou China
| | - Shiyu Yan
- College of Food Science and Technology Bohai University Jinzhou China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Hong Song
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Jun Li
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Jun Liu
- Shandong Yuwang Ecogical Food Industry Co. Ltd. Yucheng China
| | - Hansong Yu
- College of Food Science and Technology Jilin Agricultural University Changchun China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Danshi Zhu
- College of Food Science and Technology Bohai University Jinzhou China
| |
Collapse
|
13
|
Wang Z, Yang L, Xue S, Wang S, Zhu L, Ma T, Liu H, Li R. Molecular docking and dynamic insights on the adsorption effects of soy hull polysaccharides on bile acids. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ziyi Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Sen Xue
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Shengnan Wang
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Lijie Zhu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Tao Ma
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| | - Ruren Li
- College of Food Science and Technology Bohai University Jinzhou Liaoning 121013 China
| |
Collapse
|
14
|
Yang L, Wu X, Luo M, Shi T, Gong F, Yan L, Li J, Ma T, Li R, Liu H. Na +/Ca 2+ induced the migration of soy hull polysaccharides in the mucus layer in vitro. Int J Biol Macromol 2022; 199:331-340. [PMID: 35031312 DOI: 10.1016/j.ijbiomac.2022.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the mechanism of Na+/Ca2+-induced soy hull polysaccharide (SHP) migration in the mucus layer. The viscosity, potential, microstructure, SHP migration, and metabolite migration were analyzed. The results showed that Na+ had little effect on the viscosity of polysaccharides, while Ca2+ increased the viscosity of polysaccharides. Na+ and Ca2+ promoted the migration of SHP particles by reducing the zeta potential, while they decreased the migration of SHP chyle particles by increasing the aggregation. SHP was fermented by gut microbiota to produce a large number of short-chain fatty acids (SCFAs). Compared with Ca2+, Na+ increased the migration of total SCFAs in the mucus layer. The high-Na+/Ca2+ mucus internal environment had a specific effect on the transport of nutrients in the intestine.
Collapse
Affiliation(s)
- Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Xinghui Wu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Mingshuo Luo
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Taiyuan Shi
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Fayong Gong
- Panxi Crops Research, Utilization Key Laboratory of Sichuan Province, Xichang University, Sichuan 615000, China
| | - Lang Yan
- Panxi Crops Research, Utilization Key Laboratory of Sichuan Province, Xichang University, Sichuan 615000, China
| | - Jing Li
- Panxi Crops Research, Utilization Key Laboratory of Sichuan Province, Xichang University, Sichuan 615000, China
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ruren Li
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
15
|
Li R, Yuan G, Li D, Xu C, Du M, Tan S, Liu Z, He Q, rong L, Li J. Enhancing the bioaccessibility of puerarin through the collaboration of high internal phase Pickering emulsions with β-carotene. Food Funct 2022; 13:2534-2544. [DOI: 10.1039/d1fo03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Puerarin is a medicinal and edible flavonoid compound found in the traditional Chinese medicine Pueraria lobata rhizome that has potential biological benefifits, including for the treatment of diabetes and memory...
Collapse
|