1
|
Corfield R, Gomez Mattson M, Pérez OE, Salvatori D, Schebor C. Current State of Research on Health-Promoting Functional Properties in Berry-Based Foods. Curr Nutr Rep 2025; 14:22. [PMID: 39862275 DOI: 10.1007/s13668-025-00615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE OF REVIEW This review aims to consolidate recent findings on the development and functional validation of berry-based foods while proposing guidelines for future advancements. RECENT FINDINGS Current investigations on berry-based functional foods (dairy and bakery products, snacks, etc.) emphasize their potential health benefits, including antioxidant effects, glycemic control, enzyme modulation, among others. Although there is valuable information on the capacity of berry-derived food products to confer health benefits, only 10% of the reviewed publications reached the final validation stage of the formulated product through in vivo assays. The analyzed publications were classified according to the approach used to study the functional potential of the developed berry-based products, considering simple spectrophotometric analysis, in vitro biological studies, and in vivo studies. Guidelines for a successful development of berry-based health enhancing foods were presented. Future research should include functional validation of final food products and confirm their bioactivity through in vivo studies.
Collapse
Affiliation(s)
- Rocío Corfield
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, ITAPROQ (UBA-CONICET), Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires, 1428, Argentina.
| | - Milagros Gomez Mattson
- PROBIEN (CONICET-UNCo), Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| | - Oscar E Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN (UBA-CONICET), Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| | - Daniela Salvatori
- PROBIEN (CONICET-UNCo), Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| | - Carolina Schebor
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, ITAPROQ (UBA-CONICET), Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| |
Collapse
|
2
|
Pădureţ S, Ghinea C, Prisacaru AE, Leahu A. Physicochemical, Textural, and Antioxidant Attributes of Yogurts Supplemented with Black Chokeberry: Fruit, Juice, and Pomace. Foods 2024; 13:3231. [PMID: 39456293 PMCID: PMC11507101 DOI: 10.3390/foods13203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The fruit, juice, and pomace of black chokeberry (Aronia melanocarpa) are a rich source of phenolic compounds and can be used to obtain enriched dairy products. Chokeberry fruit, due to its astringent taste, is less favorable or even unacceptable to consumers and is usually processed into juice, resulting in large quantities of pomace, which is often discarded as waste. The aim of this study is to valorize chokeberry fruit, juice, and pomace by incorporating them in different percentages (1, 2, and 3%) into yogurt as functional ingredients. The physicochemical (total solids content, fat, protein, titratable acidity, pH, color), textural (hardness, adhesion, cohesiveness, springiness, gumminess, and chewiness), antioxidant (DPPH scavenging activity and total phenolic content), and sensory characteristics of supplemented yogurts were investigated. The results showed that the addition of chokeberry pomace in yogurt increased their total solids content (from 11.46 ± 0.18% for the plain yogurt sample to 13.71 ± 0.18% for the yogurt sample with 3% chokeberry pomace), while the addition of fruit and juice decreased the protein content of the yogurt samples (from 4.35 ± 0.11% for the plain yogurt sample to 3.69 ± 0.15% for the yogurt sample with 3% chokeberry fruit and to 3.84 ± 0.1% for the yogurt sample with 3% chokeberry juice). There was no statistically significant change in the fat content of all samples of chokeberry-supplemented yogurt compared to plain yogurt. The pH of the yogurt samples decreased with the increase in the percentage of chokeberry fruit, juice, and pomace added to the yogurt (from 4.50 for the plain yogurt samples to 4.35, 4.30, and 4.20 for the yogurt samples supplemented with 1, 2, and 3% black chokeberry pomace). Inhibition of DPPH radical formation was higher in the yogurt samples with chokeberry fruit (57.84 ± 0.05%, 73.57 ± 0.11%, and 75.38 ± 0.05% inhibition for the samples with 1, 2, and 3% fruit) and pomace (up to 64.8 ± 0.11% inhibition for the sample with 3%), while total phenolic content decreased (from 392.14 ± 2.06 to 104.45 ± 2.63 µg/g) as follows: yogurt with chokeberry pomace > yogurt with chokeberry fruit > yogurt with chokeberry juice. The yogurt samples with the highest acceptance scores were the samples with 3% and 2% black chokeberry fruit, while the lowest acceptance score was obtained for the yogurt sample with 3% black chokeberry pomace. Chokeberry fruit, juice, and pomace can improve the physicochemical, textural, and antioxidant characteristics of yogurt, emphasizing that the antioxidant effect of yogurt could be substantially improved by the addition of chokeberry pomace due to its high phenolic content, while incorporation into yogurt is another way to valorize this by-product.
Collapse
Affiliation(s)
| | - Cristina Ghinea
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.P.); (A.E.P.); (A.L.)
| | | | | |
Collapse
|
3
|
Raczkowska E, Serek P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry-A Review. Nutrients 2024; 16:2757. [PMID: 39203893 PMCID: PMC11357471 DOI: 10.3390/nu16162757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Fruit pomace, a by-product of the fruit industry, includes the skins, seeds, and pulp most commonly left behind after juice extraction. It is produced in large quantities: apple residues alone generate approximately 4 million tons of waste annually, which is a serious problem for the processing industry but also creates opportunities for various applications. Due to, among other properties, their high content of dietary fiber and polyphenolic compounds, fruit residues are used to design food with functional features, improving the nutritional value and health-promoting, technological, and sensory properties of food products. This article presents the health-promoting (antioxidant, antidiabetic, anti-inflammatory, and antibacterial) properties of fruit pomace. Moreover, the possibilities of their use in the food industry are characterized, with particular emphasis on bread, sweet snack products, and extruded snacks. Attention is paid to the impact of waste products from the fruit industry on the nutritional value and technological and sensory characteristics of these products. Fruit pomace is a valuable by-product whose use in the food industry can provide a sustainable solution for waste management and contribute to the development of functional food products with targeted health-promoting properties.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| | | |
Collapse
|
4
|
Dávila León R, González‐Vázquez M, Lima‐Villegas KE, Mora‐Escobedo R, Calderón‐Domínguez G. In vitro gastrointestinal digestion methods of carbohydrate-rich foods. Food Sci Nutr 2024; 12:722-733. [PMID: 38370076 PMCID: PMC10867469 DOI: 10.1002/fsn3.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
The trend toward healthier food products has led to an increase in the research of in vitro gastrointestinal digestion methods. Among the most used models, static models are the simplest. Most static models have three stages: oral, gastric, and intestinal, simulating the enzymatic, electrolyte, pH, temperature, and bile salt conditions. The studies that have taken the most notice are those related to antioxidant activity, followed by those dealing with proteins and carbohydrates using most of them static in vitro digestion models. The number of these studies has increased over the years, passing from 45 to 415 in a 10-year period (2012-2023) and showing an interest in knowing the impact of food on human health. Nevertheless, published papers report different methodologies and analytical approaches. This review discusses the similarities and differences between the published static in vitro gastrointestinal digestion methods, with a focus on carbohydrates, finding that the most used protocol is Infogest, but with differences, mainly in the type of enzymes and their activity. Regarding in vitro gastrointestinal digestion of carbohydrates, many of the published studies are related to food and biomacromolecules, being the oral phase the most omitted, while the intestinal phase in the most diverse. Other methodologies to study the intestinal phase have been recommended, but the number of in vitro digestion studies using these methodologies (RSIE and BBMV) is still scarce but could represent a good alternative to analyze carbohydrates foods when combining with Infogest. More studies are required in this area.
Collapse
Affiliation(s)
- Rebeca Dávila León
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | | | | - Rosalva Mora‐Escobedo
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | |
Collapse
|
5
|
Wójtowicz A, Combrzyński M, Biernacka B, Różyło R, Bąkowski M, Wojtunik-Kulesza K, Mołdoch J, Kowalska I. Fresh Chokeberry ( Aronia melanocarpa) Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3276. [PMID: 37765442 PMCID: PMC10537414 DOI: 10.3390/plants12183276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
In this paper, the nutritional value and (selected) physiochemical properties of extruded snack pellets enriched with fresh chokeberry (Aronia melanocarpa) fruits were analyzed from the perspective of being a new product for the functional food sector. The purpose of this study was to determine the effect of the addition of fresh chokeberry and variation in content and screw speed on extruded snack pellet basic compositions, fatty acid profiles, antioxidant activity, as well as water absorption and solubility indexes, fat absorption and color profiles. The obtained results revealed a significant increase in antioxidant activity for all samples (above 90% of free radical scavenging) in comparison to potato-based control samples (just over 20% of free radical scavenging). The total phenolic content assay revealed the most valuable results for samples enriched with 30% chokeberry, while Ultra Performance Liquid Chromatography (UPLC) analysis allowed the determination of the most important phenolic acids. Of interest, chokeberry addition decreased the fat absorption index (FAI) after expansion by frying. Moreover, the highest values of crude protein and crude ash were observed in snack pellets supplemented by the application of 30% chokeberry. In such samples, the crude protein content was at the level of 4.75-4.87 g 100 g-1 and crude ash content at 4.88-5.07 g 100 g-1. Moreover, saturated fatty acids (SFA) content was lower in snack pellets with chokeberry addition, and increasing the amount of chokeberry additive from 10% to 30% in extruded snack pellet recipes resulted in more than double an increase in polyunsaturated fatty acids (PUFA) proportion in the total fatty acids.
Collapse
Affiliation(s)
- Agnieszka Wójtowicz
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland; (A.W.); (B.B.)
| | - Maciej Combrzyński
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland; (A.W.); (B.B.)
| | - Beata Biernacka
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland; (A.W.); (B.B.)
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland;
| | - Maciej Bąkowski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | | | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| |
Collapse
|
6
|
Mironeasa S, Coţovanu I, Mironeasa C, Ungureanu-Iuga M. A Review of the Changes Produced by Extrusion Cooking on the Bioactive Compounds from Vegetal Sources. Antioxidants (Basel) 2023; 12:1453. [PMID: 37507991 PMCID: PMC10376774 DOI: 10.3390/antiox12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The demand for healthy ready-to-eat foods like snacks is increasing. Physical modification of vegetal food matrices through extrusion generates significant changes in the chemical composition of the final product. There is a great variety of food matrices that can be used in extrusion, most of them being based on cereals, legumes, fruits, vegetables, or seeds. The aim of this review was to summarize the main effects of the extrusion process on the bioactive compounds content, namely phenolics, terpenes, vitamins, minerals, and fibers of vegetal mixes, as well as on their biological activity. The literature reported contradictory results regarding the changes in bioactive compounds after extrusion, mainly due to the differences in the processing conditions, chemical composition, physicochemical properties, and nutritional value of the extruded material and quantification methods. The thermolabile phenolics and vitamins were negatively affected by extrusion, while the fiber content was proved to be enhanced. Further research is needed regarding the interactions between bioactive components during extrusion, as well as a more detailed analysis of the impact of extrusion on the terpenes since there are few papers dealing with this aspect.
Collapse
Affiliation(s)
- Silvia Mironeasa
- Faculty of Food Engineering, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Ionica Coţovanu
- Faculty of Food Engineering, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Costel Mironeasa
- Faculty of Mechanical Engineering, Automotive and Robotics, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Mădălina Ungureanu-Iuga
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
- Mountain Economy Center (CE-MONT), "Costin C. Kiriţescu" National Institute of Economic Researches (INCE), Romanian Academy, 49 Petreni Street, 725700 Vatra Dornei, Romania
| |
Collapse
|
7
|
Ashfaq A, Osama K, Yousuf O, Younis K. Sustainable Nonfarm Approaches to Achieve Zero Hunger and Its Unveiled Reality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37399190 DOI: 10.1021/acs.jafc.2c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Millions of people worldwide are deprived of sufficient, safe, and nutritious food required for an everyday and healthy life. The hunger crisis is worsening over time, even though many attempts have been made to minimize it. Increasing world population and competition for natural resources, climate change, natural disasters, urbanization, poverty, and illiteracy are the main causes that need to be addressed to reduce the hunger crisis. Various nonfarm technologies are being used to eradicate hunger but their long-term impact on the environment should also be considered. The real sustainability of several novel technologies being implemented to deal with hunger is an issue to tackle. This paper discusses the potential applications of storage facilities, underutilized crops, waste valorization, food preservation, nutritionally enriched novel food products, and technological advancement in food processing to achieve zero hunger. An attempt has also been made to address the sustainability of various nonfarm technology utilized to minimize the global hunger crisis.
Collapse
Affiliation(s)
- Alweera Ashfaq
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Khwaja Osama
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Owais Yousuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| |
Collapse
|
8
|
Negreanu-Pirjol BS, Oprea OC, Negreanu-Pirjol T, Roncea FN, Prelipcean AM, Craciunescu O, Iosageanu A, Artem V, Ranca A, Motelica L, Lepadatu AC, Cosma M, Popoviciu DR. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants (Basel) 2023; 12:antiox12040951. [PMID: 37107325 PMCID: PMC10136089 DOI: 10.3390/antiox12040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu no. 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Florentina Nicoleta Roncea
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Andreea Iosageanu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Ludmila Motelica
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
| | - Anca-Cristina Lepadatu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| | - Madalina Cosma
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| |
Collapse
|
9
|
Dey D, Gu BJ, Ek P, Ross CF, Saunders SR, Ganjyal GM. Influences of modified fiber inclusion with varying particle size on corn starch-based extrudate expansion. J Food Sci 2023; 88:784-794. [PMID: 36647678 DOI: 10.1111/1750-3841.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023]
Abstract
The inclusion of cellulose nanocrystals (CNC) and microcrystalline cellulose (MCC) during extrusion processing of corn starch (CS) is presented in this study. Blends were prepared by incorporating CNC and MCC at different concentrations, 1%, 3%, 5%, and 10% w/w in CS. The crystallinity index (CrI) of CNC and MCC was determined using X-ray diffraction, and the chemical functionality of CNC, MCC, and CS was studied using Fourier transform infrared spectroscopy. The pasting properties of the blends were studied using Micro Visco-Amylo-Graph before extrusion. The blends were preconditioned to 18 ± 0.5% (w.b.) moisture and extruded using a twin-screw extruder at 200 and 250 rpm at 140°C. CS-CNC's expansion ratio (ER) values were 2.95 to 3.35 and 2.72 to 3.22 for MCC. CNC's CrI and particle size were significantly lower than MCC, allowing CNC-based extrudates to have ER values similar to the control even at high CNC concentration (≤10% w/w). This study demonstrated that fiber with particle size <100 µm can be added in direct-expanded product formulations at high concentrations without negatively influencing the extrudate texture while offering increased nutritional value. PRACTICAL APPLICATION: This study gives insight into the potential application of cellulose nanocrystals and microcrystalline cellulose in manufacturing direct-expanded extruded products, providing high fiber content without compromising the product quality. This knowledge could also be translated into manufacturing other food products such as breakfast cereals, pasta, and bread.
Collapse
Affiliation(s)
- Debomitra Dey
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Bon-Jae Gu
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - Pichmony Ek
- School of Food Science, Washington State University, Pullman, Washington, USA.,Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Carolyn F Ross
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Steven R Saunders
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
10
|
Interaction of starch with some food macromolecules during the extrusion process and its effect on modulating physicochemical and digestible properties. A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
11
|
Duan S, Liu JR, Wang X, Sun XM, Gong HS, Jin CW, Eom SH. Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves. Molecules 2022; 27:molecules27154782. [PMID: 35897960 PMCID: PMC9331281 DOI: 10.3390/molecules27154782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Although ginseng leaf is a good source of health-beneficial phytochemicals, such as polyphenols and ginsenosides, few studies have focused on the variation in compounds and bioactivities during leaf thermal processing. The efficiency of far-infrared irradiation (FIR) between 160 °C and 200 °C on the deglycosylation of bioactive compounds in ginseng leaves was analyzed. FIR treatment significantly increased the total polyphenol content (TPC) and kaempferol production from panasenoside conversion. The highest content or conversion ratio was observed at 180 °C (FIR-180). Major ginsenoside contents gradually decreased as the FIR temperature increased, while minor ginsenoside contents significantly increased. FIR exhibited high efficiency to produce dehydrated minor ginsenosides, of which F4, Rg6, Rh4, Rk3, Rk1, and Rg5 increased to their highest levels at FIR-190, by 278-, 149-, 176-, 275-, 64-, and 81-fold, respectively. Moreover, significantly increased antioxidant activities were also observed in FIR-treated leaves, particularly FIR-180, mainly due to the breakage of phenolic polymers to release antioxidants. These results suggest that FIR treatment is a rapid and efficient processing method for producing various health-beneficial bioactive compounds from ginseng leaves. After 30 min of treatment without leaf burning, FIR-190 was the optimum temperature for producing minor ginsenosides, whereas FIR-180 was the optimum temperature for producing polyphenols and kaempferol. In addition, the results suggested that the antioxidant benefits of ginseng leaves are mainly due to polyphenols rather than ginsenosides.
Collapse
Affiliation(s)
- Shucheng Duan
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Jia Rui Liu
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
| | - Xin Wang
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
| | - Xue Mei Sun
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
| | - Han Sheng Gong
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
| | - Cheng Wu Jin
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
- Correspondence: (C.W.J.); (S.H.E.)
| | - Seok Hyun Eom
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (C.W.J.); (S.H.E.)
| |
Collapse
|
12
|
Twin-Screw Extrusion of Oat: Evolutions of Rheological Behavior, Thermal Properties and Structures of Extruded Oat in Different Extrusion Zones. Foods 2022; 11:foods11152206. [PMID: 35892792 PMCID: PMC9329829 DOI: 10.3390/foods11152206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Further investigation of material properties during the extrusion process is essential to achieve precise control of the quality of the extrudate. Whole oat flour was used to produce low moisture puffed samples by a twin-screw extruder. X-ray diffraction (XRD), Scanning electron microscopy (SEM), infrared spectroscopy (FTIR), thermal analysis, and rheological experiments were used to deeply characterize changes in the structure and cross-linking of oats in different extrusion zones. Results indicated that the melting region was the main region that changed oat starch, including the major transformation of oat starch crystal morphology and the significant decrease of enthalpy representing the starch pasting peak in the differential scanning calorimeter (DSC) pattern (p < 0.05). Moreover, the unstable structure of the protein increased in the barrel and then decreased significantly (p < 0.05) after being extruded through the die head. The viscosity of oats increased in the cooking zone but decreased after the melting zone. A transformation occurred from elastic-dominant behavior to viscoelastic-dominant behavior for oats in the melting zone and after being extruded. This study provides further theoretical support for the research of the change of materials during extrusion and the development of oat-based food.
Collapse
|