1
|
Lee HJ, Han JH, Keum DH, Kothuri V, Shin DM, Han SG. Quercetin-loaded candelilla wax/sunflower oil oleogels: Structural, sensory, and storage properties, and application as fat replacer in emulsion-type sausage. Food Chem 2025; 479:143847. [PMID: 40090198 DOI: 10.1016/j.foodchem.2025.143847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Replacing animal fat with vegetable oil can lower saturated fat levels in meat products; however, it may compromise their texture and flavor. In addition, vegetable oil is susceptible to oxidation. Quercetin is a lipophilic substance with antioxidant properties. We investigated the role of quercetin-loaded candelilla wax (CW)/sunflower oil-based oleogels as fat substitutes in sausages, focusing on shelf life and product quality. CW/sunflower oil oleogels containing quercetin (0.02, 0.04, and 0.06 %, w/w) were prepared and analyzed for structural, physicochemical, and antioxidant characteristics. Quercetin-loaded oleogels showed improved oil-binding capacity and rheological behavior without altering the gel structure. Notably, the oleogel containing 0.06 % quercetin exhibited the highest resistance to oxidation (P < 0.05). These oleogel-containing sausages exhibited markedly lower lipid oxidation and protein degradation, while maintaining structural integrity and sensory quality. Our data indicate that quercetin-loaded oleogels are a promising solution for reducing saturated fat and extending the shelf life of meat products.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hyeon Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Hyun Keum
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Vahinika Kothuri
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Min Shin
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Akalan M, Karakuş MŞ, Alaşalvar H, Karaaslan M, Başyiğit B. Facile synthesis of olive oil-incorporated oleofilms via high-power ultrasonic emulsification: A sustainable packaging model. Food Chem 2025; 473:142989. [PMID: 39862719 DOI: 10.1016/j.foodchem.2025.142989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to construct oleofilms containing a binary mixture of proteins (soy protein hydrolysate and gelatin) and lipids (olive oil, stearic acid, and lecithin) using various ultrasonic emulsification processes. Initially, oleogels (OG20, OG40, OG60, OG80, and OG100) were fabricated with different sonication powers (20 %-100 %), along with control (OG) without sonication. Macrostructure, FTIR, DSC, stability coefficient (57.27 %-79.52 %), oil-binding capacity (68.38 %-97.47 %), and particle size (1364-3532 nm) tests were performed on the oleogels. Oleofilms (OF, OF20, OF40, OF60, OF80, and OF100) were then formulated using the respective oleogels. Their visual, surface, and cross-sectional images were evaluated. The thickness (0.18-0.25 mm) and water content (7.32 %-11.73 %) of oleofilms were investigated. Alterations in color and opacity (3.50-5.49) of the oleofilms were apparent. OF80 exhibited lower water (0.44 g.mm/m2.h.kPa)/oxygen permeability (peroxide value: 2.31-14.30 meq O2/kg), along with improved mechanical properties (tensile strength: 3.25 MPa; elongation at break: 128.23 %). OF80-coated pineapples demonstrated the highest resistance to spoilage.
Collapse
Affiliation(s)
- Merve Akalan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkiye
| | - Mehmet Şükrü Karakuş
- Harran University, Application and Research Center for Science and Technology, Şanlıurfa, Turkiye
| | - Hamza Alaşalvar
- Niğde Ömer Halisdemir University, Engineering Faculty, Food Engineering Department, Niğde, Turkiye
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkiye
| | - Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkiye.
| |
Collapse
|
3
|
Soares MG, Okuro PK, da Silva MF, Goldbeck R, Cunha RL. Ultra-Long-Chain Sorbitol Esters Tailoring Thermo-Responsive Rheological Properties of Oleogels. Foods 2025; 14:1030. [PMID: 40232106 PMCID: PMC11941445 DOI: 10.3390/foods14061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Oleogels must replicate the rheological behavior of saturated fats at processing and consumption temperatures to maintain their physical stability and sensory acceptance. Thus, multicomponent oleogels present a promising approach since oleogelators can exhibit structuring and melting at different temperatures. The aim of the study was to produce a mixture of ultra-chain-long esters capable of structuring and modulating rheological behavior in response to temperature exposure. Therefore, enzymatic transesterification between sorbitol and fully hydrogenated crambe oil (FHCO) was performed to produce a mixture of ultra-long-chain sorbitan esters (SB) for efficient structuring of sunflower oil. SB generated in a reaction medium consisting exclusively of ethanol (60 °C, 200 rpm, 1:1 molar ratio) was selected for its high sorbitol consumption (~95%). While SB oleogels exhibited higher gel strength at 5 °C, at 25 °C, FHCO oleogels were stiffer, showing the gradual melting of SB oleogels evaluated by temperature-dependent rheological analyses and thermal properties. Oleogelation inhibited hydroperoxide formation compared to sunflower oil over 30 days. Results highlight the potential of multicomponent oleogels based on ultralong-chain esters for healthier and more stable high-lipid products. Modulating rheological thermoresponsiveness ensures physical stability under refrigeration while providing a texture similar to saturated fats during spreading and swallowing.
Collapse
Affiliation(s)
| | | | | | | | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (M.G.S.); (P.K.O.); (M.F.d.S.); (R.G.)
| |
Collapse
|
4
|
Xue Y, Zhong J, Liu X, Xiang D, Qin X. Improved physicochemical properties of bigels produced with ethyl cellulose-based oleogel and moderately deacetylated konjac glucomannan hydrogel. Food Chem 2024; 459:140429. [PMID: 39024880 DOI: 10.1016/j.foodchem.2024.140429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
The ideal physicochemical properties of bigels are important for food applications. Therefore, a new bigel was prepared based on mixed beef tallow and soybean oil oleogel and deacetylated konjac glucomannan (KGM) hydrogel. The effect of the deacetylation degree of KGM on the physicochemical properties and microstructure of bigels was studied. The bigel containing moderate deacetylation degree of KGM had better rheological properties and hardness (319.84 g) than that with low and high deacetylation degrees of KGM. The interactions among the bigel components were analyzed by Fourier transform infrared spectroscopy and molecular dynamics simulation, indicating that the formation of the bigels was dominated by electrostatic interactions. Overall, the bigels containing moderate deacetylation degree of KGM had better physical properties, which may provide a theoretical foundation to develop bigels with low cholesterol, trans and saturated fats levels to replace traditional solid fats in food industry.
Collapse
Affiliation(s)
- Yi Xue
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dao Xiang
- Chongqing Muge Food Co., Ltd., Chongqing, 401519, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
5
|
Deepali D, Mishra P, Das AB. Structural and rheological characterization of starch-based eutecto-oleogel. Int J Biol Macromol 2024; 279:135484. [PMID: 39250994 DOI: 10.1016/j.ijbiomac.2024.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
The study aimed to develop a novel eutecto-oleogel and its characterizations. Using starch, beeswax, oil, and natural deep eutectic solvents (NADES), an oleogel with low hardness and high liquid fat was developed. The addition of starch and NADES in oleogels caused the formation of new intra or intermolecular hydrogen bonding and improved the oil binding capacity, thermal behavior, and texture of the oleogels. The oleogel with 1 % starch formed a strong gel with the most favorable functional, textural, flow properties and a high fanning factor. Complementary tests of the oleogel exhibited shear thinning and frequency-independent behavior, with zero residual effect. Non-isothermal crystallization and melting analysis of the oleogels showed noticeable differences among the various oleogels. These results contribute to a better understanding of oleo gelation in rice bran oil-based oleogels with NADES, and beeswax for formulating food, pharmaceutical, and personal care products with desired physical properties.
Collapse
Affiliation(s)
- Deepali Deepali
- Department of Food Engineering and Technology, Tezpur University, India
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, India.
| | - Amit Baran Das
- Department of Food Engineering and Technology, Tezpur University, India; Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, West Bengal, India.
| |
Collapse
|
6
|
Zulfiqar A, Shabbir MA, Tahir F, Khan MR, Ahmed W, Yıkmış S, Manzoor MF, Abdi G, Aadil RM. Development of oleogel by structuring the blend of corn oil and sunflower oil with beeswax to replace margarine in cookies. Food Chem X 2024; 23:101676. [PMID: 39148530 PMCID: PMC11325670 DOI: 10.1016/j.fochx.2024.101676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Oleogel significantly affects the product's sensory properties, texture, and shelf life. The goal of this study was to create oleogel by combining corn oil and sunflower oil and utilizing beeswax as a structural agent. A variety of physicochemical analyses were done to evaluate the quality of oleogel, including peroxide value, iodine value, saponification value, fatty acid, rheological parameters and firmness. Different percentages of oleogel, ranging from 0% to 75%, were used to substitute margarine in cookies. The cookies' quality was evaluated using proximate analysis, color analysis, texture analysis, calorific value, and sensory analysis. The study yielded substantial results by finding the ideal margarine-to-oleogel mix ratio, allowing for the manufacturing of high-quality cookies with a greater degree of unsaturation. Cookies with oleogel showed higher levels of unsaturation and better properties, making them the preferred option among consumers.
Collapse
Affiliation(s)
- Aqsa Zulfiqar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fizza Tahir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namık Kemal University, 59830 Tekirdag, Turkiye
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Kaynarca GB. Characterization and molecular docking of sustainable wine lees and gelatin-based emulsions: innovative fat substitution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7429-7440. [PMID: 38702916 DOI: 10.1002/jsfa.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The present study aimed to determine how various amounts (0.00, 0.58, 1.52 and 4.50 g 100 g-1) of wine lees (WL), which contains numerous essential components, impact the emulsifying properties of fish gelatin (FG) at a low concentration (0.5 g 100 g-1) in the high-fat phase (65 g 100 g-1). This study conducted rheology, physicochemical technical and characterization analyses on the emulsions to provide sustainable and innovative approaches for spreadable oils. RESULTS The addition of WL to FG emulsions improved oxidative stability, emulsion stability and bioactive compounds. The zeta potential (-101 ± 5.62 mV) of 0.58 g 100 g-1 WL-containing emulsion (PE1) was found to be high, whereas particle size (347.6 ± 5.25 nm) and polydispersity index (0.50) were statistically low. It was also found that the addition of WL improved the intermolecular interactions, crystallinity and microstructural properties of the emulsions. All these results were supported by simulating the molecular configuration between FG and WL. The compounds gallic acid, caffeic acid, myricetin, quercetin and resveratrol showed a strong affinity to FG, with free binding energies of -5.50, -5.88, -6.53, -6.68 and -6.66 kcal mol-1, respectively. CONCLUSION As a result, WL-supported FG has the potential to be used as an alternative to egg proteins to develop sustainable low-cost spreadable emulsions. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kirklareli, Turkey
| |
Collapse
|
8
|
Valdivia-Culqui JE, Maicelo-Quintana JL, Cayo-Colca IS, Medina-Mendoza M, Castro-Alayo EM, Balcázar-Zumaeta CR. Oleogel Systems for Chocolate Production: A Systematic Review. Gels 2024; 10:561. [PMID: 39330164 PMCID: PMC11431030 DOI: 10.3390/gels10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In response to the growing demand for healthier food options, this review explores advances in oleogel systems as an innovative solution to reduce saturated fats in chocolates. Although appreciated for its flavor and texture, chocolate is high in calories, mainly due to cocoa butter (CB), which is rich in saturated fats. Oleogels, three-dimensional structures formed by structuring agents in edible oils, stand out in terms of mimicking saturated fats' physical and sensory properties without compromising the quality of chocolate. This study reviews how oleogels could improve chocolate's stability and sensory quality, exploring the potential of pectin-rich agro-industrial by-products as sustainable alternatives. It also explores the need for physicochemical evaluations of both oleogel and oleogel-based chocolate.
Collapse
Affiliation(s)
- Jheniffer E Valdivia-Culqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Jorge L Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Jr. Tacna 748, Piura 20002, Peru
| |
Collapse
|
9
|
Wang Z, Chandrapala J, Truong T, Farahnaky A. Binary wax oleogels: Improving physical properties and oxidation stability through substitution of carnauba wax with beeswax. J Food Sci 2024; 89:4372-4388. [PMID: 38837376 DOI: 10.1111/1750-3841.17140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
High concentrations of carnauba waxes (CRWs) that can compromise organoleptic properties are required to create self-sustained and functional oleogels. The weak physical properties and stability of 4% w/w CRW-rice bran oil (RBO) oleogel were addressed by substituting CRW with beeswax (BW) in different weight ratios. The texture profile analyzer revealed that substituting only 10% (weight ratio) of CRW with BW improved the hardness compared to the mono-CRW oleogel. The hardness of binary oleogels increased gradually as the proportion of BW increased. At a BW ratio of 70% or more, the hardness was three times higher than that of mono-BW oleogel. Rheology analysis showed the same trend as the large deformation test; however, the hardest binary oleogels had lower critical strain and yield point compared to the mono-wax oleogels, implying that they are more prone to lose their structure upon applied stress. Nevertheless, nearly all binary mixtures (except for 10%BW90%CRW) showed oil-binding capacities above 99%, suggesting improved nucleation and crystallization process. Polarized light microscopy showed the coexistence of BW and CRW crystals and changes in the size and arrangement of wax crystals upon proportional changes of the two waxes. X-ray diffraction confirmed no differences in the peaks' location, and all oleogels had β' polymorphism. Differential scanning calorimetry showed eutectic melting behavior in some binary blends. Oxidation stability in the binary wax oleogels improved as compared to the mono-wax oleogel and bulk RBO. BW and CRW mixtures have promising oil-structuring abilities and have various properties at different ratios that have the potential to be used as solid fat substitutes. PRACTICAL APPLICATION: As a trending green oil-structuring technology, oleogelation has shown great potential to reduce saturated fats in food systems. The current research provides valuable fundamental information on the strong synergistic interactions between beeswax and carnauba wax that have the potential to be used as solid fat substitutes created with a much lower total concentration of the required wax. This will help create wax oleogels with better organoleptic properties and less negative waxy mouthfeel. Such knowledge could prove beneficial for the development of healthy products that have potential applications in meat, bakery, dairy, pharmaceutical, as well as cosmetic industries.
Collapse
Affiliation(s)
- Ziyu Wang
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Jayani Chandrapala
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Tuyen Truong
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Dimakopoulou-Papazoglou D, Zampouni K, Prodromidis P, Moschakis T, Katsanidis E. Microstructure, Physical Properties, and Oxidative Stability of Olive Oil Oleogels Composed of Sunflower Wax and Monoglycerides. Gels 2024; 10:195. [PMID: 38534613 DOI: 10.3390/gels10030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The utilization of natural waxes to form oleogels has emerged as a new and efficient technique for structuring liquid edible oil into solid-like structures for diverse food applications. The objective of this study was to investigate the interaction between sunflower wax (SW) and monoglycerides (MGs) in olive oil oleogels and assess their physical characteristics and storage stability. To achieve this, pure SW and a combination of SW with MGs in a 1:1 ratio were examined within a total concentration range of 6-12% w/w. The formed oleogels were characterized based on their microstructure, melting and crystallization properties, textural characteristics, and oxidative stability during storage. All the oleogels were self-standing, and, as the concentration increased, the hardness of the oleogels also increased. The crystals of SW oleogels were long needle-like, while the combination of SW and MGs led to the formation of crystal aggregates and rosette-like crystals. Differential scanning calorimetry and FTIR showed that the addition of MGs led to different crystal structures. The oxidation results revealed that oleogels had low peroxide and TBARS values throughout the 28-day storage period. These results provide useful insights about the utilization of SW and MGs oleogels for potential applications in the food industry.
Collapse
Affiliation(s)
- Dafni Dimakopoulou-Papazoglou
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantina Zampouni
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Prodromos Prodromidis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eugenios Katsanidis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Ropciuc S, Dranca F, Oroian MA, Leahu A, Prisacaru AE, Spinei M, Codină GG. Characterization of Beeswax and Rice Bran Wax Oleogels Based on Different Types of Vegetable Oils and Their Impact on Wheat Flour Dough Technological Behavior during Bun Making. Gels 2024; 10:194. [PMID: 38534612 DOI: 10.3390/gels10030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Five varieties of vegetable oil underwent oleogelation with two types of wax as follows: beeswax (BW) and rice bran wax (RW). The oleogels were analyzed for their physicochemical, thermal, and textural characteristics. The oleogels were used in the bun dough recipe at a percentage level of 5%, and the textural and rheological properties of the oleogel doughs were analyzed using dynamic and empirical rheology devices such as the Haake rheometer, the Rheofermentometer, and Mixolab. The thermal properties of beeswax oleogels showed a melting peak at a lower temperature for all the oils used compared with that of the oleogels containing rice bran wax. Texturally, for both waxes, as the percentage of wax increased, the firmness of the oleogels increased proportionally, which indicates better technological characteristics for the food industry. The effect of the addition of oleogels on the viscoelastic properties of the dough was measured as a function of temperature. All dough samples showed higher values for G' (storage modulus) than those of G″ (loss modulus) in the temperature range of 20-90 °C, suggesting a solid, elastic-like behavior of all dough samples with the addition of oleogels. The influence of the beeswax and rice bran oleogels based on different types of vegetable oils on the thermo-mechanical properties of wheat flour dough indicated that the addition of oleogels in dough recipes generally led to higher dough stability and lower values for the dough development time and those related to the dough's starch characteristics. Therefore, the addition of oleogels in dough recipes inhibits the starch gelatinization process and increases the shelf life of bakery products.
Collapse
Affiliation(s)
- Sorina Ropciuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Florina Dranca
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Adrian Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Ana Leahu
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Ancuţa Elena Prisacaru
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mariana Spinei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | | |
Collapse
|
12
|
Shahamati M, Ahmadi P, Tabibiazar M, Fazelioskouei T, Azadmard-Damirchi S, Zargaraan A. Characterization of acorn oil and its application on carnauba wax-based oleogel and chocolate spread. Int J Biol Macromol 2024; 260:129571. [PMID: 38246460 DOI: 10.1016/j.ijbiomac.2024.129571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
This study aimed to characterize acorn oil (AO) and carnauba wax-based acorn oil oleogel (AOG) and the effect of AOG replacement on the textural and sensorial properties of chocolate spread. Oil yields from cold-pressing (Quercus longipes) were around 14%wt with a nice nutty smell. The main fatty acids of AO were included oleic, linoleic, and palmitic acid (44, 38, and 10%wt) respectively. The prepared AOG using 6%wt of carnauba wax (CW) showed high strength (G' > 100 mPa) and oil binding capacity ∼87 %. Based on microstructure assays platelet-like and β' polymorphic triglyceride crystalline networks were formed in AOG. The Pickering AOG/water emulsions in the volumetric ratio of from 90:10 up to 40:60 were stable due to the placement of CW-based AOG particles at the interface of water/oil as Pickering stabilizer. The high physical stability of the emulgel against phase separation is considered an important advantage for using oleogel in chocolate spread formulations instead of vegetable oils, which usually have a high percentage of oil release. The spreads prepared by replacing 50%wt AOG with butter showed acceptable textural and sensorial properties.
Collapse
Affiliation(s)
- Maryam Shahamati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Ahmadi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tahereh Fazelioskouei
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Azizollaah Zargaraan
- Department of Food and Nutrition Policy and Planning Research, Faculty of Nutrition and Food Science, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences and Health Services, Hafezi St, Tehran, Iran
| |
Collapse
|
13
|
Szymanska I, Zbikowska A, Onacik-Gür S. New Insight into Food-Grade Emulsions: Candelilla Wax-Based Oleogels as an Internal Phase of Novel Vegan Creams. Foods 2024; 13:729. [PMID: 38472842 DOI: 10.3390/foods13050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cream-type emulsions containing candelilla wax-based oleogels (EC) were analyzed for their physicochemical properties compared to palm oil-based creams (EP). The microstructure, rheological behavior, stability, and color of the creams were determined by means of non-invasive and invasive techniques. All the formulations exhibited similar color parameters in CIEL*a*b* space, unimodal-like size distribution of lipid particles, and shear-thinning properties. Oleogel-based formulations were characterized by higher viscosity (consistency index: 172-305 mPa·s, macroscopic viscosity index: 2.19-3.08 × 10-5 nm-2) and elasticity (elasticity index: 1.09-1.45 × 10-3 nm-2), as well as greater resistance to centrifugal force compared to EP. Creams with 3, 4, or 5% wax (EC3-5) showed the lowest polydispersity indexes (PDI: 0.80-0.85) 24 h after production and the lowest instability indexes after environmental temperature changes (heating at 90 °C, or freeze-thaw cycle). EC5 had particularly high microstructural stability. In turn, candelilla wax content ≥ 6% w/w accelerated the destabilization processes of the cream-type emulsions due to disintegration of the interfacial layer by larger lipid crystals. It was found that candelilla wax-based lipids had great potential for use as palm oil substitutes in the development of novel vegan cream analogues.
Collapse
Affiliation(s)
- Iwona Szymanska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Anna Zbikowska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Sylwia Onacik-Gür
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology-State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland
| |
Collapse
|
14
|
Jeong S, Oh I. Characterization of mixed-component oleogels: Beeswax and glycerol monostearate interactions towards Tenebrio Molitor larvae oil. Curr Res Food Sci 2024; 8:100689. [PMID: 38333773 PMCID: PMC10850890 DOI: 10.1016/j.crfs.2024.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Edible insects are attracting attention as an alternative food due to their excellent production efficiency, lower carbon consumption, and containing high protein. Tenebrio Molitor larvae (TM), one of the approved edible insects worldwide, contain more than 30 % fat content consisting of 70 % unsaturated fatty acids, and particularly high phospholipids. Most of the research has focused on the utilization of proteins, and there are few studies using oils from TM. Therefore, in this study, to expand the utilization of TM oil in food applications, the oleogel was prepared with TM oil fortified by the incorporation of beeswax (BSW) and glycerol monostearate (GMS), and their structure, rheological and thermal properties were evaluated. The interaction between BSW and GMS contributed to the strength of the oleogel structure. The addition of GMS or the increase of the gelator concentrations resulted in increasing the melting point, which is consistent with the observed increase in viscoelasticity. As the temperature increased, the solid fat content decreased. The result of FT-IR suggests that TM oil is physically solidified without changing chemical composition through oleogelation. This study suggests a new processing direction for edible insects by confirming the rheological, thermal, and physicochemical characteristics of TM oil-based oleogel.
Collapse
Affiliation(s)
- Sohui Jeong
- Department of Food Science & Technology, Sunchon National University, Suncheon, South Korea
| | - Imkyung Oh
- Department of Food Science & Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
15
|
Thakur D, Singh A, Suhag R, Dhiman A, Chauhan DS. Oleogelation based on plant waxes: characterization and food applications. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2927-2944. [PMID: 37786600 PMCID: PMC10542040 DOI: 10.1007/s13197-023-05786-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/27/2023] [Accepted: 06/01/2023] [Indexed: 10/04/2023]
Abstract
Fats contribute majorly to food flavour, mouthfeel, palatability, texture, and aroma. Though solid fats are used for food formulation due to the processing benefits over oils, their negative health effects should not be overlooked. Oleogelation is thus used to transform liquid oil into a gel which function like fats and provide the nutritional benefits of oils. Additionally, only food-grade gelators convert the oils into solid-like, self-standing, three-dimensional gel networks. Rice bran wax, candelilla wax, carnauba wax, and sunflower wax are mainly used plant waxes for formulating oleogels as a result of their low cost, availability, and excellent gelling ability. A comprehensive information about the wax based oleogels, their characteristics and applications is needed. The present review discusses the effect of different plant-based waxes on the properties of the oleogel formed. The article provides information on how the physical and chemical properties of waxes impact the oleogel properties such as oil binding capacity, critical concentration, rheological, thermal, textural, morphological, and oxidative stability. Moreover, the current and potential applications of oleogels in the food sector have also been covered this article.
Collapse
Affiliation(s)
- Dhruv Thakur
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028 India
| | - Anurag Singh
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002 India
| | - Rajat Suhag
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
| | - Atul Dhiman
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh India
| | - Divya Singh Chauhan
- Department of Food Technology, Raja Balwant Singh Engineering Technical Campus, Agra, Uttar Pradesh 283105 India
| |
Collapse
|
16
|
Mahmud N, Islam J, Oyom W, Adrah K, Adegoke SC, Tahergorabi R. A review of different frying oils and oleogels as alternative frying media for fat-uptake reduction in deep-fat fried foods. Heliyon 2023; 9:e21500. [PMID: 38027829 PMCID: PMC10660127 DOI: 10.1016/j.heliyon.2023.e21500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This review aims to examine the potential of oleogels as a frying medium to decrease oil absorption during deep-frying and enhance the nutritional and energy content of foods. By investigating the factors influencing oil incorporation during deep-frying and examining the application of oleogels in this process, we seek to provide insights into using oleogels as an alternative to traditional cooking oils. Scope Deep-frying, a widely used cooking method, leads to the retention of large amounts of oil in fried food, which has been associated with health concerns. To address this issue, researchers have investigated various methods to minimize oil absorption during frying. One promising approach is the use of oleogels, which are thermo-reversible, three-dimensional gel networks formed by entrapment of bulk oil with a low concentration (<10% of weight) of solid lipid materials known as oleogelators. This review will focus on the following aspects: a) an overview of deep-fried foods, b) factors influencing oil uptake and underlying mechanisms for oil absorption during deep-frying, c) the characterization and application of different frying oils and their oleogels in deep-fried foods, d) components of the oleogel system for deep-frying, and e) the health impact, oxidative stability, and sensory acceptability of using oleogels in deep-frying. Key findings The review highlights the potential of oleogels as a promising alternative frying medium to reduce fat absorption in deep-fried foods. Considering the factors influencing oil uptake during deep-frying, as well as exploring the properties and applications of different frying oils and their oleogels, can result in improved product qualities and heightened consumer acceptance. Moreover, oleogels offer the advantage of lower fat content in fried products, addressing health concerns associated with traditional deep-frying methods. The capacity to enhance the nutritional and energy profile of foods while preserving sensory qualities and oxidative stability positions oleogels as a promising choice for upcoming food processing applications.
Collapse
Affiliation(s)
- Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
- Department of Food Science and Technology, University of Georgia, Athens, GA, 30602, USA
| | - William Oyom
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| | - Kelvin Adrah
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | | | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
17
|
Dimakopoulou-Papazoglou D, Giannakaki F, Katsanidis E. Structural and Physical Characteristics of Mixed-Component Oleogels: Natural Wax and Monoglyceride Interactions in Different Edible Oils. Gels 2023; 9:627. [PMID: 37623082 PMCID: PMC10454151 DOI: 10.3390/gels9080627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Waxes and monoglycerides (MGs) added in edible oils form oleogels that can be used as an alternative structured fat, providing healthier substitutes to saturated and trans fats in foods. This study aimed to investigate the properties of oleogels formed by the interaction between monoglycerides and different waxes in various edible oils. For this purpose, waxes, namely rice bran (RBW), candelilla (CDW), sunflower (SW), and beeswax (BW), together with MGs in a total concentration level of 15% (w/w) were dissolved in several edible oils (olive, sunflower, sesame, and soybean). The structure and physical properties of oleogels were investigated using texture analysis, polarized light microscopy, melting point measurements, and Fourier-transform infrared spectroscopy (FTIR). The hardest structure was produced by SW/MG (5.18 N), followed by CDW (2.87 N), RBW (2.34 N), BW (2.24 N) and plain MG (1.92 N). Furthermore, RBW and SW led to a higher melting point (69.2 and 67.3 °C) than the plain MG oleogels (64.5 °C). Different crystallization structures, i.e., needle-like crystals and spherulites, were observed depending on the type of wax, its concentration, and the oil used. These results can be used to control the properties of oleogels by adjusting the gelator composition for a variety of potential food applications.
Collapse
Affiliation(s)
| | | | - Eugenios Katsanidis
- Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.D.-P.); (F.G.)
| |
Collapse
|
18
|
Penagos IA, Murillo Moreno JS, Dewettinck K, Van Bockstaele F. Carnauba Wax and Beeswax as Structuring Agents for Water-in-Oleogel Emulsions without Added Emulsifiers. Foods 2023; 12:foods12091850. [PMID: 37174387 PMCID: PMC10178762 DOI: 10.3390/foods12091850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
This research aims to explore the potential of waxes as ingredients in the formulation of food-grade water-in-oleogel emulsions without added emulsifiers. The effects of the wax type, wax concentration and water concentration were tested on systems containing exclusively water, sunflower oil, and wax. Beeswax and carnauba wax were used in the formulation of water-in-oleogel emulsions with 20%, 30% and 40% w/w of water. For the continuous phase, three different levels of wax were used, namely 50%, 100%, and 150% of the critical gelling concentration. More specifically, carnauba wax emulsions were prepared at 2.5%, 5.0% and 7.5% of wax, while concentrations of 0.75%, 1.5% and 2.25% of wax were utilized for the beeswax experiments. Samples were assessed over time regarding stability, rheology and microstructure (polarized light microscopy, cryo-scanning electron microscopy and confocal scanning laser microscopy). Our findings suggest that, if present in sufficient concentration, carnauba wax and beeswax can stabilize emulsions in the absence of additional added emulsifiers. The resulting systems were inherently different based on the wax used, as crystal morphology and droplet configurations are determined by wax type. The yield strain was dictated by the nature of the wax, while the complex modulus was mostly influenced by the wax concentration. To test the scaling-up potential, systems were crystallized in a pilot-scale scraped surface heat exchanger, resulting in notably smaller crystal sizes, reduced rigidity and a storage stability of over one year. These findings represent a starting point for the formulation of scalable water-in-oleogel emulsions without added emulsifiers.
Collapse
Affiliation(s)
- Ivana A Penagos
- Vandemoortele Centre 'Lipid Science and Technology', Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Juan Sebastian Murillo Moreno
- Vandemoortele Centre 'Lipid Science and Technology', Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Vandemoortele Centre 'Lipid Science and Technology', Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Vandemoortele Centre 'Lipid Science and Technology', Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Ropciuc S, Dranca F, Oroian MA, Leahu A, Codină GG, Prisacaru AE. Structuring of Cold Pressed Oils: Evaluation of the Physicochemical Characteristics and Microstructure of White Beeswax Oleogels. Gels 2023; 9:gels9030216. [PMID: 36975665 PMCID: PMC10048366 DOI: 10.3390/gels9030216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
The aim of the study was to characterize the gelling effect of beeswax (BW) using different types of cold pressed oil. The organogels were produced by hot mixing sunflower oil, olive oil, walnut oil, grape seed oil and hemp seed oil with 3%, 7% and 11% beeswax. Characterization of the oleogels was done using Fourier transform infrared spectroscopy (FTIR), the chemical and physical properties of the oleogels were determined, the oil binding capacity was estimated and the SEM morphology was studied. The color differences were highlighted by the CIE Lab color scale for evaluating the psychometric index of brightness (L*), components a and b. Beeswax showed excellent gelling capacity at 3% (w/w) of 99.73% for grape seed oil and a minimum capacity of 64.34%for hemp seed oil. The value of the peroxide index is strongly correlated with the oleogelator concentration. Scanning electron microscopy described the morphology of the oleogels in the form of overlapping structures of platelets similar in structure, but dependent on the percentage of oleogelator added. The use in the food industry of oleogels from cold-pressed vegetable oils with white beeswax is conditioned by the ability to imitate the properties of conventional fats.
Collapse
|
20
|
Noonim P, Rajasekaran B, Venkatachalam K. Structural Characterization and Peroxidation Stability of Palm Oil-Based Oleogel Made with Different Concentrations of Carnauba Wax and Processed with Ultrasonication. Gels 2022; 8:gels8120763. [PMID: 36547287 PMCID: PMC9778256 DOI: 10.3390/gels8120763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
The effect of ultrasonication (25 kHz for 10 min) on physical, thermal, and structural properties and storage stability of palm oil-based oleogels prepared using different concentrations of carnauba wax (CW) (5% or 10%) were investigated and compared with oleogels prepared with a homogenizer (2000 rpm for 10 min). Overall, this study found that applying an ultrasonication process with higher CW concentration (10%) effectively improved the properties and stability of palm oil-based oleogel (p < 0.05). Oleogels processed with ultrasonication had higher lightness (L*), higher yellowness (b*), and lower redness (a*) than those processed with homogenizer (p < 0.05), irrespective of CW concentrations. However, a higher CW concentration (10%) increased the textural properties of oleogels such as hardness, stickiness, and tackiness as compared to oleogels with a lower CW concentration (5%) (p < 0.05). Thermal properties including melting onset temperature, melting peak temperature, and melting enthalpy were found to be significantly higher in ultrasonication-processed oleogels with high CW concentration (p < 0.05). Furthermore, the microscopic examination of the oleogels exhibited a strong gel network when prepared using a high concentration of CW and processed with ultrasonication. Fourier Transform Infrared (FTIR) spectra of oleogels revealed that strong intra- and intermolecular interactions were formed by hydrogen bonding between CW and palm oil. X-ray diffraction (XRD) showed a smooth and fine structural network of oleogels and proved that ultrasonication increased the structural properties of oleogel. Moreover, oil loss and peroxide value of oleogels were increased during 90 days of storage (p < 0.05). However, oleogels processed with the ultrasonication had reduced oil loss and increased peroxidation stability during storage (p < 0.05). Overall, this study showed that application of ultrasonication with a higher CW concentration could improve properties and storage stability of palm oil-based oleogel.
Collapse
Affiliation(s)
- Paramee Noonim
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
| | - Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Correspondence: or
| |
Collapse
|
21
|
Puşcaş A, Mureşan V. The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels 2022; 8:749. [PMID: 36421571 PMCID: PMC9689311 DOI: 10.3390/gels8110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Shellac wax-based oleogel emulsions were studied with a three level two factorial design in order to find an optimal formulation for a spread formulation. Rheological, textural, colorimetry, and stability analysis were conducted to assess the performance of oleogel emulsions. FTIR spectra were also compared. The similarities between the samples were studied using cluster analysis. Analysis of variance (ANOVA) demonstrates that (i) the texture is influenced by the wax concentration, (ii) the rheology and stability by both the considered numeric factors (wax and water concentration) and their interaction, and (iii) the color by both factors. The emulsions containing 7% (m/m) shellac oleogels behaved like the strongest systems, (G′ & GLVR > 30,000 Pa) and exhibited the highest value of the G′-G″ cross-over. The lowest oil binding capacity (OBC) was 99.88% for the sample with 3% (m/m) shellac and 20% (m/m) water. The whiteness index (Windex) varied between 58.12 and 78.50. The optimization process indicated that a formulation based on 4.29% (m/m) shellac wax and 24.13% (m/m) water was suitable as a low-fat spread.
Collapse
Affiliation(s)
- Andreea Puşcaş
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur Street, No. 3-5, 400372 Cluj-Napoca, Romania
- Technological Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No. 64, 400509 Cluj-Napoca, Romania
| | - Vlad Mureşan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur Street, No. 3-5, 400372 Cluj-Napoca, Romania
- Technological Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No. 64, 400509 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Qiu H, Qu K, Eun JB, Zhang H. Analysis of thermal oxidation of different multi-element oleogels based on carnauba wax, β-sitosterol/lecithin, and ethyl cellulose by classical oxidation determination method combined with the electronic nose. Food Chem 2022; 405:134970. [DOI: 10.1016/j.foodchem.2022.134970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
23
|
Mavria A, Tsouko E, Protonotariou S, Papagiannopoulos A, Georgiadou M, Selianitis D, Pispas S, Mandala I, Koutinas AA. Sustainable Production of Novel Oleogels Valorizing Microbial Oil Rich in Carotenoids Derived from Spent Coffee Grounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10807-10817. [PMID: 36008363 DOI: 10.1021/acs.jafc.2c03478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sustainable food systems that employ renewable resources without competition with the food chain are drivers for the bioeconomy era. This study reports the valorization of microwave-pretreated spent coffee grounds (SCGs) to produce oleogels rich in bioactive compounds. Microbial oil rich in carotenoids (MOC) was produced under batch fermentation of Rhodosporidium toruloides using SCG enzymatic hydrolysates. Candelilla wax (CLW) could structure MOC and sunflower oil at a 3.3-fold lower concentration than that of carnauba wax (CBW). MOC-based oleogels with 10% CBW and 3% CLW showed an elastic-dominant and gel-like structure (tan δ ≪ 1), providing gelation and oil binding capacity (>95%). Dendritic structures of CBW-based oleogels and evenly distributed rod-like crystals of CLW-based ones were observed via polarized light microscopy. MOC-based oleogels exhibited similar Fourier-transform infrared spectroscopy spectra. X-ray diffractograms of oleogels were distinguished by the oil type that presented β'-type polymorphism. MOC-based oleogels could be applied in confectionary products and spreads as substitutes for trans fatty acids, reformulating fat-containing food products.
Collapse
Affiliation(s)
- Aikaterini Mavria
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Erminta Tsouko
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Styliani Protonotariou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Georgiadou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
24
|
Babu A, Sivakumar G, Das A, Bharti D, Qureshi D, Habibullah SK, Satheesan A, Mohanty B, Pal K, Maji S. Preparation and Characterization of Novel Oleogels Using Jasmine Floral Wax and Wheat Germ Oil for Oral Delivery of Curcumin. ACS OMEGA 2022; 7:30125-30136. [PMID: 36061661 PMCID: PMC9434628 DOI: 10.1021/acsomega.2c03201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/04/2022] [Indexed: 05/31/2023]
Abstract
Oleogels (OGs) have gained a lot of interest as a delivery system for a variety of pharmaceuticals. The current study explains the development of jasmine floral wax (JFW) and wheat germ oil (WGO)-based OGs for oral drug (curcumin) delivery application. The OGs were made by dissolving JFW in WGO at 70 °C and cooling it to room temperature (25 °C). The critical gelation concentration of JFW that induces the gelation of WGO was found to be 10% (w/w). The OGs were characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), microscopic analysis, and mechanical test. XRD data indicated that JFW influences the crystallinity of the OGs. Among the prepared OGs, OG 17.5 showed higher crystallization in the series. Optical microscopic studies demonstrated the formation of fiber structures due to the entanglement of crystals whereas, polarized light micrographs suggested the formation of spherulites or clustered crystallite structures. The mechanical properties of the OGs increased linearly with the increase in the JFW concentration. Curcumin-loaded OGs were examined for their controlled release applications. In summary, the developed OGs were found to have the necessary features for modulating the oral delivery of curcumin.
Collapse
Affiliation(s)
- Anashwara Babu
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Gomathi Sivakumar
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Anubhab Das
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Deepti Bharti
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Dilshad Qureshi
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - SK Habibullah
- Institute
of Pharmacy and Technology, Salipur, Odisha 754202, India
| | - Anjana Satheesan
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | | | - Kunal Pal
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Samarendra Maji
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| |
Collapse
|
25
|
Evaluation of Structural Behavior in the Process Dynamics of Oleogel-Based Tender Dough Products. Gels 2022; 8:gels8050317. [PMID: 35621615 PMCID: PMC9141763 DOI: 10.3390/gels8050317] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The current trend is represented by replacing solid fats with structured liquid oil while maintaining the plastic properties of food products. In this study, the behavior of refined sunflower oil structured with various agents (carnauba wax-CRW, β-sitosterol:beeswax-BS:BW, β-sitosterol:lecithin-BS:LEC, and glycerol monostearate-GM) was evaluated in the process dynamics of oleogel-based tender dough products. The oleogel with the mixture of β-sitosterol:beeswax (OG_BS:BW) displayed the highest capacity to retain oil inside the matrix with a percentage of oil loss as low as 0.05% and also had a significantly higher hardness (6.37 N) than the reference, a commercial margarine (MR—3.58 N). During cooling from 90 to 4 °C, the increase in oleogel’ viscosity results from oleogelator’s liquid–solid phase transition. As demonstrated by the frequency sweeps performed, storage modulus G′ was higher than loss modulus G″, no cross-over points were observed, and the strongest gel network was for the oleogel with glycerol monostearate (OG_GM). Regarding the dough, the sample prepared using the oleogel with carnauba wax (D_CRW) showed the strongest hardness (92.49 N) compared to the reference (D_MR—21.80 N). All the oleogel-containing doughs had elastic solid-like behavior. The samples with margarine (D_MR) and the mixture of β-sitosterol:lecithin (D_BS:LEC) presented the lowest value of both moduli of G’ and G” during the frequency sweep. The biscuits formulated with commercial margarine (B_MR) registered a hardness of 28.74 N. Samples with oleogels showed a specific tenderness for tender dough products, thus being suitable for this type of product (11.22–20.97 N).
Collapse
|