1
|
Witarski W, Kij B, Nowak A, Bugno-Poniewierska M. Premature centromere division (PCD) identified in a hucul mare with reproductive difficulties. Reprod Domest Anim 2019; 55:248-251. [PMID: 31834942 DOI: 10.1111/rda.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022]
Abstract
A hucul mare with reproductive abnormalities was examined during karyotype analysis. The karyotype was analysed based on evaluation of 860 metaphase plates in chromosome preparations. The use of fluorescence in situ hybridization (FISH) with an X chromosome painting probe showed premature X chromosome separation in 9.5% cases of examined chromosome spreads. In this report, we present the first identify premature centromere division (PCD) as a possible cause of abnormal X chromosome morphology in horses and as a probable cause of reproductive difficulties.
Collapse
Affiliation(s)
- Wojciech Witarski
- Department of Animal Genetics, National Institute of Animal Production, Balice, Poland
| | - Barbara Kij
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Krakow, Poland
| | - Agnieszka Nowak
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
2
|
Rao CV, Farooqui M, Asch AS, Yamada HY. Critical role of mitosis in spontaneous late-onset Alzheimer's disease; from a Shugoshin 1 cohesinopathy mouse model. Cell Cycle 2018; 17:2321-2334. [PMID: 30231670 DOI: 10.1080/15384101.2018.1515554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From early-onset Alzheimer's disease (EOAD) studies, the amyloid-beta hypothesis emerged as the foremost theory of the pathological causes of AD. However, how amyloid-beta accumulation is triggered and progresses toward senile plaques in spontaneous late-onset Alzheimer's disease (LOAD) in humans remains unanswered. Various LOAD facilitators have been proposed, and LOAD is currently considered a complex disease with multiple causes. Mice do not normally develop LOAD. Possibly due to the multiple causes, proposed LOAD facilitators have not been able to replicate spontaneous LOAD in mice, representing a disease modeling issue. Recently, we reported spontaneous late-onset development of amyloid-beta accumulation in brains of Shugoshin 1 (Sgo1) haploinsufficient mice, a cohesinopathy-mediated chromosome instability model. The result for the first time expands disease relevance of mitosis studies to a major disease other than cancers. Reverse-engineering of the model would shed light on the process of late-onset amyloid-beta accumulation in the brain and spontaneous LOAD development, and contribute to development of interventions for LOAD. This review will discuss the Sgo1 model, our current "three-hit hypothesis" regarding LOAD development with an emphasis on critical role of prolonged mitosis in amyloid-beta accumulation, and implications for human LOAD intervention and treatment. Abbreviations: Alzheimer's disease (AD); Late-onset Alzheimer's disease (LOAD); Early-onset Alzheimer's disease (EOAD); Shugoshin-1 (Sgo1); Chromosome Instability (CIN); apolipoprotein (Apoe); Central nervous system (CNS); Amyloid precursor protein (APP); N-methyl-d-aspartate (NMDA); Hazard ratio (HR); Cyclin-dependent kinase (CDK); Chronic Atrial Intestinal Dysrhythmia (CAID); beta-secretase 1 (BACE); phosphor-Histone H3 (p-H3); Research and development (R&D); Non-steroidal anti-inflammatory drugs (NSAIDs); Brain blood barrier (BBB).
Collapse
Affiliation(s)
- Chinthalapally V Rao
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Mudassir Farooqui
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Adam S Asch
- b Stephenson Cancer Center, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Hiroshi Y Yamada
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| |
Collapse
|
3
|
Zeljezic D, Vinkovic B, Kasuba V, Kopjar N, Milic M, Mladinic M. The effect of insecticides chlorpyrifos, α-cypermethrin and imidacloprid on primary DNA damage, TP 53 and c-Myc structural integrity by comet-FISH assay. CHEMOSPHERE 2017; 182:332-338. [PMID: 28505574 DOI: 10.1016/j.chemosphere.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 05/25/2023]
Abstract
In parallel with the continuous use of conventional insecticides, introduction of more environmentally friendly substances continues to grow in modern agriculture. In the present study, we evaluated chlorpyrifos, and imidacloprid and α-cypermethrin as two representatives of green insecticides for their genotoxic activity. We conducted a 14-day treatment in extended human lymphocytes cultures using real life exposure relevant concentrations. An alkaline comet assay was used to detect primary DNA damage. Simultaneously, the effect on the specific action towards the TP 53 and c-Myc genes in terms of fragmentation and copy number were determined. Both genes are responsible for cell cycle regulation; thus playing an active role in carcinogenesis. Contrary to what was expected, imidacloprid showed the highest genotoxicity potential, irrespective of the fact that none of the insecticides induced a significant level of primary DNA damage at all tested concentrations. Similar, no significant effect towards the TP 53 and c-Myc gene was recorded. The present study indicates that low level use of chlorpyrifos as a conventional insecticide and imidacloprid and α-cypermethrin as green insecticides does not pose a risk to DNA in general, nor to the TP 53 and c-Myc gene structural integrity.
Collapse
Affiliation(s)
- Davor Zeljezic
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia.
| | - Benjamin Vinkovic
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb, Croatia
| | - Vilena Kasuba
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia
| | - Mirta Milic
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia
| | - Marin Mladinic
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia
| |
Collapse
|
4
|
Potter H, Granic A, Caneus J. Role of Trisomy 21 Mosaicism in Sporadic and Familial Alzheimer's Disease. Curr Alzheimer Res 2016; 13:7-17. [PMID: 26651340 PMCID: PMC5570437 DOI: 10.2174/156720501301151207100616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 08/30/2015] [Indexed: 02/07/2023]
Abstract
Trisomy 21 and the consequent extra copy of the amyloid precursor protein (APP) gene and increased beta-amyloid (Aβ) peptide production underlie the universal development of Alzheimer's disease (AD) pathology and high risk of AD dementia in people with Down syndrome (DS). Trisomy 21 and other forms of aneuploidy also arise among neurons and peripheral cells in both sporadic and familial AD and in mouse and cell models thereof, reinforcing the conclusion that AD and DS are two sides of the same coin. The demonstration that 90% of the neurodegeneration in AD can be attributed to the selective loss of aneuploid neurons generated over the course of the disease indicates that aneuploidy is an essential feature of the pathogenic pathway leading to the depletion of neuronal cell populations. Trisomy 21 mosaicism also occurs in neurons and other cells from patients with Niemann-Pick C1 disease and from patients with familial or sporadic frontotemporal lobar degeneration (FTLD), as well as in their corresponding mouse and cell models. Biochemical studies have shown that Aβ induces mitotic spindle defects, chromosome mis-segregation, and aneuploidy in cultured cells by inhibiting specific microtubule motors required for mitosis. These data indicate that neuronal trisomy 21 and other types of aneuploidy characterize and likely contribute to multiple neurodegenerative diseases and are a valid target for therapeutic intervention. For example, reducing extracellular calcium or treating cells with lithium chloride (LiCl) blocks the induction of trisomy 21 by Aβ. The latter finding is relevant in light of recent reports of a lowered risk of dementia in bipolar patients treated with LiCl and in the stabilization of cognition in AD patients treated with LiCl.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, 12700 E. 19th Ave room 4010, mail stop 8608, Aurora CO 80045, USA.
| | | | | |
Collapse
|
5
|
Bajic V, Spremo-Potparevic B, Zivkovic L, Isenovic ER, Arendt T. Cohesion and the aneuploid phenotype in Alzheimer's disease: A tale of genome instability. Neurosci Biobehav Rev 2015; 55:365-74. [PMID: 26003528 DOI: 10.1016/j.neubiorev.2015.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 03/26/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Neurons are postmitotic cells that are in permanent cell cycle arrest. However, components of the cell cycle machinery that are expressed in Alzheimer's disease (AD) neurons are showing features of a cycling cell and those attributed to a postmitotic cell as well. Furthermore, the unique physiological operations taking place in neurons, ascribed to "core cell cycle regulators" are also key regulators in cell division. Functions of these cell cycle regulators include neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. In this review, we focus on cohesion and cohesion related proteins in reference to their neuronal functions and how impaired centromere/cohesion dynamics may connect cell cycle dysfunction to aneuploidy in AD.
Collapse
Affiliation(s)
- Vladan Bajic
- Institute for Nuclear Research "Vinca", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, P.O. 522, 11001 Belgrade, Serbia.
| | - Biljana Spremo-Potparevic
- Faculty of Pharmacy, Institute of Physiology, Department of Biology and Human Genetics, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Lada Zivkovic
- Faculty of Pharmacy, Institute of Physiology, Department of Biology and Human Genetics, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Esma R Isenovic
- Institute for Nuclear Research "Vinca", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, P.O. 522, 11001 Belgrade, Serbia.
| | - Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, School of Medicine, Leipzig, Germany.
| |
Collapse
|
6
|
Granic A, Potter H. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis. PLoS One 2013; 8:e60718. [PMID: 23593294 PMCID: PMC3625184 DOI: 10.1371/journal.pone.0060718] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/01/2013] [Indexed: 12/17/2022] Open
Abstract
Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer's disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol consumption reduces the risk of developing atherosclerosis or AD. These results suggest a novel, cell cycle mechanism by which aberrant cholesterol homeostasis promotes neurodegeneration and atherosclerosis by disrupting chromosome segregation and potentially other aspects of microtubule physiology.
Collapse
Affiliation(s)
- Antoneta Granic
- Department of Neurology and Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
7
|
ivkovic L, Spremo-Potparevic B, Siedlak SL, Perry G, Pleca-Solarovic B, Milicevic Z, Bajic VP. DNA Damage in Alzheimer Disease Lymphocytes and Its Relation to Premature Centromere Division. NEURODEGENER DIS 2013; 12:156-63. [DOI: 10.1159/000346114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
|
8
|
Bajić VP, Su B, Lee HG, Kudo W, Siedlak SL, Živković L, Spremo-Potparević B, Djelic N, Milicevic Z, Singh AK, Fahmy LM, Wang X, Smith MA, Zhu X. Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cell Mol Biol Lett 2011; 16:359-72. [PMID: 21461981 PMCID: PMC3153952 DOI: 10.2478/s11658-011-0011-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Post-mitotic neurons are typically terminally differentiated and in a quiescent status. However, in Alzheimer disease (AD), many neurons display ectopic re-expression of cell cycle-related proteins. Cyclin-dependent kinase 11 (CDK11) mRNA produces a 110-kDa protein (CDK11(p110)) throughout the cell cycle, a 58-kDa protein (CDK11(p58)) that is specifically translated from an internal ribosome entry site and expressed only in the G(2)/M phase of the cell cycle, and a 46-kDa protein (CDK11(p46)) that is considered to be apoptosis specific. CDK11 is required for sister chromatid cohesion and the completion of mitosis. In this study, we found that the expression patterns of CDK11 vary such that cytoplasmic CDK11 is increased in AD cellular processes, compared to a pronounced nuclear expression pattern in most controls. We also investigated the effect of amyloid precursor protein (APP) on CDK11 expression in vitro by using M17 cells overexpressing wild-type APP and APP Swedish mutant phenotype and found increased CDK11 expression compared to empty vector. In addition, amyloid-β(25-35) resulted in increased CDK11 in M17 cells. These data suggest that CDK11 may play a vital role in cell cycle re-entry in AD neurons in an APP-dependent manner, thus presenting an intriguing novel function of the APP signaling pathway in AD.
Collapse
Affiliation(s)
- Vladan P. Bajić
- Institute of Biomedical Research, Galenika a.d., 11000 Belgrade, Serbia
| | - Bo Su
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Wataru Kudo
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Lada Živković
- Institute of Physiology, Department of Biology and Human Genetics, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Spremo-Potparević
- Institute of Physiology, Department of Biology and Human Genetics, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ninoslav Djelic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zorana Milicevic
- Department of Endocrinology and Molecular Biology, Institute of Nuclear Sciences “Vinca”, Belgrade, Serbia
| | - Avneet K. Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Lara M. Fahmy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 USA
| |
Collapse
|
9
|
Faggioli F, Vijg J, Montagna C. Chromosomal aneuploidy in the aging brain. Mech Ageing Dev 2011; 132:429-36. [PMID: 21549743 PMCID: PMC3168579 DOI: 10.1016/j.mad.2011.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/28/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022]
Abstract
Mechanisms that govern genome integrity and stability are major guarantors of viability and longevity. As people age, memory and the ability to carry out tasks often decline and their risk for neurodegenerative diseases increases. The biological mechanisms underlying this age-related neuronal decline are not well understood. Genome instability has been implicated in neurodegenerative processes in aging and disease. Aneuploidy, a chromosome content that deviates from a diploid genome, is a recognized form of genomic instability. Here, we will review chromosomal aneuploidy in the aging brain, its possible causes, its consequences for cellular homeostasis and its possible link to functional decline and neuropathies.
Collapse
Affiliation(s)
- Francesca Faggioli
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
- Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| |
Collapse
|
10
|
Devadhasan JP, Kim S, An J. Fish-on-a-chip: a sensitive detection microfluidic system for Alzheimer's disease. J Biomed Sci 2011; 18:33. [PMID: 21619660 PMCID: PMC3125339 DOI: 10.1186/1423-0127-18-33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/28/2011] [Indexed: 01/09/2023] Open
Abstract
Microfluidics has become an important tool in diagnosing many diseases, including neurological and genetic disorders. Alzheimer's disease (AD) is a neurodegenerative disease that irreversibly and progressively destroys memory, language ability, and thinking skills. Commonly, detection of AD is expensive and complex. Fluorescence in situ hybridization (FISH)-based microfluidic chip platform is capable of diagnosing AD at an early stage and they are effective tools for the diagnosis with low cost, high speed, and high sensitivity. In this review, we tried to provide basic information on the diagnosis of AD via FISH-based microfluidics. Different sample preparations using a microfluidic chip for diagnosis of AD are highlighted. Moreover, rapid innovations in nanotechnology for diagnosis are explained. This review will provide information on dynamic quantification methods for the diagnosis and treatment of AD. The knowledge provided in this review will help develop new integration diagnostic techniques based on FISH and microfluidics.
Collapse
Affiliation(s)
- Jasmine P Devadhasan
- College of Bionanotechnology, Kyungwon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea
| | | | | |
Collapse
|
11
|
Migliore L, Coppedè F, Fenech M, Thomas P. Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis 2011; 26:85-92. [PMID: 21164187 DOI: 10.1093/mutage/geq067] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Micronuclei (MNi) can originate either from chromosome breakage or chromosome malsegregation events and are therefore ideal biomarkers to investigate genomic instability. Studies in peripheral lymphocytes of patients with neurodegenerative diseases, mainly Alzheimer's disease (AD) and Parkinson's disease (PD), revealed an increased micronucleus (MN) frequency in both disorders but originating mainly from chromosome malsegregation events in AD and from chromosome breakage events in PD. Studies in other neurodegenerative diseases are largely missing, and some data in premature ageing disorders characterised by neurodegeneration and/or neurological complications, such as Ataxia telangiectasia, Werner's syndrome, Down's syndrome (DS) and Cockayne's syndrome, indicate that MNi increase with ageing in cultured cells. An increased frequency of aneuploidy characterises several tissues of AD patients, as well as of individuals at increased risk to develop AD, such as mothers of DS individuals and DS subjects themselves. The use of the buccal MN cytome assay in AD and DS subjects allowed finding significant changes in the MN frequency as well as other cellular modifications reflecting reduced regenerative capacity compared to age- and gender-matched controls. These changes in buccal cytome ratios may prove useful as potential future diagnostics to identify individuals of increased risk for these disorders.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Human and Environmental Sciences, University of Pisa, Via S. Giuseppe 22, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
12
|
Abstract
Alzheimer?s disease (AD), as the most common form of dementia, has for many
years attracted the attention of researchers around the world, primarily
because of the problems of reliable diagnostic methods that could help in the
early detection of this devastating disease. One of the important aspects of
genetic research related to AD is the analysis of chromosome instability
which includes: aneuploidies of different chromosomes, telomere shortening
and the phenomenon of premature centromere division (PCD). The aim of this
study was to describe specific biomarkers in different types of cells as
potential parameters for the diagnosis of AD in order to promptly recognize
pre-symptomatic stages and prevent the development of disease and/or slow
down its progression.
Collapse
|
13
|
Zivković L, Spremo-Potparević B, Plecas-Solarović B, Djelić N, Ocić G, Smiljković P, Siedlak SL, Smith MA, Bajić V. Premature centromere division of metaphase chromosomes in peripheral blood lymphocytes of Alzheimer's disease patients: relation to gender and age. J Gerontol A Biol Sci Med Sci 2010; 65:1269-74. [PMID: 20805239 DOI: 10.1093/gerona/glq148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chromosomal alterations are a feature of both aging and Alzheimer's disease (AD). This study examined if premature centromere division (PCD), a chromosomal instability indicator increased in AD, is correlated with aging or, instead, represents a de novo chromosomal alteration due to accelerating aging in AD. PCD in peripheral blood lymphocytes was determined in sporadic AD patients and gender and age-matched unaffected controls. Metaphase nuclei were analyzed for chromosomes showing PCD, X chromosomes with PCD (PCD,X), and acrocentric chromosomes showing PCD. AD patients, regardless of age, demonstrated increased PCD on any chromosome and PCD on acrocentric chromosomes in both genders, whereas an increase in frequency of PCD,X was expressed only in women. This cytogenetic analysis suggests that PCD is a feature of AD, rather than an epiphenomenon of chronological aging, and may be useful as a physiological biomarker that can be used for disease diagnosis.
Collapse
Affiliation(s)
- Lada Zivković
- Institute of Physiology, Department of Biology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The effect of paclitaxel alone and in combination with cycloheximide on the frequency of premature centromere division in vitro. ARCH BIOL SCI 2010. [DOI: 10.2298/abs1001063b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Premature centromere division (PCD) can be viewed as a manifestation of chromosome instability. In order to evaluate the ability of Paclitaxel (Ptx) and Cycloheximide (Cy) to induce PCD we used a cytokinesis block micronucleus assay (CBMN), fluorescent in situ hybridization (FISH), and the chromosome aberration (CA) assay in human peripheral blood lymphocytes. Results showed that Ptx can induce PCD alone or in combination with Cy. These findings call us to pay more attention to PCD as a parameter of genotoxicity in the pre-clinical research of mono and/or combinational therapies for cancer treatment.
Collapse
|
15
|
Bajić VP, Spremo-Potparević B, Zivković L, Bonda DJ, Siedlak SL, Casadesus G, Lee HG, Smith MA. The X-chromosome instability phenotype in Alzheimer's disease: a clinical sign of accelerating aging? Med Hypotheses 2009; 73:917-20. [PMID: 19647374 PMCID: PMC2787990 DOI: 10.1016/j.mehy.2009.06.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Premature centromere division, or premature centromere separation (PCS), occurs when chromatid separation is dysfunctional, occurring earlier than usual during the interphase stage of mitosis. This phenomenon, seen in Robert's syndrome and various cancers, has also been documented in peripheral as well as neuronal cells of Alzheimer's disease (AD). In the latter instances, fluorescent in situ hybridization (FISH), applied to the centromere region of the X-chromosome in interphase nuclei of lymphocytes from peripheral blood in AD patients, demonstrated premature chromosomal separation before mitotic metaphase directly after completion of DNA replication in G(2) phase of the cell cycle. Furthermore, and perhaps unexpectedly given the presumptive post-mitotic status of terminally differentiated neurons, neurons in AD patients also showed significantly increased levels of PCS of the X-chromosome. Taken together with other phenomena such as cell cycle re-activation and ectopic re-expression of cyclins and cyclin dependent proteins, we propose that AD is an oncogenic phenotype leading to accelerated aging of the affected brain.
Collapse
Affiliation(s)
- Vladan P Bajić
- Institute of Biomedical Research, Galenika ad, 11000 Belgrade, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Spremo-Potparević B, Zivković L, Djelić N, Plećas-Solarović B, Smith MA, Bajić V. Premature centromere division of the X chromosome in neurons in Alzheimer's disease. J Neurochem 2008; 106:2218-23. [PMID: 18624923 PMCID: PMC2746937 DOI: 10.1111/j.1471-4159.2008.05555.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Premature centromere division (PCD) represents a loss of control over the sequential separation and segregation of chromosome centromeres. Although first described in aging women, PCD on the X chromosome (PCD,X) is markedly elevated in peripheral blood lymphocytes of individuals suffering from Alzheimer disease (AD). The present study evaluated PCD,X, using a fluorescent in situ hybridization method, in interphase nuclei of frontal cerebral cortex neurons from sporadic AD patients and age-matched controls. The average frequency of PCD,X in AD patients (8.60 +/- 1.20%) was almost three times higher (p < 0.01) than in the control group (2.96 +/- 1.20). However, consistent with previous studies, no mitotic cells were found in neurons in either AD or control brain, suggesting an intrinsic inability of post-mitotic neurons to divide. In view of the fact that it has been well-documented that neurons in AD can re-enter into the cell division cycle, the findings presented here of increased PCD advance the hypothesis that deregulation of the cell cycle may contribute to neuronal degeneration and subsequent cognitive deficits in AD.
Collapse
|
17
|
Bajić VP, Spremo-Potparević B, Živković L, Djelić N, Smith MA. Is the time dimension of the cell cycle re-entry in AD regulated by centromere cohesion dynamics? BIOSCIENCE HYPOTHESES 2008; 1:156-161. [PMID: 19122823 PMCID: PMC2612585 DOI: 10.1016/j.bihy.2008.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromosomal involvement is a legitimate, yet not well understood, feature of Alzheimer disease (AD). Firstly, AD affects more women than men. Secondly, the amyloid-β protein precursor genetic mutations, responsible for a cohort of familial AD cases, reside on chromosome 21, the same chromosome responsible for the developmental disorder Down's syndrome. Thirdly, lymphocytes from AD patients display a novel chromosomal phenotype, namely premature centromere separation (PCS). Other documented morphological phenomena associated with AD include the occurrence of micronuclei, aneuploidy, binucleation, telomere instability, and cell cycle re-entry protein expression. Based on these events, here we present a novel hypothesis that the time dimension of cell cycle re-entry in AD is highly regulated by centromere cohesion dynamics. In view of the fact that neurons can re-enter the cell division cycle, our hypothesis predicts that alterations in the signaling pathway leading to premature cell death in neurons is a consequence of altered regulation of the separation of centromeres as a function of time. It is well known that centromeres in the metaphase-anaphase transition separate in a non-random, sequential order. This sequence has been shown to be deregulated in aging cells, various tumors, syndromes of chromosome instability, following certain chemical inductions, as well as in AD. Over time, premature chromosome separation is both a result of, and a driving force behind, further cohesion impairment, activation of cyclin dependent kinases, and mitotic catastrophe, a vicious circle resulting in cellular degeneration and death.
Collapse
Affiliation(s)
- Vladan P. Bajić
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106
| | - Biljana Spremo-Potparević
- Department of Biology and Human Genetics, Institute of Physiology, Faculty of Pharmacy, Vojvode Stepe 450,11000 Belgrade, Serbia
| | - Lada Živković
- Department of Biology and Human Genetics, Institute of Physiology, Faculty of Pharmacy, Vojvode Stepe 450,11000 Belgrade, Serbia
| | - Ninoslav Djelić
- Department of Biology, School of Veterinary Medicine, Bulevar JNA 18,11000 Belgrade, Serbia
| | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, Ohio 44106
| |
Collapse
|