1
|
Li H, Fan X, Guo X, Yan W, Yu X, Deng X, Zhang J. Changes in meat quality of Esox Lucius during postmortem storage: Based on the lysosomal-mitochondrial apoptotic pathway. Food Chem 2025; 463:141522. [PMID: 39383794 DOI: 10.1016/j.foodchem.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
In this study, we explored the correlation between the lysosome-mitochondrial apoptosis pathway and fish softening, as well as the correlation between ferritin degradation and lysosomal iron changes. The results indicated that ferritin levels gradually decreased, lysosomal iron first increased and then decreased and tended to stabilize, and lysosomal membrane stability significantly decreased (p < 0.05). Spearman's analysis suggested that an increase in lysosomal iron was associated with ferritin degradation. Lysosomal instability promoted the release of cathepsin D, thereby increasing the release of Bid and Bax, and inhibiting the expression of Bcl-2. Subsequently, caspase-9/-3 was activated. In addition, transmission electron microscopy revealed ultrastructural damage to mitochondria and cell nuclei, which are morphological features of apoptosis during post-mortem storage. Moreover, TUNEL staining confirmed the occurrence of apoptosis. We concluded that the lysosome- mitochondrial apoptosis pathway was active during the storage of Esox Lucius, in which ferritin degradation and increased lysosomal iron were key factors inducing lysosomal damage, and cathepsin D released by lysosomes was a key factor connecting lysosomes and mitochondria.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xuemei Fan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xin Guo
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenbo Yan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xinyao Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
2
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Endoplasmic reticulum stress and alterations of peroxiredoxins in aged hearts. Mech Ageing Dev 2023; 215:111859. [PMID: 37661065 PMCID: PMC11103240 DOI: 10.1016/j.mad.2023.111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, USA.
| |
Collapse
|
3
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
4
|
Chandra Shekar K, Yannopoulos D, Kosmopoulos M, Riess ML. Differential Effects of Reperfusion on Cardiac Mitochondrial Subpopulations in a Preclinical Porcine Model of Acute Myocardial Infarction. Front Cell Dev Biol 2022; 10:843733. [PMID: 35356287 PMCID: PMC8959812 DOI: 10.3389/fcell.2022.843733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Acute myocardial infarction (AMI) leads to localized cardiac ischemia and can be fatal if untreated. Despite being treatable, the threat of ischemia-reperfusion (IR) injury remains high. Mitochondria are central to both propagation and mitigation of IR injury, and cardiac mitochondria are categorized into two major subtypes-subsarcolemmal and interfibrillar mitochondria (SSM and IFM, respectively). We hypothesized that, in our pre-clinical porcine model of AMI, SSM and IFM are differentially affected by reperfusion. AMI was induced in female pigs by balloon occlusion of the left anterior descending artery for 45 min, followed by 4 h of reperfusion. At the end of reperfusion, animals were euthanized. Cardiac SSM and IFM from the affected ischemic area and a nearby non-ischemic area were isolated to compare mitochondrial function using substrates targeting mitochondrial electron transport chain complexes I and II. Despite detecting overall significant differences in mitochondrial function including yield, mitochondrial S3 and S4 respirations, and calcium retention, consistent individual functional differences in the two mitochondrial subpopulations were not observed, both between the two mitochondrial subtypes, as well as between the ischemic and non-ischemic tissue. Nonetheless, this study describes the mitochondrial subtype response within the initial few hours of reperfusion in a clinically relevant model of AMI, which provides valuable information needed to develop novel mitochondrially targeted therapies for AMI.
Collapse
Affiliation(s)
- Kadambari Chandra Shekar
- Integrative Biology and Physiology, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Demetris Yannopoulos
- Department of Cardiology, Division of Medicine, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Marinos Kosmopoulos
- Department of Cardiology, Division of Medicine, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Bou‐Teen D, Fernandez‐Sanz C, Miro‐Casas E, Nichtova Z, Bonzon‐Kulichenko E, Casós K, Inserte J, Rodriguez‐Sinovas A, Benito B, Sheu S, Vázquez J, Ferreira‐González I, Ruiz‐Meana M. Defective dimerization of FoF1-ATP synthase secondary to glycation favors mitochondrial energy deficiency in cardiomyocytes during aging. Aging Cell 2022; 21:e13564. [PMID: 35233924 PMCID: PMC8920436 DOI: 10.1111/acel.13564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1-ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy-dissipating channel involved in cell death. We investigated whether aging alters FoF1-ATP synthase self-assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1-ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1-ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes' susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1-ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1-ATP synthase glycation in H9c2 myoblasts recapitulated the age-related defective FoF1-ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1-ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.
Collapse
Affiliation(s)
- Diana Bou‐Teen
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Celia Fernandez‐Sanz
- Center for Translational Medicine Department of Medicine Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Elisabet Miro‐Casas
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Zuzana Nichtova
- Cardiovascular Proteomics Laboratory Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid Spain
| | - Elena Bonzon‐Kulichenko
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics Department of Pathology Anatomy & Cell Biol. Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Kelly Casós
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Antonio Rodriguez‐Sinovas
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Begoña Benito
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Shey‐Shing Sheu
- Center for Translational Medicine Department of Medicine Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics Department of Pathology Anatomy & Cell Biol. Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Ignacio Ferreira‐González
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
| | - Marisol Ruiz‐Meana
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| |
Collapse
|
6
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Reversing mitochondrial defects in aged hearts: role of mitochondrial calpain activation. Am J Physiol Cell Physiol 2022; 322:C296-C310. [PMID: 35044856 PMCID: PMC8836732 DOI: 10.1152/ajpcell.00279.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
Aging chronically increases endoplasmic reticulum (ER) stress that contributes to mitochondrial dysfunction. Activation of calpain 1 (CPN1) impairs mitochondrial function during acute ER stress. We proposed that aging-induced ER stress led to mitochondrial dysfunction by activating CPN1. We posit that attenuation of the ER stress or direct inhibition of CPN1 in aged hearts can decrease cardiac injury during ischemia-reperfusion by improving mitochondrial function. Male young (3 mo) and aged mice (24 mo) were used in the present study, and 4-phenylbutyrate (4-PBA) was used to decrease the ER stress in aged mice. Subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) were isolated. Chronic 4-PBA treatment for 2 wk decreased CPN1 activation as shown by the decreased cleavage of spectrin in cytosol and apoptosis inducing factor (AIF) and the α1 subunit of pyruvate dehydrogenase (PDH) in mitochondria. Treatment improved oxidative phosphorylation in 24-mo-old SSM and IFM at baseline compared with vehicle. When 4-PBA-treated 24-mo-old hearts were subjected to ischemia-reperfusion, infarct size was decreased. These results support that attenuation of the ER stress decreased cardiac injury in aged hearts by improving mitochondrial function before ischemia. To challenge the role of CPN1 as an effector of the ER stress, aged mice were treated with MDL-28170 (MDL, an inhibitor of calpain 1). MDL treatment improved mitochondrial function in aged SSM and IFM. MDL-treated 24-mo-old hearts sustained less cardiac injury following ischemia-reperfusion. These results support that age-induced ER stress augments cardiac injury during ischemia-reperfusion by impairing mitochondrial function through activation of CPN1.
Collapse
Affiliation(s)
- Qun Chen
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ying Hu
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
- McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
7
|
Li X, Hu L, Zhu X, Guo X, Deng X, Zhang J. The effect of caspase-3 in mitochondrial apoptosis activation on degradation of structure proteins of Esox lucius during postmortem storage. Food Chem 2021; 367:130767. [PMID: 34391996 DOI: 10.1016/j.foodchem.2021.130767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the effect of caspase-3 inhibitor in mitochondrial apoptosis activation on structure protein degradation during postmortem storage. Mitochondrial dysfunction, apoptotic factors, structure protein degradation and the myofibrillar rupture index between the control and caspase-3 inhibitor groups were determined. The results show caspase-3 inhibitor repressed the mitochondrial membrane permeability and mitochondrial swelling, as well as increased mitochondrial membrane potential, causing a decrease in the release of cytochrome c from mitochondria to cytoplasm and caspase-9/3 activities (P < 0.05). Subsequently, small myofibrillar proteins (desmin and troponin-T) were susceptible to degradation, initiating texture deterioration. By contrast, giant structure proteins (titin and nebulin) were degraded during later postmortem storage, predominantly contributing to fish softening. The results further suggest that caspase-3 is involved in degradation of structure proteins during postmortem through mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Xue Li
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ling Hu
- Changji Hui Autonomous Prefecture Institute for Drug Control, Changji Hui Autonomous, Xinjiang 831100, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
8
|
Ramos PM, Bell LC, Wohlgemuth SE, Scheffler TL. Mitochondrial Function in Oxidative and Glycolytic Bovine Skeletal Muscle Postmortem. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Meat quality is traditionally associated with anaerobic metabolism due to cessation of the oxygen supply post-mortem. However, mitochondrial (mt) function early postmortem may affect the development of meat quality characteristics, such as adenosine triphosphate levels and pH decline. Therefore, the objective of this study was to evaluate mt function ex vivo during the first 24 h postmortem in muscles with differences in mt content. Samples from longissimus lumborum (LL) and diaphragm (Dia) were taken from steers (n = 6) at 1, 3, and 24 h postmortem and frozen to determine citrate synthase (CS) activity and mt protein expression (immunodetection) or were fresh-preserved for high-resolution respirometry. Integrative oxygen consumption rate (picomoles per second per milligram of tissue) was measured and normalized to CS activity as a proxy for mt content (intrinsic mt function, picomoles per second per unit CS). CS activity (P < 0.001) and mt protein expression (P < 0.001) were greater in Dia, which was reflected in mt respiration. Muscle type affected (P < 0.001) integrative leak respiration and was greater in mt from Dia; oxidative phosphorylation (OXPHOS) was also greater in Dia and influenced by time postmortem (muscle × time: P = 0.01). Intrinsic leak and OXPHOS were affected by muscle and time (muscle × time: P = 0.05 and P = 0.01, respectively), with the most pronounced differences at 24 h postmortem. Stimulation of OXPHOS by cytochrome c as an indicator of outer mt membrane integrity was influenced by muscle and time postmortem (muscle × time: P = 0.03); it was greater in mt from LL. Despite intrinsic differences in respiratory function at 24 h, mt from both muscles were intact and coupled at 1 h postmortem. Reduced content and respiratory function in mt from LL are associated with early fragmentation, which could impact protease activation and subsequently meat quality.
Collapse
|
9
|
Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging (Albany NY) 2021; 13:7828-7845. [PMID: 33746115 PMCID: PMC8034968 DOI: 10.18632/aging.202858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
Aging impairs mitochondrial function that leads to greater cardiac injury during ischemia and reperfusion. Cardiac endoplasm reticulum (ER) stress increases with age and contributes to mitochondrial dysfunction. Metformin is an anti-diabetic drug that protects cardiac mitochondria during acute ER stress. We hypothesized that metformin treatment would improve preexisting mitochondrial dysfunction in aged hearts by attenuating ER stress, followed by a decrease in cardiac injury during subsequent ischemia and reperfusion. Male young (3 mo.) and aged mice (24 mo.) received metformin (300 mg/kg/day) dissolved in drinking water with sucrose (0.2 g/100 ml) as sweetener for two weeks versus sucrose vehicle alone. Cytosol, subsarcolemmal (SSM), and interfibrillar mitochondria (IFM) were isolated. In separate groups, cardioprotection was evaluated using ex vivo isolated heart perfusion with 25 min. global ischemia and 60 min. reperfusion. Infarct size was measured. The contents of CHOP and cleaved ATF6 were decreased in metformin-treated 24 mo. mice compared to vehicle, supporting a decrease in ER stress. Metformin treatment improved OXPHOS in IFM in 24 mo. using a complex I substrate. Metformin treatment decreased infarct size following ischemia-reperfusion. Thus, metformin feeding decreased cardiac injury in aged mice during ischemia-reperfusion by improving pre-ischemic mitochondrial function via inhibition of ER stress.
Collapse
|
10
|
Kent AC, El Baradie KBY, Hamrick MW. Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6626484. [PMID: 33574977 PMCID: PMC7861926 DOI: 10.1155/2021/6626484] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (Aβ) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.
Collapse
Affiliation(s)
- Andrew C. Kent
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- University of Georgia, Athens, GA, USA
| | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Functional changes induced by caloric restriction in cardiac and skeletal muscle mitochondria. J Bioenerg Biomembr 2020; 52:269-277. [PMID: 32462240 DOI: 10.1007/s10863-020-09838-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
Caloric restriction (CR) is widely known to increase life span and resistance to different types of injuries in several organisms. We have previously shown that mitochondria from livers or brains of CR animals exhibit higher calcium uptake rates and lower sensitivity to calcium-induced mitochondrial permeability transition (mPT), an event related to the resilient phenotype exhibited by these organs. Given the importance of calcium in metabolic control and cell homeostasis, we aimed here to uncover possible changes in mitochondrial calcium handling, redox balance and bioenergetics in cardiac and skeletal muscle mitochondria in response to six months of CR. Unexpectedly, we found that CR does not alter the susceptibility to mPT in muscle (cardiac or skeletal), nor calcium uptake rates. Despite the lack in changes in calcium transport properties, CR consistently decreased respiration in the presence of ATP synthesis in heart and soleus muscle. In heart, such changes were accompanied by a decrease in respiration in the absence of ATP synthesis, lower maximal respiratory rates and a reduced rate of hydrogen peroxide release. Hydrogen peroxide release was unaltered by CR in skeletal muscle. No changes were observed in inner membrane potentials and respiratory control ratios. Together, these results highlight the tissue-specific bioenergetic and ion transport effects induced by CR, demonstrating that resilience against calcium-induced mPT is not present in all tissues.
Collapse
|
12
|
Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer KJ, Cedillo L, Zhang Y, Li S, Kacergis MC, Webster CM, Fejes-Toth G, Naray-Fejes-Toth A, Das S, Hansen M, Haas W, Soukas AA. Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell 2019; 177:299-314.e16. [PMID: 30929899 DOI: 10.1016/j.cell.2019.02.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.
Collapse
Affiliation(s)
- Ben Zhou
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Johannes Kreuzer
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lianfeng Wu
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kimberli J Kamer
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lucydalila Cedillo
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuyao Zhang
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sainan Li
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael C Kacergis
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Christopher M Webster
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geza Fejes-Toth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Aniko Naray-Fejes-Toth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sudeshna Das
- MGH Biomedical Informatics Core and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Karoui A, Crochemore C, Mulder P, Preterre D, Cazier F, Dewaele D, Corbière C, Mekki M, Vendeville C, Richard V, Vaugeois JM, Fardel O, Sichel F, Lecureur V, Monteil C. An integrated functional and transcriptomic analysis reveals that repeated exposure to diesel exhaust induces sustained mitochondrial and cardiac dysfunctions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:518-526. [PMID: 30583160 DOI: 10.1016/j.envpol.2018.12.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Diesel exhaust (DE) contributes to air pollution, an important risk factor for cardiovascular diseases. However, the mechanisms by which DE exposure induces cardiovascular dysfunction remain unknown and there is still debate on the contribution of the primary particulate matter (PM) fraction compared to the gaseous phase. Although the mitochondria play a key role in the events leading to cardiovascular diseases, their role in DE-induced cardiovascular effects has not been investigated. The aim of this study was to highlight cardiac and mitochondrial events that could be disrupted following acute and/or repeated DE exposures and the contribution of gaseous pollutants to these effects. To address this question, Wistar rats were exposed to DE generated under strictly controlled and characterized conditions and extracted upstream or downstream of the diesel particulate filter (DPF). Evaluation of the cardiac function after acute DE exposure showed a disturbance in echocardiographic parameters, which persisted and worsened after repeated exposures. The presence of the DPF did not modify the cardiovascular dysfunction revealing an important implication of the gas phase in this response. Surprisingly, redox parameters were not altered by DE exposures while an alteration in mitochondrial oxidative capacity was observed. Exploration of the mitochondrial function demonstrated a more specific alteration in complex I of the respiratory chain after repeated exposures, which was further confirmed by transcriptional analysis of left ventricular (LV) tissue. In conclusion, this work provides new insights into cardiovascular effects induced by DE, demonstrating a cardiac mitochondrial impairment associated with the gaseous phase. These effects suggest deleterious consequences in terms of cardiac function for vulnerable populations with underlying energy deficit such as patients with heart failure or the elderly.
Collapse
Affiliation(s)
- Ahmed Karoui
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Clément Crochemore
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Paul Mulder
- Normandie Univ, UNIROUEN, Institut National de la Santé et de la Recherche Médicale, U1096, Rouen, France
| | - David Preterre
- CERTAM, 1 rue Joseph Fourier, 76800, Saint-Etienne du Rouvray, France
| | - Fabrice Cazier
- Common Center of Measurements (CCM), Univ. Littoral Côte d'Opale, 59140, Dunkerque, France
| | - Dorothée Dewaele
- Common Center of Measurements (CCM), Univ. Littoral Côte d'Opale, 59140, Dunkerque, France
| | - Cécile Corbière
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Malik Mekki
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Cathy Vendeville
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Vincent Richard
- Normandie Univ, UNIROUEN, Institut National de la Santé et de la Recherche Médicale, U1096, Rouen, France
| | | | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000, Rennes, France; Pôle Biologie, Rennes University Hospital, 35203, Rennes, France
| | - François Sichel
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France; Centre François Baclesse, 14000, Caen, France
| | - Valérie Lecureur
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000, Rennes, France
| | - Christelle Monteil
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France.
| |
Collapse
|
14
|
Panel M, Ghaleh B, Morin D. Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell 2018; 17:e12793. [PMID: 29888494 PMCID: PMC6052406 DOI: 10.1111/acel.12793] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
The cellular mechanisms responsible for aging are poorly understood. Aging is considered as a degenerative process induced by the accumulation of cellular lesions leading progressively to organ dysfunction and death. The free radical theory of aging has long been considered the most relevant to explain the mechanisms of aging. As the mitochondrion is an important source of reactive oxygen species (ROS), this organelle is regarded as a key intracellular player in this process and a large amount of data supports the role of mitochondrial ROS production during aging. Thus, mitochondrial ROS, oxidative damage, aging, and aging-dependent diseases are strongly connected. However, other features of mitochondrial physiology and dysfunction have been recently implicated in the development of the aging process. Here, we examine the potential role of the mitochondrial permeability transition pore (mPTP) in normal aging and in aging-associated diseases.
Collapse
Affiliation(s)
- Mathieu Panel
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| | - Bijan Ghaleh
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| | - Didier Morin
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| |
Collapse
|
15
|
Abstract
Sirtuins (SIRTs) are NAD(+)-dependent enzymes that catalyze deacylation of protein lysine residues. In mammals, seven sirtuins have been identified, SIRT1-7. SIRT3-5 are mainly or exclusively localized within mitochondria and mainly participate in the regulation of energy metabolic pathways. Since mitochondrial ATP regeneration is inevitably linked to the maintenance of cardiac pump function, it is not surprising that recent studies revealed a role for mitochondrial sirtuins in the regulation of myocardial energetics and function. In addition, mitochondrial sirtuins modulate the extent of myocardial ischemia reperfusion injury and the development of cardiac hypertrophy and failure. Thus, targeting mitochondrial sirtuins has been proposed as a novel approach to improve myocardial mitochondrial energetics, which is frequently impaired in cardiac disease and considered an important underlying cause contributing to several cardiac pathologies, including myocardial ischemia reperfusion injury and heart failure. In the current review, we present and discuss the available literature on mitochondrial sirtuins and their potential roles in cardiac physiology and disease.
Collapse
Affiliation(s)
- Heiko Bugger
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Constantin N Witt
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
16
|
Zhang J, Yu Q, Han L, Chen C, Li H, Han G. Study on the apoptosis mediated by cytochrome c and factors that affect the activation of bovine longissimus muscle during postmortem aging. Apoptosis 2018; 22:777-785. [PMID: 28405769 DOI: 10.1007/s10495-017-1374-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigates whether bovine longissimus muscle cell apoptosis occurs during postmortem aging and whether apoptosis is dependent on the mitochondria pathway. This study also determines the apoptosis process mediated by cytochrome c after its release from mitochondria and the factors that affect the activation processes. Results indicate that apoptotic nuclei were detected at 12 h postmortem. Cytochrome c release from the mitochondria to the cytoplasm activated the caspase-9 and caspase-3 at early postmortem aging and the activation of caspase-9 occurs before the activation of caspase-3. The pH level decreased during the first 48 h postmortem, whereas the mitochondria membrane permeability increased from 6 to 12 h. Results demonstrate that an apoptosis process of bovine muscle occurred during postmortem aging. Apoptosis was dependent on the mitochondria pathway and occurred at early postmortem aging. Increased mitochondria membrane permeability and low pH are necessary conditions for the release of cytochrome c during postmortem aging.
Collapse
Affiliation(s)
- Jiaying Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hang Li
- Chongqing Heng Du Agricultural Development Co., Ltd., Fengdu, 408200, China
| | - Guangxing Han
- Shandong Lorain Corporation Co., Ltd., Linyi, 276600, China
| |
Collapse
|
17
|
Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 2017; 16:943-955. [PMID: 28758328 PMCID: PMC5595682 DOI: 10.1111/acel.12650] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D; 23 W. Bridge Street New Hope PA 18038 USA
| | - Jan B. Hoek
- Department of Anatomy, Pathology and Cell Biology; MitoCare Center; Thomas Jefferson University; Philadelphia PA 19107 USA
| |
Collapse
|
18
|
Menezes-Filho SL, Amigo I, Prado FM, Ferreira NC, Koike MK, Pinto IFD, Miyamoto S, Montero EFS, Medeiros MHG, Kowaltowski AJ. Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca 2+-induced mitochondrial permeability transition. Free Radic Biol Med 2017. [PMID: 28642067 DOI: 10.1016/j.freeradbiomed.2017.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Caloric restriction (CR) promotes lifespan extension and protects against many pathological conditions, including ischemia/reperfusion injury to the brain, heart and kidney. In the liver, ischemia/reperfusion damage is related to excessive mitochondrial Ca2+ accumulation, leading to the mitochondrial permeability transition. Indeed, liver mitochondria isolated from animals maintained on CR for 4 months were protected against permeability transition and capable of taking up Ca2+ at faster rates and in larger quantities. These changes were not related to modifications in mitochondrial respiratory activity, but rather to a higher proportion of ATP relative to ADP in CR liver mitochondria. Accordingly, both depletion of mitochondrial adenine nucleotides and loading mitochondria with exogenous ATP abolished the differences between CR and ad libitum (AL) fed groups. The prevention against permeability transition promoted by CR strongly protected against in vivo liver damage induced by ischemia/reperfusion. Overall, our results show that CR strongly protects the liver against ischemia/reperfusion and uncover a mechanism for this protection, through a yet undescribed diet-induced change in liver mitochondrial Ca2+ handling related to elevated intramitochondrial ATP.
Collapse
Affiliation(s)
- Sergio L Menezes-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Natalie C Ferreira
- Disciplina de Cirurgia Geral e do Trauma, Laboratório de Fisiopatologia Cirúrgica-LIM-62, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Marcia K Koike
- Disciplina de Emergências Clínicas, Laboratório de Emergências Clinicas - LIM-51 - Faculdade de Medicina - Universidade de São Paulo, Brazil.
| | - Isabella F D Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Edna F S Montero
- Disciplina de Cirurgia Geral e do Trauma, Laboratório de Fisiopatologia Cirúrgica-LIM-62, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Ca 2+ ionophores are not suitable for inducing mPTP opening in murine isolated adult cardiac myocytes. Sci Rep 2017; 7:4283. [PMID: 28655872 PMCID: PMC5487341 DOI: 10.1038/s41598-017-04618-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022] Open
Abstract
Opening of the mitochondrial permeability transition pore (mPTP) plays a major role in cell death during cardiac ischaemia-reperfusion. Adult isolated rodent cardiomyocytes are valuable cells to study the effect of drugs targeting mPTP. This study investigated whether the use of Ca2+ ionophores (A23187, ionomycin and ETH129) represent a reliable model to study inhibition of mPTP opening in cardiomyocytes. We monitored mPTP opening using the calcein/cobalt fluorescence technique in adult rat and wild type or cyclophilin D (CypD) knock-out mice cardiomyocytes. Cells were either treated with Ca2+ ionophores or subjected to hypoxia followed by reoxygenation. The ionophores induced mPTP-dependent swelling in isolated mitochondria. A23187, but not ionomycin, induced a decrease in calcein fluorescence. This loss could not be inhibited by CypD deletion and was explained by a direct interaction between A23187 and cobalt. ETH129 caused calcein loss, mitochondrial depolarization and cell death but CypD deletion did not alleviate these effects. In the hypoxia-reoxygenation model, CypD deletion delayed both mPTP opening and cell death occurring at the time of reoxygenation. Thus, Ca2+ ionophores are not suitable to induce CypD-dependent mPTP opening in adult murine cardiomyocytes. Hypoxia-reoxygenation conditions appear therefore as the most reliable model to investigate mPTP opening in these cells.
Collapse
|
20
|
Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8:349-369. [PMID: 28432755 PMCID: PMC5476857 DOI: 10.1002/jcsm.12178] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best-known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high-energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Maik Kosiol
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
21
|
Amigo I, Menezes‐Filho SL, Luévano‐Martínez LA, Chausse B, Kowaltowski AJ. Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell 2017; 16:73-81. [PMID: 27619151 PMCID: PMC5242290 DOI: 10.1111/acel.12527] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 01/09/2023] Open
Abstract
Caloric restriction (CR) protects against many cerebral pathological conditions that are associated with excitotoxic damage and calcium overload, although the mechanisms are still poorly understood. Here we show that CR strongly protects against excitotoxic insults in vitro and in vivo in a manner associated with significant changes in mitochondrial function. CR increases electron transport chain activity, enhances antioxidant defenses, and favors mitochondrial calcium retention capacity in the brain. These changes are accompanied by a decrease in cyclophilin D activity and acetylation and an increase in Sirt3 expression. This suggests that Sirt3-mediated deacetylation and inhibition of cyclophilin D in CR promote the inhibition of mitochondrial permeability transition, resulting in enhanced mitochondrial calcium retention. Altogether, our results indicate that enhanced mitochondrial calcium retention capacity underlies the beneficial effects of CR against excitotoxic conditions. This protection may explain the many beneficial effects of CR in the aging brain.
Collapse
Affiliation(s)
- Ignacio Amigo
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | | | | | - Bruno Chausse
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Alicia J. Kowaltowski
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
22
|
Pavón N, Cabrera-Orefice A, Gallardo-Pérez JC, Uribe-Alvarez C, Rivero-Segura NA, Vazquez-Martínez ER, Cerbón M, Martínez-Abundis E, Torres-Narvaez JC, Martínez-Memije R, Roldán-Gómez FJ, Uribe-Carvajal S. In female rat heart mitochondria, oophorectomy results in loss of oxidative phosphorylation. J Endocrinol 2017; 232:221-235. [PMID: 27872198 DOI: 10.1530/joe-16-0161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023]
Abstract
Oophorectomy in adult rats affected cardiac mitochondrial function. Progression of mitochondrial alterations was assessed at one, two and three months after surgery: at one month, very slight changes were observed, which increased at two and three months. Gradual effects included decrease in the rates of oxygen consumption and in respiratory uncoupling in the presence of complex I substrates, as well as compromised Ca2+ buffering ability. Malondialdehyde concentration increased, whereas the ROS-detoxifying enzyme Mn2+ superoxide dismutase (MnSOD) and aconitase lost activity. In the mitochondrial respiratory chain, the concentration and activity of complex I and complex IV decreased. Among other mitochondrial enzymes and transporters, adenine nucleotide carrier and glutaminase decreased. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase also decreased. Data strongly suggest that in the female rat heart, estrogen depletion leads to progressive, severe mitochondrial dysfunction.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de FarmacologíaInstituto Nacional de Cardiología Ignacio Chávez, México, Mexico
| | - Alfredo Cabrera-Orefice
- Departamento de Genética MolecularInstituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | - Cristina Uribe-Alvarez
- Departamento de Genética MolecularInstituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Nadia A Rivero-Segura
- Unidad de Investigación en Reproducción HumanaInstituto Nacional de Perinatología-Facultad de Química UNAM, México D.F., Mexico
| | - Edgar Ricardo Vazquez-Martínez
- Unidad de Investigación en Reproducción HumanaInstituto Nacional de Perinatología-Facultad de Química UNAM, México D.F., Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción HumanaInstituto Nacional de Perinatología-Facultad de Química UNAM, México D.F., Mexico
| | - Eduardo Martínez-Abundis
- División Académica Multidisciplinaria de ComalcalcoUniversidad Juárez Autónoma de Tabasco, México, Mexico
| | | | - Raúl Martínez-Memije
- Departamento de Instrumentación ElectromecánicaInstituto Nacional de Cardiología Ignacio Chávez, Tlalpan DF, México, Mexico
| | | | - Salvador Uribe-Carvajal
- Departamento de Genética MolecularInstituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| |
Collapse
|
23
|
2',3'-Cyclic nucleotide 3'-phosphodiesterase as a messenger of protection of the mitochondrial function during melatonin treatment in aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:94-103. [PMID: 27836641 DOI: 10.1016/j.bbamem.2016.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 01/19/2023]
Abstract
The process of aging is considered to be tightly related to mitochondrial dysfunction. One of the causes of aging is an increased sensitivity to the induction of mitochondrial permeability transition pore (mPTP) opening in the inner membrane of mitochondria. Melatonin, a natural antioxidant, is a hormone produced by the pineal gland. The role of melatonin whose level decreases with aging is well understood. In the present study, we demonstrated that long-term treatment of aged rats with melatonin improved the functional state of mitochondria; thus, the Ca2+ capacity was enhanced and mitochondrial swelling was deaccelerated in mitochondria. Melatonin prevented mPTP and impaired the release of cytochrome c and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) from mitochondria of both young and aged rats. Our data suggest that melatonin retains СNPase inside mitochondria, thereby providing the protection of the protein against deleterious effects of 2',3'-cAMP in aging.
Collapse
|
24
|
Hepple RT. Impact of aging on mitochondrial function in cardiac and skeletal muscle. Free Radic Biol Med 2016; 98:177-186. [PMID: 27033952 DOI: 10.1016/j.freeradbiomed.2016.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/12/2016] [Indexed: 12/13/2022]
Abstract
Both skeletal muscle and cardiac muscle are subject to marked structural and functional impairment with aging and these changes contribute to the reduced capacity for exercise as we age. Since mitochondria are involved in multiple aspects of cellular homeostasis including energetics, reactive oxygen species signaling, and regulation of intrinsic apoptotic pathways, defects in this organelle are frequently implicated in the deterioration of skeletal and cardiac muscle with aging. On this basis, the purpose of this review is to evaluate the evidence that aging causes dysfunction in mitochondria in striated muscle with a view towards drawing conclusions about the potential of these changes to contribute to the deterioration seen in striated muscle with aging. As will be shown, impairment in respiration and reactive oxygen species emission with aging are highly variable between studies and seem to be largely a consequence of physical inactivity. On the other hand, both skeletal and cardiac muscle mitochondria are more susceptible to permeability transition and this seems a likely cause of the increased recruitment of mitochondrial-mediated pathways of apoptosis seen in striated muscle. The review concludes by examining the role of degeneration of mitochondrial DNA versus impaired mitochondrial quality control mechanisms in the accumulation of mitochondria that are sensitized to permeability transition, whereby the latter mechanism is favored as the most likely cause.
Collapse
Affiliation(s)
- R T Hepple
- Department of Kinesiology, Centre for Translational Biology, McGill University Health Center, Canada; Meakins Christie Laboratories, Canada; Department of Medicine, McGill University, Canada
| |
Collapse
|
25
|
Fernandez-Sanz C, Ruiz-Meana M, Castellano J, Miro-Casas E, Nuñez E, Inserte J, Vázquez J, Garcia-Dorado D. Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes. Thromb Haemost 2015; 113:441-51. [PMID: 25631625 DOI: 10.1160/th14-10-0901] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022]
Abstract
Aging is a major determinant of the incidence and severity of ischaemic heart disease. Preclinical information suggests the existence of intrinsic cellular alterations that contribute to ischaemic susceptibility in senescent myocardium, by mechanisms not well established. We investigated the role of altered mitochondrial function in the adverse effect of aging. Isolated perfused hearts from old mice (> 20 months) displayed increased ischaemia-reperfusion injury as compared to hearts from adult mice (6 months) despite delayed onset of ischaemic rigor contracture. In cardiomyocytes from aging hearts there was a more rapid decline of mitochondrial membrane potential (Δψm) as compared to young ones, but ischaemic rigor shortening was also delayed. Transient recovery of Δψm observed during ischaemia, secondary to the reversal of mitochondrial FoF1 ATP synthase to ATPase mode, was markedly reduced in aging cardiomyocytes. Proteomic analysis demonstrated increased oxidation of different subunits of ATP synthase. Altered bionergetics in aging cells was associated with reduced mitochondrial calcium uptake and more severe cytosolic calcium overload during ischaemia-reperfusion. Despite attenuated ROS burst and mitochondrial calcium overload, mitochondrial permeability transition pore (mPTP) opening and cell death was increased in reperfused aged cells. In vitro studies demonstrated a significantly reduced calcium retention capacity in interfibrillar mitochondria from aging hearts. Our results identify altered FoF1 ATP synthase and increased sensitivity of mitochondria to undergo mPTP opening as important determinants of the reduced tolerance to ischaemia-reperfusion in aging hearts. Because ATP synthase has been proposed to conform mPTP, it is tempting to hypothesise that oxidation of ATP synthase underlie both phenomena.
Collapse
Affiliation(s)
| | - Marisol Ruiz-Meana
- Marisol Ruiz-Meana, Cardiologia, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron- Universitat Autonoma de Barcelona, Pg Vall d'Hebron 119-129, 08035 Barcelona, Spain, Tel.: +34 93 489 4037, Fax:+34 93 489 4032, E-mail:
| | | | | | | | | | | | | |
Collapse
|
26
|
Rohrbach S, Aslam M, Niemann B, Schulz R. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. Br J Pharmacol 2015; 171:2964-92. [PMID: 24611611 DOI: 10.1111/bph.12650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. Short- and long-term CR confers cardio protection against ischaemia/reperfusion injury in young and even in aged rodents. A few human trials suggest that CR has the potential to mediate improvement of cardiac or vascular function and induce retardation of cardiac senescence also in humans. The underlying mechanisms are diverse and have not yet been clearly defined. Among the known mediators for the benefits of CR are NO, the AMP-activated PK, sirtuins and adiponectin. Mitochondria, which play a central role in such complex processes within the cell as apoptosis, ATP-production or oxidative stress, are centrally involved in many aspects of CR-induced protection against ischaemic injury. Here, we discuss the relevant literature regarding the protection against myocardial ischaemia/reperfusion injury conferred by CR. Furthermore, we will discuss drug targets to mimic CR and the possible role of calorie restriction in preserving cardiovascular function in humans.
Collapse
Affiliation(s)
- Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
27
|
Chang HW, Shtessel L, Lee SS. Collaboration between mitochondria and the nucleus is key to long life in Caenorhabditis elegans. Free Radic Biol Med 2015; 78:168-78. [PMID: 25450327 PMCID: PMC4280335 DOI: 10.1016/j.freeradbiomed.2014.10.576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Recent findings in diverse organisms strongly support a conserved role for mitochondrial electron transport chain dysfunction in longevity modulation, but the underlying mechanisms are not well understood. One way cells cope with mitochondrial dysfunction is through a retrograde transcriptional reprogramming response. In this review, we primarily focus on the work that has been performed in Caenorhabditis elegans to elucidate these mechanisms. We describe several transcription factors that participate in mitochondria-to-nucleus signaling and discuss how they mediate the relationship between mitochondrial dysfunction and life span.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ludmila Shtessel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
28
|
Amer MG, Mazen NF, Mohamed NM. Role of calorie restriction in alleviation of age-related morphological and biochemical changes in sciatic nerve. Tissue Cell 2014; 46:497-504. [DOI: 10.1016/j.tice.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
29
|
Hollander JM, Thapa D, Shepherd DL. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 2014; 307:H1-14. [PMID: 24778166 DOI: 10.1152/ajpheart.00747.2013] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle.
Collapse
|
30
|
Shekar KC, Li L, Dabkowski ER, Xu W, Ribeiro RF, Hecker PA, Recchia FA, Sadygov RG, Willard B, Kasumov T, Stanley WC. Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity. J Mol Cell Cardiol 2014; 75:88-97. [PMID: 24995939 DOI: 10.1016/j.yjmcc.2014.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/07/2014] [Accepted: 06/16/2014] [Indexed: 11/19/2022]
Abstract
We recently developed a method to measure mitochondrial proteome dynamics with heavy water ((2)H2O)-based metabolic labeling and high resolution mass spectrometry. We reported the half-lives and synthesis rates of several proteins in the two cardiac mitochondrial subpopulations, subsarcolemmal and interfibrillar (SSM and IFM), in Sprague Dawley rats. In the present study, we tested the hypothesis that the mitochondrial protein synthesis rate is reduced in heart failure, with possible differential changes in SSM versus IFM. Six to seven week old male Sprague Dawley rats underwent transverse aortic constriction (TAC) and developed moderate heart failure after 22weeks. Heart failure and sham rats of the same age received heavy water (5% in drinking water) for up to 80days. Cardiac SSM and IFM were isolated from both groups and the proteins were separated by 1D gel electrophoresis. Heart failure reduced protein content and increased the turnover rate of several proteins involved in fatty acid oxidation, electron transport chain and ATP synthesis, while it decreased the turnover of other proteins, including pyruvate dehydrogenase subunit in IFM, but not in SSM. Because of these bidirectional changes, the average overall half-life of proteins was not altered by heart failure in both SSM and IFM. The kinetic measurements of individual mitochondrial proteins presented in this study may contribute to a better understanding of the mechanisms responsible for mitochondrial alterations in the failing heart.
Collapse
Affiliation(s)
| | - Ling Li
- Proteomics Core, Department of Research Core Services, Cleveland Clinic, Cleveland, OH, USA
| | - Erinne R Dabkowski
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wenhong Xu
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Peter A Hecker
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Fabio A Recchia
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Rovshan G Sadygov
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Belinda Willard
- Proteomics Core, Department of Research Core Services, Cleveland Clinic, Cleveland, OH, USA
| | - Takhar Kasumov
- Department of Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA.
| | - William C Stanley
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD, USA; Discipline of Physiology, University of Sydney, Anderson Stuart Building (F13) Sydney, NSW 2006 Australia
| |
Collapse
|
31
|
Abstract
Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.
Collapse
|
32
|
Abstract
Skeletal muscle is the largest organ in the body and contributes to innumerable aspects of organismal biology. Muscle dysfunction engenders numerous diseases, including diabetes, cachexia, and sarcopenia. At the same time, skeletal muscle is also the main engine of exercise, one of the most efficacious interventions for prevention and treatment of a wide variety of diseases. The transcriptional coactivator PGC-1α has emerged as a key driver of metabolic programming in skeletal muscle, both in health and in disease. We review here the many aspects of PGC-1α function in skeletal muscle, with a focus on recent developments.
Collapse
Affiliation(s)
- Mun Chun Chan
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Zolt Arany
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School.
| |
Collapse
|
33
|
The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol 2014; 71:62-70. [PMID: 24650874 DOI: 10.1016/j.yjmcc.2014.03.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 12/19/2022]
Abstract
Aging is accompanied by a progressive increase in the incidence and prevalence of cardiovascular disease (CVD). Prolonged exposure to cardiovascular risk factors, together with intrinsic age-dependent declines in cardiac functionality, increases the vulnerability of the heart to both endogenous and exogenous stressors, ultimately enhancing the susceptibility to developing CVD in late life. Both increased levels of oxidative damage and the accumulation of dysfunctional mitochondria have been observed in a wide range of cardiac diseases, which may therefore represent a common ground upon which many aspects of CVD develop. In this review, we summarize the current knowledge on the mechanisms whereby oxidative stress arising from mitochondrial dysfunction is involved in the process of cardiac aging and in the pathogenesis of CVD highly prevalent in late life (e.g., heart failure and ischemic heart disease). Special emphasis is placed on recent evidence about the role played by alterations in cellular quality control systems, in particular autophagy/mitophagy and mitochondrial dynamics (fusion and fission), and their interconnections in the context of age-related CVD. Cardioprotective interventions acting through the modulation of mitochondrial autophagy (calorie restriction, calorie restriction mimetics, and the gasotransmitter hydrogen sulfide) are also presented. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
|
34
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
35
|
Krestinina OV, Odinokova IV, Baburina YL, Azarashvili TS. Age-related effect of melatonin on permeability transition pore opening in rat brain mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2013. [DOI: 10.1134/s1990747813040053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Yaniv Y, Juhaszova M, Sollott SJ. Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol Metab 2013; 24:495-505. [PMID: 23845538 PMCID: PMC3783621 DOI: 10.1016/j.tem.2013.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/03/2023]
Abstract
In advanced age, the resting myocardial oxygen consumption rate (MVO2) and cardiac work (CW) in the rat remain intact. However, MVO2, CW and cardiac efficiency achieved at high demand are decreased with age, compared to maximal values in the young. Whether this deterioration is due to decrease in myocardial ATP demand, ATP supply, or the control mechanisms that match them remains controversial. Here we discuss evolving perspectives of age-related changes of myocardial ATP supply and demand mechanisms, and critique experimental models used to investigate aging. Specifically, we evaluate experimental data collected at the level of isolated mitochondria, tissue, or organism, and discuss how mitochondrial energetic mechanisms change in advanced age, both at basal and high energy-demand levels.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | | |
Collapse
|
37
|
Marzetti E, Calvani R, DuPree J, Lees HA, Giovannini S, Seo DO, Buford TW, Sweet K, Morgan D, Strehler KYE, Diz D, Borst SE, Moningka N, Krotova K, Carter CS. Late-life enalapril administration induces nitric oxide-dependent and independent metabolic adaptations in the rat skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1061-75. [PMID: 22639176 PMCID: PMC3705103 DOI: 10.1007/s11357-012-9428-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/09/2012] [Indexed: 05/29/2023]
Abstract
Recently, we showed that administration of the angiotensin-converting enzyme inhibitor enalapril to aged rats attenuated muscle strength decline and mitigated apoptosis in the gastrocnemius muscle. The aim of the present study was to investigate possible mechanisms underlying the muscle-protective effects of enalapril. We also sought to discern the effects of enalapril mediated by nitric oxide (NO) from those independent of this signaling molecule. Eighty-seven male Fischer 344 × Brown Norway rats were randomly assigned to receive enalapril (n = 23), the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; n = 22), enalapril + L-NAME (n = 19), or placebo (n = 23) from 24 to 27 months of age. Experiments were performed on the tibialis anterior muscle. Total NOS activity and the expression of neuronal, endothelial, and inducible NOS isoforms (nNOS, eNOS, and iNOS) were determined to investigate the effects of enalapril on NO signaling. Transcript levels of tumor necrosis factor-alpha (TNF-α) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) were assessed to explore actions of enalapril on inflammation and mitochondrial biogenesis, respectively. Protein expression of energy-sensing and insulin signaling mediators, including protein kinase B (Akt-1), phosphorylated Akt-1 (pAkt-1), mammalian target of rapamycin (mTOR), AMP-activated protein kinase subunit alpha (AMPKα), phosphorylated AMPKα (pAMPKα), and the glucose transporter GLUT-4, was also determined. Finally, the generation of hydrogen peroxide (H2O2) was quantified in subsarcolemmal (SSM) and intermyofibrillar (IFM) mitochondria. Enalapril increased total NOS activity, which was prevented by L-NAME co-administration. eNOS protein content was enhanced by enalapril, but not by enalapril + L-NAME. Gene expression of iNOS was down-regulated by enalapril either alone or in combination with L-NAME. In contrast, protein levels of nNOS were unaltered by treatments. The mRNA abundance of TNF-α was reduced by enalapril relative to placebo, with no differences among any other group. PCG-1α gene expression was unaffected by enalapril and lowered by enalapril + L-NAME. No differences in protein expression of Akt-1, pAkt-1, AMPKα, pAMPKα, or GLUT-4 were detected among groups. However, mTOR protein levels were increased by enalapril compared with placebo. Finally, all treatment groups displayed reduced SSM, but not IFM H2O2 production relative to placebo. Our data indicate that enalapril induces a number of metabolic adaptations in aged skeletal muscle. These effects result from the concerted modulation of NO and angiotensin II signaling, rather than from a dichotomous action of enalapril on the two pathways. Muscle protection by enalapril administered late in life appears to be primarily mediated by mitigation of oxidative stress and pro-inflammatory signaling.
Collapse
Affiliation(s)
- Emanuele Marzetti
- />Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL 32610-0143 USA
- />Department of Geriatrics, Neurology and Orthopedics, Catholic University of the Sacred Heart, Rome, 00168 Italy
| | - Riccardo Calvani
- />Department of Geriatrics, Neurology and Orthopedics, Catholic University of the Sacred Heart, Rome, 00168 Italy
- />Institute of Crystallography, National Research Council (CNR), Bari, 70126 Italy
| | - Jameson DuPree
- />Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL 32610-0143 USA
| | - Hazel A. Lees
- />Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL 32610-0143 USA
| | - Silvia Giovannini
- />Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL 32610-0143 USA
- />Department of Geriatrics, Neurology and Orthopedics, Catholic University of the Sacred Heart, Rome, 00168 Italy
| | - Dong-oh Seo
- />Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL 32610-0143 USA
| | - Thomas W. Buford
- />Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL 32610-0143 USA
| | - Kindal Sweet
- />Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL 32610-0143 USA
| | - Drake Morgan
- />Department of Psychiatry, University of Florida, Gainesville, FL 32610 USA
| | - Kevin Y. E. Strehler
- />Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610 USA
| | - Debra Diz
- />Department of General Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Stephen E. Borst
- />Department of Applied Kinesiology and VA Medical Center Geriatric Research, Education and Clinical Center, University of Florida, Gainesville, FL 32608 USA
| | - Natasha Moningka
- />Department of Physiology and Functional Genomics, University of Florida’s Hypertension Center, Gainesville, FL 32610 USA
| | - Karina Krotova
- />Department of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Christy S. Carter
- />Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL 32610-0143 USA
| |
Collapse
|
38
|
O'Connell KA, Dabkowski ER, de Fatima Galvao T, Xu W, Daneault C, de Rosiers C, Stanley WC. Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca(2+) uptake, without altering permeability transition or left ventricular function. Physiol Rep 2013; 1:e00009. [PMID: 24303101 PMCID: PMC3831937 DOI: 10.1002/phy2.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/11/2013] [Accepted: 05/16/2013] [Indexed: 12/28/2022] Open
Abstract
High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mitochondrial phospholipid fatty acyl side chain composition and mitochondrial membrane function, though a direct comparison has not been previously reported. We fed healthy adult rats a standard low-fat diet (11% of energy intake from fat), a low-fat diet supplemented with DHA (2.3% of energy intake) or a high-fat diet comprised of long chain saturated fatty acids (45% fat) for 6 weeks. There were no differences among the three diets in cardiac mass or function, mitochondrial respiration, or Ca2+-induced mitochondrial permeability transition. On the other hand, there were dramatic differences in mitochondrial phospholipid fatty acyl side chains. Dietary supplementation with DHA increased DHA from 7% to ∼25% of total phospholipid fatty acids in mitochondrial membranes, and caused a proportional depletion of arachidonic acid (20:4n6). The saturated fat diet increased saturated fat and DHA in mitochondria and decreased linoleate (18:2n6), which corresponded to a decrease in Ca2+ uptake by isolated mitochondria compared to the other diet groups. In conclusion, despite dramatic changes in mitochondrial phospholipid fatty acyl side chain composition by both the DHA and high saturated fat diets, there were no effects on mitochondrial respiration, permeability transition, or cardiac function.
Collapse
Affiliation(s)
- Kelly A O'Connell
- Division of Cardiology, Department of Medicine, University of Maryland Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Aging is associated with a host of biological changes that contribute to a progressive decline in cognitive and physical function, ultimately leading to a loss of independence, and increased risk of mortality. To date, prolonged caloric restriction (i.e., a reduction in caloric intake without malnutrition) is the only non-genetic intervention that has consistently been found to extend both mean and maximal life span across a variety of species. Most individuals have difficulty sustaining prolonged caloric restriction, which has led to a search for alternative approaches that can produce similar to benefits as caloric restriction. A growing body of evidence indicates that fasting periods and intermittent fasting regimens in particular can trigger similar biological pathways as caloric restriction. For this reason, there is increasing scientific interest in further exploring the biological and metabolic effects of intermittent fasting periods, as well as whether long-term compliance may be improved by this type of dietary approach. This special will highlight the latest scientific findings related to the effects of both caloric restriction and intermittent fasting across various species including yeast, fruit flies, worms, rodents, primates, and humans. A specific emphasis is placed on translational research with findings from basic bench to bedside reviewed and practical clinical implications discussed.
Collapse
Affiliation(s)
- Stephen Anton
- University of Florida, Department of Aging and Geriatric Research, Institute on Aging, Gainesville, FL 32610, United States.
| | | |
Collapse
|
40
|
Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013; 465:669-85. [PMID: 23525672 DOI: 10.1007/s00424-013-1255-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
Abstract
Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal female. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca(2+) sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
41
|
Gouspillou G, Hepple RT. Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion. Exp Gerontol 2013; 48:1075-84. [PMID: 23523973 DOI: 10.1016/j.exger.2013.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/11/2022]
Abstract
Caloric restriction (CR) has pronounced benefits in promoting healthy aging. Amongst the most frequently implicated physiological mechanisms implicated in this benefit is altered mitochondrial function. Whereas a reduction in mitochondrial reactive oxygen species (ROS) production is a widely consistent effect of CR, an increase in mitochondrial biogenesis, which is accepted by many as fact, is contradicted on several levels, most critically by a lack of increase in mitochondrial protein synthesis rate in vivo. Furthermore, an increase in PGC-1α protein and markers of mitochondrial content with CR is a highly variable observation between studies. On the other hand, deacetylation of several mitochondrial proteins by the sirtuin, Sirt3, is an increasingly reported observation and at least so far, this observation is consistent between studies. Notwithstanding this point, the controversies evident in the published literature underscore the significant questions that remain in our understanding of how CR impacts the mitochondrion and suggest we have yet to fully understand the complexities herein.
Collapse
Affiliation(s)
- Gilles Gouspillou
- McGill University Health Center, Department of Kinesiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
42
|
Kasumov T, Dabkowski ER, Shekar KC, Li L, Ribeiro RF, Walsh K, Previs SF, Sadygov RG, Willard B, Stanley WC. Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol 2013; 304:H1201-14. [PMID: 23457012 DOI: 10.1152/ajpheart.00933.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditional proteomics provides static assessment of protein content, but not synthetic rates. Recently, proteome dynamics with heavy water ((2)H2O) was introduced, where (2)H labels amino acids that are incorporated into proteins, and the synthesis rate of individual proteins is calculated using mass isotopomer distribution analysis. We refine this approach with a novel algorithm and rigorous selection criteria that improve the accuracy and precision of the calculation of synthesis rates and use it to measure protein kinetics in spatially distinct cardiac mitochondrial subpopulations. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated from adult rats, which were given (2)H2O in the drinking water for up to 60 days. Plasma (2)H2O and myocardial (2)H-enrichment of amino acids were stable throughout the experimental protocol. Multiple tryptic peptides were identified from 28 proteins in both SSM and IFM and showed a time-dependent increase in heavy mass isotopomers that was consistent within a given protein. Mitochondrial protein synthesis was relatively slow (average half-life of 30 days, 2.4% per day). Although the synthesis rates for individual proteins were correlated between IFM and SSM (R(2) = 0.84; P < 0.0001), values in IFM were 15% less than SSM (P < 0.001). In conclusion, administration of (2)H2O results in stable enrichment of the cardiac precursor amino acid pool, with the use of refined analytical and computational methods coupled with cell fractionation one can measure synthesis rates for cardiac proteins in subcellular compartments in vivo, and protein synthesis is slower in mitochondria located among the myofibrils than in the subsarcolemmal region.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Panasiuk O, Shysh A, Bondarenko A, Moibenko O. Omega-3 polyunsaturated fatty acid-enriched diet differentially protects two subpopulations of myocardial mitochondria against Ca(2+)-induced injury. Exp Clin Cardiol 2013; 18:e60-e64. [PMID: 24294054 PMCID: PMC3716508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Omega-3 polyunsaturated fatty acids (PUFA) confer protection against myocardial injury after ischemia-reperfusion. There are two subfractions of mitochondria located in different regions of the cell: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). The present study explored possible differences between Ca(2+)-induced mitochondrial swelling in rat SSM and IFM fractions under control conditions (control group [CG]) and after dietary supplementation with omega-3 PUFA (experimental group [EG]). Changes in mitochondrial matrix volumes were measured using the light-scattering technique. In the CG, the time courses of swelling were comparable in both mitochondrial fractions, with no difference in Ca(2+)-induced swelling between the two mitochondrial fractions. In the SSM fraction, no difference in the time course of swelling in Ca(2+)-free solution between CG and EG was detected. In the EG, both SSM and IFM fractions demonstrated a decreased sensitivity to Ca(2+); IFM fractions, however, exhibited significantly less pronounced swelling following Ca(2+) addition. The authors conclude that IFM and SSM fractions do not differ in their sensitivity to Ca(2+)-induced swelling. While dietary omega-3 PUFA protected both mitochondrial fractions against Ca(2+)-evoked swelling, the protective effect appeared to be more pronounced for the IFM fraction than for the SSM fraction.
Collapse
Affiliation(s)
- Olga Panasiuk
- Department of General and Molecular Pathophysiology, AA Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Angela Shysh
- Department of General and Molecular Pathophysiology, AA Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Alexander Bondarenko
- Circulatory Physiology Department, AA Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Oleksiy Moibenko
- Department of General and Molecular Pathophysiology, AA Bogomoletz Institute of Physiology, Kiev, Ukraine
| |
Collapse
|
44
|
Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech Ageing Dev 2012; 134:1-9. [PMID: 23287740 DOI: 10.1016/j.mad.2012.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/26/2022]
Abstract
Aging is a biological process associated with impairment of mitochondrial bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses and increased risk in contracting age-associated diseases. When mitochondria are subjected to oxidative stress, accompanied by calcium overload and ATP depletion, they undergo "a permeability transition", characterized by sudden induced change of the inner mitochondrial membrane permeability for water as well as for low-molecular weight solutes (≤1.5kDa), resulting in membrane depolarization and uncoupling of oxidative phosphorylation. Research interest in the entity responsible for this phenomenon, the "mitochondrial permeability transition pore" (MPTP) has dramatically increased after demonstration that it plays a key role in the life and death decision in cells. The molecular structure and identity of MPTP is not yet known, although the pore is thought to exist as multiprotein complex. Some evidence indicate that the sensitivity of mitochondria to Ca(2+)-induced MPTP opening increases with aging; however the basis of this difference is unknown. Changes in MPTP structure and/or function may have important implications in the aging process and aged-associated diseases. This article examines data relevant to this issue. The important role of a principal lipidic counter-partner of the MPTP, cardiolipin, will also be discussed.
Collapse
|
45
|
Asemu G, O'Connell KA, Cox JW, Dabkowski ER, Xu W, Ribeiro RF, Shekar KC, Hecker PA, Rastogi S, Sabbah HN, Hoppel CL, Stanley WC. Enhanced resistance to permeability transition in interfibrillar cardiac mitochondria in dogs: effects of aging and long-term aldosterone infusion. Am J Physiol Heart Circ Physiol 2012; 304:H514-28. [PMID: 23241318 DOI: 10.1152/ajpheart.00674.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Functional differences between subsarcolemmal and interfibrillar cardiac mitochondria (SSM and IFM) have been observed with aging and pathological conditions in rodents. Results are contradictory, and there is little information from large animal models. We assessed the respiratory function and resistance to mitochondrial permeability transition (MPT) in SSM and IFM from healthy young (1 yr) and old (8 yr) female beagles and in old beagles with hypertension and left ventricular (LV) wall thickening induced by 16 wk of aldosterone infusion. MPT was assessed in SSM and IFM by Ca(2+) retention and swelling. Healthy young and old beagles had similar mitochondrial structure, respiratory function, and Ca(2+)-induced MPT within SSM and IFM subpopulations. On the other hand, oxidative capacity and resistance to Ca(2+)-induced MPT were significantly greater in IFM compared with SSM in all groups. Old beagles treated with aldosterone had greater LV wall thickness and worse diastolic filling but normal LV chamber volume and systolic function. Treatment with aldosterone did not alter mitochondrial respiratory function but accelerated Ca(2+)-induced MPT in SSM, but not IFM, compared with healthy old and young beagles. In conclusion, in a large animal model, oxidative capacity and resistance to MPT were greater in IFM than in SSM. Furthermore, aldosterone infusion increased susceptibility to MPT in SSM, but not IFM. Together this suggests that SSM are less resilient to acute stress than IFM in the healthy heart and are more susceptible to the development of pathology with chronic stress.
Collapse
Affiliation(s)
- Girma Asemu
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mariappan N, Elks CM, Haque M, Francis J. Interaction of TNF with angiotensin II contributes to mitochondrial oxidative stress and cardiac damage in rats. PLoS One 2012; 7:e46568. [PMID: 23056347 PMCID: PMC3467241 DOI: 10.1371/journal.pone.0046568] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 08/31/2012] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that tumor necrosis factor alpha (TNF) and angiotensin II (ANGII) induce oxidative stress contribute to cardiovascular disease progression. Here, we examined whether an interaction between TNF and ANGII contributes to altered cardiac mitochondrial biogenesis and ATP production to cause cardiac damage in rats. Rats received intraperitoneal injections of TNF (30 µg/kg), TNF + losartan (LOS, 1 mg/kg), or vehicle for 5 days. Left ventricular (LV) function was measured using echocardiography. Rats were sacrificed and LV tissues removed for gene expression, electron paramagnetic resonance and mitochondrial assays. TNF administration significantly increased expression of the NADPH oxidase subunit, gp91phox, and the angiotensin type 1 receptor (AT-1R) and decreased eNOS in the LV of rats. Rats that received TNF only had increased production rates of superoxide, peroxynitrite and total reactive oxygen species (ROS) in the cytosol and increased production rates of superoxide and hydrogen peroxide in mitochondria. Decreased activities of mitochondrial complexes I, II, and III and mitochondrial genes were observed in rats given TNF. In addition, TNF administration also resulted in a decrease in fractional shortening and an increase in Tei index, suggesting diastolic dysfunction. TNF administration with concomitant LOS treatment attenuated mitochondrial damage, restored cardiac function, and decreased expression of AT1-R and NADPH oxidase subunits. Mitochondrial biogenesis and function is severely impaired by TNF as evidenced by downregulation of mitochondrial genes and increased free radical production, and may contribute to cardiac damage. These defects are independent of the downregulation of mitochondrial gene expression, suggesting novel mechanisms for mitochondrial dysfunction in rats given TNF.
Collapse
Affiliation(s)
- Nithya Mariappan
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
- * E-mail: (JF); (NM)
| | - Carrie M. Elks
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Masudul Haque
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
- * E-mail: (JF); (NM)
| |
Collapse
|
47
|
Picard M, Wright KJ, Ritchie D, Thomas MM, Hepple RT. Mitochondrial function in permeabilized cardiomyocytes is largely preserved in the senescent rat myocardium. PLoS One 2012; 7:e43003. [PMID: 22912774 PMCID: PMC3415432 DOI: 10.1371/journal.pone.0043003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
The aging heart is characterized by a progressive decline in contractile function and diastolic relaxation. Amongst the factors implicated in these changes is a progressive replacement fibrosis secondary to cardiomyocyte death, oxidative damage, and energetic deficit, each of which may be secondary to impaired mitochondrial function. Here, we performed an in-depth examination of mitochondrial function in saponin-permeabilized cardiomyocyte bundles, a preparation where all mitochondria are represented and their structure intact, from young adult (YA) and senescent (SEN) rats (n = 8 per group). When accounting for increased fibrosis (+19%, P<0.01) and proportional decrease in citrate synthase activity in the SEN myocardium (-23%, P<0.05), mitochondrial respiration and reactive oxygen species (H(2)O(2)) emission across a range of energized states was similar between age groups. Accordingly, the abundance of electron transport chain proteins was also unchanged. Likewise, except for CuZnSOD (-37%, P<0.05), the activity of antioxidant enzymes was unaltered with aging. Although time to mitochondrial permeability transition pore (mPTP) opening was decreased (-25%, P<0.05) in the SEN heart, suggesting sensitization to apoptotic stimuli, this was not associated with a difference in apoptotic index measured by ELISA. Collectively, our results suggest that the function of existing cardiac ventricular mitochondria is relatively preserved in SEN rat heart when measured in permeabilized cells.
Collapse
Affiliation(s)
- Martin Picard
- Department of Kinesiology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kathryn J. Wright
- Muscle & Aging Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Darmyn Ritchie
- Muscle & Aging Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Melissa M. Thomas
- Muscle & Aging Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Russell T. Hepple
- Department of Kinesiology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Martínez-Acedo P, Núñez E, Gómez FJS, Moreno M, Ramos E, Izquierdo-Álvarez A, Miró-Casas E, Mesa R, Rodriguez P, Martínez-Ruiz A, Dorado DG, Lamas S, Vázquez J. A novel strategy for global analysis of the dynamic thiol redox proteome. Mol Cell Proteomics 2012; 11:800-13. [PMID: 22647871 DOI: 10.1074/mcp.m111.016469] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitroxidative stress in cells occurs mainly through the action of reactive nitrogen and oxygen species (RNOS) on protein thiol groups. Reactive nitrogen and oxygen species-mediated protein modifications are associated with pathophysiological states, but can also convey physiological signals. Identification of Cys residues that are modified by oxidative stimuli still poses technical challenges and these changes have never been statistically analyzed from a proteome-wide perspective. Here we show that GELSILOX, a method that combines a robust proteomics protocol with a new computational approach that analyzes variance at the peptide level, allows a simultaneous analysis of dynamic alterations in the redox state of Cys sites and of protein abundance. GELSILOX permits the characterization of the major endothelial redox targets of hydrogen peroxide in endothelial cells and reveals that hypoxia induces a significant increase in the status of oxidized thiols. GELSILOX also detected thiols that are redox-modified by ischemia-reperfusion in heart mitochondria and demonstrated that these alterations are abolished in ischemia-preconditioned animals.
Collapse
Affiliation(s)
- Pablo Martínez-Acedo
- Centro de Biología Molecular Severo Ochoa, Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci 2012; 35:364-72. [PMID: 22578891 DOI: 10.1016/j.tins.2012.04.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 12/12/2022]
Abstract
Axonal degeneration is a major contributor to neuronal dysfunction in many neurological conditions and has additional roles in development. It can be triggered by divergent stimuli including mechanical, metabolic, infectious, toxic, hereditary and inflammatory stresses. Axonal mitochondria are an important convergence point as regulators of bioenergetic metabolism, reactive oxygen species (ROS), Ca²⁺ homeostasis and protease activation. The challenges likely to render axonal mitochondria more vulnerable than their cellular counterparts are reviewed, including axonal transport, replenishing nuclear-encoded proteins and maintenance of quality control, fusion and fission in locations remote from the cell body. The potential for mitochondria to act as a decision node in axon loss is considered, highlighting the need to understand the biology of axonal mitochondria and their contributions to degenerative mechanisms for novel therapeutic strategies.
Collapse
Affiliation(s)
- Felipe A Court
- Millennium Nucleus for Regenerative Biology, Faculty of Biology, Catholic University of Chile, Santiago 8331150, Chile.
| | | |
Collapse
|
50
|
Hunter JC, Machikas AM, Korzick DH. Age-dependent reductions in mitochondrial respiration are exacerbated by calcium in the female rat heart. ACTA ACUST UNITED AC 2012; 9:197-206. [PMID: 22555015 DOI: 10.1016/j.genm.2012.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiovascular disease mortality increases rapidly after menopause by poorly defined mechanisms. OBJECTIVE Because mitochondrial function and Ca(2+) sensitivity are important regulators of cell death after myocardial ischemia, we sought to determine whether aging and/or estrogen deficiency (ovariectomy) increased mitochondrial Ca(2+) sensitivity. METHODS Mitochondrial respiration was measured in ventricular mitochondria isolated from adult (6 months; n = 26) and aged (24 months; n = 25), intact or ovariectomized female rats using the substrates α-ketoglutarate/malate (complex I); succinate/rotenone (complex II); ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine/antimycin (complex IV). State 2 and 3 respiration was initiated by sequential addition of mitochondria and adenosine diphosphate. Ca(2+) sensitivity was assessed by Ca(2+)-induced swelling of de-energized mitochondria and reduction in state 3 respiration. Propylpyrazole triol (PPT) was administered intraperitoneally 45 minutes before euthanasia to assess mitochondrial protective effects through estrogen receptor (ER) α activation. RESULTS Aging decreased the respiratory control index (RCI; state 3/state 2) for complexes I and II by 12% and 8%, respectively, independent of ovary status (P < 0.05). Of interest, Ca(2+) induced a greater decrease (18%-30%; P < 0.05) in complex I state 3 respiration in aged and ovariectomized animals, and mitochondrial swelling occurred twice as quickly in aged (vs adult) female rats (P < 0.05). Pretreatment with PPT increased RCI by 8% and 7% at complexes I and II, respectively (P < 0.05) but surprisingly increased Ca(2+) sensitivity. CONCLUSIONS Age-dependent decreases in RCI and sensitization to Ca(2+) may explain in part the age-associated reductions in female ischemic tolerance; however, protection afforded by ER agonism involves more complex mechanisms.
Collapse
Affiliation(s)
- J Craig Hunter
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|