1
|
Gwak H, Hong S, Lee SH, Kim IW, Kim Y, Kim H, Pahk KJ, Kim SY. Low-Intensity Pulsed Ultrasound Treatment Selectively Stimulates Senescent Cells to Promote SASP Factors for Immune Cell Recruitment. Aging Cell 2025; 24:e14486. [PMID: 39821933 DOI: 10.1111/acel.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
As emerging therapeutic strategies for aging and age-associated diseases, various biochemical approaches have been developed to selectively remove senescent cells, but how physical stimulus influences senescent cells and its possible application in senolytic therapy has not been reported yet. Here we developed a physical method to selectively stimulate senescent cells via low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS stimulation did not affect the cell cycle, but selectively enhanced secretion of specific cytokines in senescent cells, known as the senescence-associated secretory phenotype (SASP), resulting in enhanced migration of monocytes/macrophages and upregulation of phagocytosis of senescent cells by M1 macrophage. We found that LIPUS stimulation selectively perturbed the cellular membrane structure in senescent cells, which led to activation of the intracellular reactive oxygen species-dependent p38-NF-κB signaling pathway. Using a UV-induced skin aging mouse model, we confirmed enhanced macrophage infiltration followed by reduced senescent cells after LIPUS treatment. Due to the advantages of ultrasound treatment, such as non-invasiveness, deep penetration capability, and easy application in clinical settings, we expect that our method can be applied to treat various senescence-associated diseases or combined with other established biochemical therapies to enhance efficacy.
Collapse
Affiliation(s)
- HyeRan Gwak
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seoyoung Hong
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Su Hyun Lee
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - In Woo Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yonghan Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Joo Pahk
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - So Yeon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Chintalaramulu N, Singh DP, Sapkota B, Raman D, Alahari S, Francis J. Caveolin-1: an ambiguous entity in breast cancer. Mol Cancer 2025; 24:109. [PMID: 40197489 PMCID: PMC11974173 DOI: 10.1186/s12943-025-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women and the second leading cause of death from cancer among women. Metastasis is the major cause of BC-associated mortality. Accumulating evidence implicates Caveolin-1 (Cav-1), a structural protein of plasma membrane caveolae, in BC metastasis. Cav-1 exhibits a dual role, as both a tumor suppressor and promoter depending on the cellular context and BC subtype. This review highlights the role of Cav-1 in modulating glycolytic metabolism, tumor-stromal interactions, apoptosis, and senescence. Additionally, stromal Cav-1's expression is identified as a potential prognostic marker, offering insights into its contrasting roles in tumor suppression and progression. Furthermore, Cav-1's context-dependent effects are explored in BC subtypes including hormone receptor-positive, HER2-positive, and triple-negative BC (TNBC). The review further delves into the role of Cav-1 in regulating the metastatic cascade including extracellular matrix interactions, cell migration and invasion, and premetastatic niche formation. The later sections discuss the therapeutic targeting of Cav-1 by metabolic inhibitors such as betulinic acid and Cav-1 modulating compounds. While Cav-1 may be a potential biomarker and therapeutic target, its heterogeneous expression and context-specific activity necessitates further research to develop precise interventions. Future studies investigating the mechanistic role of Cav-1 in metastasis may pave the way for effective treatment of metastatic BC.
Collapse
Affiliation(s)
- Naveen Chintalaramulu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | | | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, USA
| | | | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
Shen E, Wu Y, Ye W, Li S, Zhu J, Jiang M, Hu Z, Cao G, Yi X, Li F, Tang Z, Li X, Lee KY, Jin L, Wang X, Cong W. The FGF13-Caveolin-1 Axis: A Key Player in the Pathogenesis of Doxorubicin- and D-Galactose-Induced Premature Cardiac Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501055. [PMID: 40184605 DOI: 10.1002/advs.202501055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/17/2025] [Indexed: 04/06/2025]
Abstract
Delaying senescence of cardiomyocytes has garnered widespread attention as a potential target for preventing cardiovascular diseases (CVDs). FGF13 (Fibroblast growth factor 13) has been implicated in various pathophysiological processes. However, its role in premature myocardial aging and cardiomyocyte senescence remains unknown. Adeno-associated virus 9 (AAV9) vectors expressing FGF13 and cardiac-specific Fgf13 knockout (Fgf13KO) mice are utilized to reveal that FGF13 overexpression and deficiency exacerbated and alleviated Doxorubicin/D-galactose-induced myocardial aging characteristics and functional impairment, respectively. Transcriptomics are employed to identify an association between FGF13 and Caveolin-1 (Cav1). Mechanistic studies indicated that FGF13 regulated the Cav1 promoter activity and expression through the p38/MAPK pathway and nuclear translocation of p65, as well as the binding level of PTRF to Cav1 to mediate cardiomyocyte senescence. Furthermore, Cav1 overexpression in murine hearts reversed the alleviatory effects of FGF13 deficiency on the Doxorubicin/D-galactose-induced myocardial aging phenotype and dysfunction. This study has demonstrated that FGF13 regulated the Cav1-p53-p21 axis to augment cardiomyocyte senescence and thereby exacerbated cardiac premature aging and suggests that FGF13 knockdown may be a promising approach to combat CVDs in response to aging and chemotoxicity.
Collapse
Affiliation(s)
- Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yuecheng Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R China
| | - Sihang Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Meifan Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Gaoyong Cao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Xiaojing Yi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Fan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Zhouhao Tang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Ningbo Key Laboratory of Skin Science, Ningbo College of Health Sciences, Ningbo, 315000, P. R. China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| |
Collapse
|
4
|
Lee MJ, Yeon JH, Lee J, Kang YH, Park BS, Park J, Yun SH, Wirth D, Yoo SM, Park C, Gao SJ, Lee MS. Senescence of endothelial cells increases susceptibility to Kaposi's sarcoma-associated herpesvirus infection via CD109-mediated viral entry. J Clin Invest 2024; 135:e183561. [PMID: 39666389 PMCID: PMC11827841 DOI: 10.1172/jci183561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024] Open
Abstract
The aging process is characterized by cellular functional decline and increased susceptibility to infections. Understanding the association between virus infection and aging is crucial for developing effective strategies against viral infections in older individuals. However, the relationship between Kaposi's sarcoma-associated herpesvirus (KSHV) infection, a cause of increased Kaposi's sarcoma prevalence among the elderly without HIV infection, and cellular senescence remains enigmatic. This study uncovered a link between cellular senescence and enhanced KSHV infectivity in human endothelial cells. Through a comprehensive proteomic analysis, we identified caveolin-1 and CD109 as host factors significantly upregulated in senescent cells that promote KSHV infection. Remarkably, CRISPR/Cas9-mediated KO of these factors reduced KSHV binding and entry, leading to decreased viral infectivity. Furthermore, surface plasmon resonance analysis and confocal microscopy revealed a direct interaction between KSHV virions and CD109 on the cell surface during entry, with recombinant CD109 protein exhibiting inhibitory activity of KSHV infection by blocking virion binding. These findings uncover a previously unrecognized role of cellular senescence in enhancing KSHV infection through upregulation of specific host factors and provide insights into the complex interplay between aging and viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Jisu Lee
- Department of Microbiology and Immunology, and
| | - Yun Hee Kang
- Department of Microbiology and Immunology, and
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, South Korea
| | - Joohee Park
- Department of Microbiology and Immunology, and
| | - Sung-Ho Yun
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Shou-Jinag Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, and
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| |
Collapse
|
5
|
Shaikh SB, Balaya RDA, Dagamajalu S, Bhandary YP, Unwalla H, Prasad TSK, Rahman I. A signaling pathway map of plasminogen activator inhibitor-1 (PAI-1/SERPINE-1): a review of an innovative frontier in molecular aging and cellular senescence. Cell Commun Signal 2024; 22:544. [PMID: 39543686 PMCID: PMC11566301 DOI: 10.1186/s12964-024-01910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a vital regulator of the fibrinolytic mechanism and has been intricately involved in various physiological and clinical processes, including cancer, thrombosis, and wound healing. The PAI-1 signaling pathway is multifaceted, encompassing numerous signaling molecules and nodes. Recent studies have revealed a novel contribution of PAI-1 during cellular senescence. This review introduces a pathway resource detailing the signaling network events mediated by PAI-1. The literature curated on the PAI-1 system was manually compiled from various published studies, our analysis presents a signaling pathway network of PAI-1, which includes various events like enzyme catalysis, molecular association, gene regulation, protein expression, and protein translocation. This signaling network aims to provide a detailed analysis of the existing understanding of the PAI-1 signaling pathway in the context of cellular senescence across various research models. By developing this pathway, we aspire to deepen our understanding of aging and senescence research, ultimately contributing to the pursuit of effective therapeutic approaches for these complex chronic diseases.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Centre, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | | | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Yashodhar Prabhakar Bhandary
- Division for Molecular Biology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Centre, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Koloko Ngassie ML, Drake LY, Roos BB, Koenig-Kappes A, Pabelick CM, Gosens R, Brandsma CA, Burgess JK, Prakash YS. Endoplasmic reticulum stress-induced senescence in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2024; 327:L126-L139. [PMID: 38771153 PMCID: PMC11380945 DOI: 10.1152/ajplung.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Loss of proteostasis and cellular senescence have been previously established as characteristics of aging; however, their interaction in the context of lung aging and potential contributions to aging-associated lung remodeling remains understudied. In this study, we aimed to characterize endoplasmic reticulum (ER) stress response, cellular senescence, and their interaction in relation to extracellular matrix (ECM) production in lung fibroblasts from young (25-45 yr) and old (>60 yr) humans. Fibroblasts from young and old patients without significant preexisting lung disease were exposed to vehicle, MG132, etoposide, or salubrinal. Afterward, cells and cell lysates or supernatants were analyzed for ER stress, cellular senescence, and ECM changes using protein analysis, proliferation assay, and senescence-associated beta-galactosidase (SA-β-Gal) staining. At baseline, fibroblasts from aging individuals showed increased levels of ER stress (ATF6 and PERK), senescence (p21 and McL-1), and ECM marker (COL1A1) compared to those from young individuals. Upon ER stress induction and etoposide exposure, fibroblasts showed an increase in senescence (SA-β-Gal, p21, and Cav-1), ER stress (PERK), and ECM markers (COL1A1 and LUM) compared to vehicle. Additionally, IL-6 and IL-8 levels were increased in the supernatants of MG132- and etoposide-treated fibroblasts, respectively. Finally, the ER stress inhibitor salubrinal decreased the expression of p21 compared to vehicle and MG132 treatments; however, salubrinal inhibited COL1A1 but not p21 expression in MG132-treated fibroblasts. Our study suggests that ER stress response plays an important role in establishment and maintenance of a senescence phenotype in lung fibroblasts and therefore contributes to altered remodeling in the aging lung.NEW & NOTEWORTHY The current study establishes functional links between endoplasmic reticulum (ER) stress and cellular senescence per se in the specific context of aging human lung fibroblasts. Recognizing that the process of aging per se is complex, modulated by the myriad of lifelong and environmental exposures, it is striking to note that chronic ER stress may play a crucial role in the establishment and maintenance of cellular senescence in lung fibroblasts.
Collapse
Affiliation(s)
- Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Amanda Koenig-Kappes
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
7
|
Terao J. Caveolae and caveolin-1 as targets of dietary polyphenols for protection against vascular endothelial dysfunction. J Clin Biochem Nutr 2024; 75:7-16. [PMID: 39070533 PMCID: PMC11273273 DOI: 10.3164/jcbn.24-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 07/30/2024] Open
Abstract
Caveolae, consisting of caveolin-1 proteins, are ubiquitously present in endothelial cells and contribute to normal cardiovascular functions by acting as a platform for cellular signaling pathways as well as transcytosis and endocytosis. However, caveolin-1 is thought to have a proatherogenic role by inhibiting endothelial nitric oxide synthase activity and Nrf2 activation, or by promoting inflammation through NF-κB activation. Dietary polyphenols were suggested to exert anti-atherosclerotic effects by a mechanism involving the inhibition of endothelial dysfunction, by which they can regulate redox-sensitive signaling pathways in relation to NF-κB and Nrf2 activation. Some monomeric polyphenols and microbiota-derived catabolites from monomeric polyphenols or polymeric tannins might be responsible for the inhibition, because they can be transferred into the circulation from the digestive tract. Several polyphenols were reported to modulate caveolin-1 expression or its localization in caveolae. Therefore, we hypothesized that circulating polyphenols affect caveolae functions by altering its structure leading to the release of caveolin-1 from caveolae, and attenuating redox-sensitive signaling pathway-dependent caveolin-1 overexpression. Further studies using circulating polyphenols at a physiologically relevant level are necessary to clarify the mechanism of action of dietary polyphenols targeting caveolae and caveolin-1.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
8
|
Islam M, Behura SK. Molecular Regulation of Fetal Brain Development in Inbred and Congenic Mouse Strains Differing in Longevity. Genes (Basel) 2024; 15:604. [PMID: 38790233 PMCID: PMC11121069 DOI: 10.3390/genes15050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Cai Y, Zhong X, Mo L, Huang R, Lin Q, Liu C, Zhang S. Evaluating the causal effect of atherosclerosis on the risk of intervertebral disc degeneration. JOR Spine 2024; 7:e1319. [PMID: 38444947 PMCID: PMC10912790 DOI: 10.1002/jsp2.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/14/2024] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) and atherosclerosis are two common age-related conditions that can cause significant morbidity. While previous studies have suggested an association between the two conditions, the nature of this association remains unclear. METHODS We used Mendelian randomization (MR) to investigate the causal relationship between IDD and atherosclerosis. We identified genetic variants associated with IDD using summary statistics from a large genome-wide association study (GWAS). These variants were then used as instrumental variables to infer causal relationships with atherosclerosis in summary statistics from a separate GWAS. RESULTS Our MR analysis provided evidence for a causal relationship between IDD and atherosclerosis. We found that the genetic predisposition to atherosclerosis was associated with a higher risk of IDD (odds ratio [OR] = 3.55, 95% confidence interval [CI]: 1.07-11.74, p = 0.04). The IVW estimates were consistent with the observational findings and other robust MR methods. Sensitivity analyses suggested that our findings were robust to potential sources of bias. CONCLUSIONS Our study provides evidence for a causal link between IDD and atherosclerosis, suggesting that interventions targeting atherosclerosis could have potential benefits for reducing the risk of IDD. Further research is needed to explore the underlying mechanisms that link these two conditions and to investigate potential therapeutic interventions.
Collapse
Affiliation(s)
- Yang‐Ting Cai
- Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouPeople's Republic of China
| | - Xian‐Xing Zhong
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouPeople's Republic of China
| | - Ling Mo
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouPeople's Republic of China
| | - Rui‐Ze Huang
- Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
| | - Qiang Lin
- Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
| | - Cai‐Jun Liu
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouPeople's Republic of China
| | - Shun‐Cong Zhang
- Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
| |
Collapse
|
10
|
Islam M, Behura SK. Single-Cell Transcriptional Response of the Placenta to the Ablation of Caveolin-1: Insights into the Adaptive Regulation of Brain-Placental Axis in Mice. Cells 2024; 13:215. [PMID: 38334607 PMCID: PMC10854826 DOI: 10.3390/cells13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Caveolin-1 (Cav1) is a major plasma membrane protein that plays important functions in cellular metabolism, proliferation, and senescence. Mice lacking Cav1 show abnormal gene expression in the fetal brain. Though evidence for placental influence on brain development is emerging, whether the ablation of Cav1 affects the regulation of the brain-placental axis remains unexamined. The current study tests the hypothesis that gene expression changes in specific cells of the placenta and the fetal brain are linked to the deregulation of the brain-placental axis in Cav1-null mice. By performing single-nuclei RNA sequencing (snRNA-seq) analyses, we show that the abundance of the extravillious trophoblast (EVT) and stromal cells, but not the cytotrophoblast (CTB) or syncytiotrophoblast (STB), are significantly impacted due to Cav1 ablation in mice. Interestingly, specific genes related to brain development and neurogenesis were significantly differentially expressed in trophoblast cells due to Cav1 deletion. Comparison of single-cell gene expression between the placenta and the fetal brain further showed that specific genes such as plexin A1 (Plxna1), phosphatase and actin regulator 1 (Phactr1) and amyloid precursor-like protein 2 (Aplp2) were differentially expressed between the EVT and STB cells of the placenta, and also, between the radial glia and ependymal cells of the fetal brain. Bulk RNA-seq analysis of the whole placenta and the fetal brain further identified genes differentially expressed in a similar manner between the placenta and the fetal brain due to the absence of Cav1. The deconvolution of reference cell types from the bulk RNA-seq data further showed that the loss of Cav1 impacted the abundance of EVT cells relative to the stromal cells in the placenta, and that of the glia cells relative to the neuronal cells in the fetal brain. Together, the results of this study suggest that the ablation of Cav1 causes deregulated gene expression in specific cell types of the placenta and the fetal brain in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Hela F, Aguayo-Mazzucato C. Interaction between Autophagy and Senescence in Pancreatic Beta Cells. BIOLOGY 2023; 12:1205. [PMID: 37759604 PMCID: PMC10525299 DOI: 10.3390/biology12091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Aging leads to an increase in cellular stress due to the fragility of the organism and the inability to cope with it. In this setting, there is a higher chance of developing different cardiometabolic diseases like diabetes. Cellular senescence and autophagy, both hallmarks of aging and stress-coping mechanisms, have gained increased attention for their role in the pathophysiology of diabetes. Studies show that impairing senescence dampens and even prevents diabetes while the role of autophagy is more contradictory, implying a context- and disease-stage-dependent effect. Reports show conflicting data about the effect of autophagy on senescence while the knowledge about this interaction in beta cells remains scarce. Elucidating this interaction between autophagy and senescence in pancreatic beta cells will lead to an identification of their respective roles and the extent of the effect each mechanism has on beta cells and open new horizons for developing novel therapeutic agents. To help illuminate this relationship we will review the latest findings of cellular senescence and autophagy with a special emphasis on pancreatic beta cells and diabetes.
Collapse
Affiliation(s)
| | - Cristina Aguayo-Mazzucato
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Liang Y, Shen L, Ni W, Ding Y, Yang W, Gu T, Zhang C, Yik JHN, Haudenschild DR, Fan S, Shen S, Hu Z. CircGNB1 drives osteoarthritis pathogenesis by inducing oxidative stress in chondrocytes. Clin Transl Med 2023; 13:e1358. [PMID: 37537733 PMCID: PMC10400757 DOI: 10.1002/ctm2.1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have risen to prominence as important regulators of biological processes. This study investigated whether circGNB1 functions as a competitive endogenous RNA to regulate the pathological process of oxidative stress in age-related osteoarthritis (OA). METHODS The relationship between circGNB1 expression and oxidative stress/OA severity was determined in cartilages from OA patients at different ages. The biological roles of circGNB1 in oxidative stress and OA progression, and its downstream targets were determined using gain- and loss-of-function experiments in various biochemical assays in human chondrocytes (HCs). The in vivo effects of circGNB1 overexpression and knockdown were also determined using a destabilization of the medial meniscus (DMM) mouse model. RESULTS Increased circGNB1 expression was detected in HCs under oxidative and inflammatory stress and in the cartilage of older individuals. Mechanistically, circGNB1 sponged miR-152-3p and thus blocked its interaction with its downstream mRNA target, ring finger protein 219 (RNF219), which in turn stabilized caveolin-1 (CAV1) by preventing its ubiquitination at the K47 residue. CircGNB1 inhibited IL-10 signalling by antagonizing miR-152-3p-mediated RNF219 and CAV1 inhibition. Consequently, circGNB1 overexpression promoted OA progression by enhancing catabolic factor expression and oxidative stress and by suppressing anabolic genes in vitro and in vivo. Furthermore, circGNB1 knockdown alleviated the severity of OA, whereas circGNB1 overexpression had the opposite effect in a DMM mouse model of OA. CONCLUSION CircGNB1 regulated oxidative stress and OA progression via the miR-152-3p/RNF219/CAV1 axis. Modulating circGNB1 could be an effective strategy for treating OA.
Collapse
Affiliation(s)
- Yi Liang
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Lifeng Shen
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Weiyu Ni
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Yuhong Ding
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Wentao Yang
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Tianyuan Gu
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Chenfeng Zhang
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Jasper H. N. Yik
- Ellison Musculoskeletal Research CenterDepartment of Orthopaedic SurgeryUniversity of California SystemDavisCaliforniaUSA
| | - Dominik R. Haudenschild
- Ellison Musculoskeletal Research CenterDepartment of Orthopaedic SurgeryUniversity of California SystemDavisCaliforniaUSA
| | - Shunwu Fan
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Shuying Shen
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Ziang Hu
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
13
|
Puddu A, Montecucco F, Maggi D. Caveolin-1 and Atherosclerosis: Regulation of LDLs Fate in Endothelial Cells. Int J Mol Sci 2023; 24:8869. [PMID: 37240214 PMCID: PMC10219015 DOI: 10.3390/ijms24108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Caveolae are 50-100 nm cell surface plasma membrane invaginations observed in terminally differentiated cells. They are characterized by the presence of the protein marker caveolin-1. Caveolae and caveolin-1 are involved in regulating several signal transduction pathways and processes. It is well recognized that they have a central role as regulators of atherosclerosis. Caveolin-1 and caveolae are present in most of the cells involved in the development of atherosclerosis, including endothelial cells, macrophages, and smooth muscle cells, with evidence of either pro- or anti-atherogenic functions depending on the cell type examined. Here, we focused on the role of caveolin-1 in the regulation of the LDLs' fate in endothelial cells.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (F.M.); (D.M.)
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (F.M.); (D.M.)
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (F.M.); (D.M.)
| |
Collapse
|
14
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
15
|
Park H, Shin JA, Lim J, Lee S, Ahn JH, Kang JL, Choi YH. Increased Caveolin-2 Expression in Brain Endothelial Cells Promotes Age-Related Neuroinflammation. Mol Cells 2022; 45:950-962. [PMID: 36572563 PMCID: PMC9794556 DOI: 10.14348/molcells.2022.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 12/28/2022] Open
Abstract
Aging is a major risk factor for common neurodegenerative diseases. Although multiple molecular, cellular, structural, and functional changes occur in the brain during aging, the involvement of caveolin-2 (Cav-2) in brain ageing remains unknown. We investigated Cav-2 expression in brains of aged mice and its effects on endothelial cells. The human umbilical vein endothelial cells (HUVECs) showed decreased THP-1 adhesion and infiltration when treated with Cav-2 siRNA compared to control siRNA. In contrast, Cav-2 overexpression increased THP-1 adhesion and infiltration in HUVECs. Increased expression of Cav-2 and iba-1 was observed in brains of old mice. Moreover, there were fewer iba-1-positive cells in the brains of aged Cav-2 knockout (KO) mice than of wild-type aged mice. The levels of several chemokines were higher in brains of aged wild-type mice than in young wild-type mice; moreover, chemokine levels were significantly lower in brains of young mice as well as aged Cav-2 KO mice than in their wild-type counterparts. Expression of PECAM1 and VE-cadherin proteins increased in brains of old wild-type mice but was barely detected in brains of young wild-type and Cav-2 KO mice. Collectively, our results suggest that Cav-2 expression increases in the endothelial cells of aged brain, and promotes leukocyte infiltration and age-associated neuroinflammation.
Collapse
Affiliation(s)
- Hyunju Park
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| | - Jung A Shin
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Jiwoo Lim
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| | - Seulgi Lee
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| | - Youn-Hee Choi
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Seoul 07804, Korea
| |
Collapse
|
16
|
Chen H, Zhou J, Zhang G, Luo Z, Li L, Kang X. Emerging role and therapeutic implication of mTOR signalling in intervertebral disc degeneration. Cell Prolif 2022; 56:e13338. [PMID: 36193577 PMCID: PMC9816935 DOI: 10.1111/cpr.13338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023] Open
Abstract
Intervertebral disc degeneration (IDD), an important cause of chronic low back pain (LBP), is considered the pathological basis for various spinal degenerative diseases. A series of factors, including inflammatory response, oxidative stress, autophagy, abnormal mechanical stress, nutritional deficiency, and genetics, lead to reduced extracellular matrix (ECM) synthesis by intervertebral disc (IVD) cells and accelerate IDD progression. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a vital role in diverse degenerative diseases. Recent studies have shown that mTOR signalling is involved in the regulation of autophagy, oxidative stress, inflammatory responses, ECM homeostasis, cellular senescence, and apoptosis in IVD cells. Accordingly, we reviewed the mechanism of mTOR signalling in the pathogenesis of IDD to provide innovative ideas for future research and IDD treatment.
Collapse
Affiliation(s)
- Hai‐Wei Chen
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Jian‐Wei Zhou
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| | - Guang‐Zhi Zhang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Zhang‐Bin Luo
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Lei Li
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China
| | - Xue‐Wen Kang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouGansuPeople's Republic of China,The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPeople's Republic of China,Key Laboratory of Orthopaedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouGansu ProvincePeople's Republic of China
| |
Collapse
|
17
|
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19:619-636. [PMID: 36045302 PMCID: PMC9428886 DOI: 10.1038/s41571-022-00668-4] [Citation(s) in RCA: 374] [Impact Index Per Article: 124.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer. The entry of cells into senescence can act as a barrier to tumorigenesis; however, in certain contexts senescent malignant and non-malignant cells can acquire pro-tumorigenic properties. The authors of this Review discuss the cell-intrinsic and cell-extrinsic mechanisms involved in both the antitumorigenic and tumour-promoting roles of senescent cells, and describe the potential of various senolytic and senomorphic therapeutic approaches in oncology. Cellular senescence is a natural barrier to tumorigenesis; senescent cells are widely detected in premalignant lesions from patients with cancer. Cellular senescence is induced by anticancer therapy and can contribute to some treatment-related adverse events (TRAEs). Senescent cells exert both protumorigenic and antitumorigenic effects via cell-autonomous and paracrine mechanisms. Pharmacological modulation of senescence-associated phenotypes has the potential to improve therapy efficacy and reduce the incidence of TRAEs.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Johannes Kepler University, Linz, Austria.,Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.,Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
18
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Ali HH, AL-Rawi K, Khalaf Y, Alaaraji S, Aldahham B, Awad M, Al-ani O, Al-ani F, Ali AT. Serum Caveolin-1 Level is Inversely Associated with Serum Vaspin, Visfatin, and HbA1c in Newly Diagnosed Men with Type-2 Diabetes. Rep Biochem Mol Biol 2022; 11:299-309. [PMID: 36164629 PMCID: PMC9455185 DOI: 10.52547/rbmb.11.2.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The fluctuation in serum caveolin-1 (Cav-1) concentrations is an important indicator of many diseases. Irrespective of the actual cause, a significant reduction of serum Cav-1 is associated with a significant increase in insulin secretion and hyperinsulinemia. The aim of the current study was to evaluate the relationship between serum Cav-1, serum vaspin and visfatin in newly diagnosed men with T2DM. METHODS Eighty-two newly diagnosed men with T2DM were matched for age and body mass indexes (BMIs) with a similar number of non-diabetic men. Serum Cav-1, vaspin and visfatin were assessed through enzyme-linked immunosorbent assay. Fasting serum glucose (FSG), glycohaemoglobin A1C (HbA1c) were both measured using automated method. In addition, waist-circumferences, waist-hip ratio, systolic (SBP), and diastolic blood pressure (DBP) were also obtained. RESULTS Serum concentration of Cav-1(ng/mL) was significantly low in men newly diagnosed with T2DM, (2.334±0.7627) compared with non-diabetic controls (4.321±1.143), p< 0.0001. In contrast, patients with T2DM exhibited significantly higher serum concentrations of vaspin and visfatin (ng/mL), 142.4±60.53) and 2.99±1.091), than controls, 81.53±39.32) and 1.456±0.654), respectively, p< 0.0001. Expectedly, patients with T2DM have significantly higher FSG, HbA1c, systolic blood pressure (SBP), and diastolic blood pressure (DBP). CONCLUSION There was an inverse significant relationship between Cav-1 and vaspin, visfatin, HbA1c, FSG, and hypertension. This study suggests that serum Cav-1 can be used as a diagnostic marker to predict T2DM in individuals and families under high risk.
Collapse
Affiliation(s)
- Hameed Hussein Ali
- Departemnt of Chemistry, College of Sciences, University of Anbar, Ramadi, Al-Anbar province Iraq.
| | - Khalid AL-Rawi
- Departemnt of Chemistry, College of Sciences, University of Anbar, Ramadi, Al-Anbar province Iraq.
| | - Yousif Khalaf
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Anbar, Ramadi, Al-Anbar province, Iraq.
| | - Shakir Alaaraji
- Department of Chemistry, College of Education for Pure Sciences, University of Anbar, Ramadi, Al-Anbar province, Iraq.
| | - Bilal Aldahham
- Department of Applied Chemistry, College of Applied Sciences, University of Anbar, Ramadi, Al-Anbar province, Iraq.
| | - Muthanna Awad
- Department of Chemistry, College of Education for Pure Sciences, University of Anbar, Ramadi, Al-Anbar province, Iraq.
| | - Osamah Al-ani
- Odessa National Medical University, Odessa, 65000, Ukraine.
| | - Faisal Al-ani
- Odessa National Medical University, Odessa, 65000, Ukraine.
| | | |
Collapse
|
20
|
Zhu L, Xie ZY, Jiang ZL, Wang XH, Shi H, Chen L, Wu XT. Unfolded protein response alleviates acid-induced premature senescence by promoting autophagy in nucleus pulposus cells. Cell Biol Int 2022; 46:568-578. [PMID: 35019194 DOI: 10.1002/cbin.11751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/08/2022]
Abstract
Acid-induced cellular senescence is a critical underlying mechanism of intervertebral disc (IVD) degeneration (IDD). Acid stimulation activates a variety of biological changes including autophagy, endoplasmic reticulum stress, and related unfolded protein response (UPR), which are important regulators of cellular senescence. However, the precise mechanism of acid-mediated UPR and autophagy in nucleus pulposus cell (NPC) senescence has not been fully elucidated. In this study, we used acid to mimic the acidic microenvironment of IVD, and rat NPCs were cultured with or without autophagy or UPR signaling small-interfering RNAs. The related proteins and genes were assessed by immunofluorescence staining assay, Western blot analyses, and quantitative real-time polymerase chain reaction to monitor the activation of these signals and classify the molecular mechanisms underlying the correlation between autophagy and UPR pathway. Cell cycle analyses, senescence-associated β-galactosidase staining, gene expression, and immunoblotting analyses were performed to observe NPC senescence. Results showed that acid stimulation not only induced NPC senescence, but also initiated UPR and autophagy. Silencing the binding immunoglobulin protein signaling of UPR or autophagy signaling promoted rat NPC senescence. Knock-down of the UPR also blocked NPC autophagy. Taken together, UPR inhibits NPC senescence under acidic condition by activating autophagy. Hence, UPR-dependent autophagy could be an effective biologic target for the treatment of IDD in the future.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Hu Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Goutas A, Outskouni Z, Papathanasiou I, Satra M, Koliakos G, Trachana V. Dysregulation of Caveolin-1 Phosphorylation and Nuclear Translocation Is Associated with Senescence Onset. Cells 2021; 10:cells10112939. [PMID: 34831162 PMCID: PMC8616550 DOI: 10.3390/cells10112939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
We recently reported that the inability of osteoarthritic (OA) chondrocytes to repair oxidative stress (OS) induced DNA damage is linked to Cav-1 overexpression/improper localization. We speculated that the senescent status of OA cells was responsible for this Cav-1 dysregulation. Here, to further investigate this hypothesis, we used Wharton Jelly derived mesenchymal stem cells (WJ-MSCs) and investigated Cav-1 function as cells reached replicative senescence or upon stress induced senescence (SIPS). We showed that Cav-1 is upregulated, phosphorylated and translocated to the nucleus in young WJ-MSCs upon acute exogenous OS, and that it returns back to basal/nonphosphorylated levels and exports the nucleus in the recovery phase. However, as cells reach senescence, this regulation is lost. OS did not induce any Cav-1-mediated response, which is concomitant with the inability of older cells to restore DNA damage. Furthermore, downregulation of Cav-1 resulted in persistent OS-induced DNA damage and subsequent onset of senescence. We also report that the establishment of senescence is mediated by autophagy stimulation, since downregulation of autophagy key molecule Atg5, simultaneously with Cav-1 downregulation, was found to inhibit SIPS. Basically, we propose that Cav-1 involvement in DNA damage response can lead to senescence, either because the damage is extensive or because Cav-1 is absent/unable to perform its homeostatic role.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Zozo Outskouni
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Maria Satra
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - George Koliakos
- Biohellenika, Biotechnology Company, 57001 Thessaloniki, Greece;
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
- Correspondence: ; Tel.: +30-2410-685624
| |
Collapse
|
22
|
Narasimhan A, Flores RR, Robbins PD, Niedernhofer LJ. Role of Cellular Senescence in Type II Diabetes. Endocrinology 2021; 162:6345039. [PMID: 34363464 PMCID: PMC8386762 DOI: 10.1210/endocr/bqab136] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a cell fate that occurs in response to numerous types of stress and can promote tissue repair or drive inflammation and disruption of tissue homeostasis depending on the context. Aging and obesity lead to an increase in the senescent cell burden in multiple organs. Senescent cells release a myriad of senescence-associated secretory phenotype factors that directly mediate pancreatic β-cell dysfunction, adipose tissue dysfunction, and insulin resistance in peripheral tissues, which promote the onset of type II diabetes mellitus. In addition, hyperglycemia and metabolic changes seen in diabetes promote cellular senescence. Diabetes-induced cellular senescence contributes to various diabetic complications. Thus, type II diabetes is both a cause and consequence of cellular senescence. This review summarizes recent studies on the link between aging, obesity, and diabetes, focusing on the role of cellular senescence in disease processes.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Rafael R Flores
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
- Correspondence: Laura J. Niedernhofer, MD, PhD, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Janelle V, Neault M, Lebel MÈ, De Sousa DM, Boulet S, Durrieu L, Carli C, Muzac C, Lemieux S, Labrecque N, Melichar HJ, Mallette FA, Delisle JS. p16 INK4a Regulates Cellular Senescence in PD-1-Expressing Human T Cells. Front Immunol 2021; 12:698565. [PMID: 34434190 PMCID: PMC8381277 DOI: 10.3389/fimmu.2021.698565] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
T-cell dysfunction arising upon repeated antigen exposure prevents effective immunity and immunotherapy. Using various clinically and physiologically relevant systems, we show that a prominent feature of PD-1-expressing exhausted T cells is the development of cellular senescence features both in vivo and ex vivo. This is associated with p16INK4a expression and an impaired cell cycle G1 to S-phase transition in repeatedly stimulated T cells. We show that these T cells accumulate DNA damage and activate the p38MAPK signaling pathway, which preferentially leads to p16INK4a upregulation. However, in highly dysfunctional T cells, p38MAPK inhibition does not restore functionality despite attenuating senescence features. In contrast, p16INK4a targeting can improve T-cell functionality in exhausted CAR T cells. Collectively, this work provides insights into the development of T-cell dysfunction and identifies T-cell senescence as a potential target in immunotherapy.
Collapse
Affiliation(s)
- Valérie Janelle
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Mathieu Neault
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Marie-Ève Lebel
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Dave Maurice De Sousa
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Salix Boulet
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Ludovic Durrieu
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Cédric Carli
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Chloé Muzac
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Labrecque
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Heather J Melichar
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Frédérick A Mallette
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Sébastien Delisle
- Research Centre, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Division of Hematology-Oncology, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| |
Collapse
|
24
|
Mahendra Y, He M, Rouf MA, Tjakra M, Fan L, Wang Y, Wang G. Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation. Clin Biomech (Bristol, Avon) 2021; 88:105417. [PMID: 34246943 DOI: 10.1016/j.clinbiomech.2021.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Arteriovenous malformations are congenital vascular lesions characterized by a direct and tangled connection between arteries and veins, which disrupts oxygen circulation and normal blood flow. Arteriovenous malformations often occur in the patient with hereditary hemorrhagic telangiectasia. The attempts to elucidate the causative factors and pathogenic mechanisms of arteriovenous malformations are now still in progress. Some studies reported that shear stress in blood flow is one of the factors involved in arteriovenous malformations manifestation. Through several mechanotransducers harboring the endothelial cells membrane, the signal from shear stress is transduced towards the responsible signaling pathways in endothelial cells to maintain cell homeostasis. Any disruption in this well-established communication will give rise to abnormal endothelial cells differentiation and specification, which will later promote arteriovenous malformations. In this review, we discuss the update of several mechanotransducers that have essential roles in shear stress-induced signaling pathways, such as activin receptor-like kinase 1, Endoglin, Notch, vascular endothelial growth factor receptor 2, Caveolin-1, Connexin37, and Connexin40. Any disruption of these signaling potentially causes arteriovenous malformations. We also present some recent insights into the fundamental analysis, which attempts to determine potential and alternative solutions to battle arteriovenous malformations, especially in a less invasive and risky way, such as gene treatments.
Collapse
Affiliation(s)
- Yoga Mahendra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Muhammad Abdul Rouf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Marco Tjakra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Longling Fan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
25
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim JH, Kim GT, Yoon S, Lee HI, Ko KR, Lee SC, Kim DK, Shin J, Lee SY, Lee S. Low serum vitamin B 12 levels are associated with degenerative rotator cuff tear. BMC Musculoskelet Disord 2021; 22:364. [PMID: 33865356 PMCID: PMC8053277 DOI: 10.1186/s12891-021-04231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vitamin B12 (Vit B12) deficiency results in elevated homocysteine levels and interference with collagen cross-linking, which may affect tendon integrity. The purpose of this study was to investigate whether serum Vit B12 levels were correlated with degenerative rotator cuff (RC) tear. METHODS Eighty-seven consecutive patients with or without degenerative RC tear were enrolled as study participants. Possible risk factors (age, sex, medical history, bone mineral density, and serum chemistries including glucose, magnesium, calcium, phosphorus, zinc, homocysteine, Vitamin D, Vit B12, homocysteine, and folate) were assessed. Significant variables were selected based on the results of univariate analyses, and a logistic regression model (backward elimination) was constructed to predict the presence of degenerative RC tear. RESULTS In the univariate analysis, the group of patients with degenerative RC tear had a mean concentration of 528.4 pg/mL Vit B12, which was significantly lower than the healthy control group (627.1 pg/mL). Logistic regression analysis using Vit B12 as an independent variable revealed that Vit B12 concentrations were significantly correlated with degenerative RC tear (p = 0.044). However, Vit B12 levels were not associated with tear size. CONCLUSION Low serum levels of Vit B12 were independently related to degenerative RC tear. Further investigations are warranted to determine if Vit B12 supplementation can decrease the risk of this condition.
Collapse
Affiliation(s)
- Jae Hwa Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Go-Tak Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Siyeoung Yoon
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyun Il Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, Goyang-si, Gyeonggi-do, 10380, Republic of Korea
| | - Kyung Rae Ko
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Sang-Cheol Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Do Kyung Kim
- CHA Graduate School of Medicine, 120 Hyeryong-ro, Pocheon, 11160, Republic of Korea
| | - Jaeyeon Shin
- Department of Computer Science, College of IT Engineering, SeMyung University, Semyung-ro, Jecheon-si, Chung-cheong bukdo, 27136, South Korea
| | - So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
27
|
Csete ME. Basic Science of Frailty-Biological Mechanisms of Age-Related Sarcopenia. Anesth Analg 2021; 132:293-304. [PMID: 32769382 DOI: 10.1213/ane.0000000000005096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aging is associated with loss of function across organ systems, contributing to systemic frailty. Loss of skeletal muscle mass and function, in particular, is a major source of frailty in older adults, severely impacting quality of life. Some loss of muscle mass and strength with aging is inevitable, and sarcopenia, the severe loss of muscle mass with aging, is common. Sarcopenia is determined in part by genetics but can be modified by lifestyle choices. The pathophysiologic underpinnings of sarcopenia are complex and multifactorial. In this review, the causes of sarcopenia are surveyed at the systems, cell, subcellular, and molecular levels with emphasis on the interplay between these various causes of this degenerative disease process.
Collapse
Affiliation(s)
- Marie E Csete
- From the Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
28
|
Torices S, Roberts SA, Park M, Malhotra A, Toborek M. Occludin, caveolin-1, and Alix form a multi-protein complex and regulate HIV-1 infection of brain pericytes. FASEB J 2020; 34:16319-16332. [PMID: 33058236 PMCID: PMC7686148 DOI: 10.1096/fj.202001562r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
HIV-1 enters the brain by altering properties of the blood-brain barrier (BBB). Recent evidence indicates that among cells of the BBB, pericytes are prone to HIV-1 infection. Occludin (ocln) and caveolin-1 (cav-1) are critical determinants of BBB integrity that can regulate barrier properties of the BBB in response to HIV-1 infection. Additionally, Alix is an early acting endosomal factor involved in HIV-1 budding from the cells. The aim of the present study was to evaluate the role of cav-1, ocln, and Alix in HIV-1 infection of brain pericytes. Our results indicated that cav-1, ocln, and Alix form a multi-protein complex in which they cross-regulate each other's expression. Importantly, the stability of this complex was affected by HIV-1 infection. Modifications of the complex resulted in diminished HIV-1 infection and alterations of the cytokine profile produced by brain pericytes. These results identify a novel mechanism involved in HIV-1 infection contributing to a better understanding of the HIV-1 pathology and the associated neuroinflammatory responses.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Samantha A. Roberts
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Minseon Park
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Arun Malhotra
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Michal Toborek
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
29
|
Kruglikov I. Acoustic Waves in Axonal Membrane and Caveolins are the New Targets for Pain Treatment with High Frequency Ultrasound. J Pain Res 2020; 13:2791-2798. [PMID: 33173328 PMCID: PMC7646452 DOI: 10.2147/jpr.s281468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reciprocal interaction between electrical and mechanical waves observed in axonal membrane during its excitation leads to a paradigm shift in pain research making the uncoupling of electro-mechanical signals an interesting target in pain treatment. This uncoupling can be realized either through direct disturbance of the mechanical surface waves in axonal membrane or through shifting of the thermodynamic state of this membrane far from its phase transition point. Both effects can be effectively realized through application of the very high frequency ultrasound waves. Additional target for application of ultrasound in pain treatment is the caveolin-1, which is abundantly present in Schwann cells as well as in the non-axonal tissues. Both targets demonstrate frequency-dependent reactions, thus making a very high frequency ultrasound a promising treatment modality in pain treatment.
Collapse
Affiliation(s)
- Ilja Kruglikov
- Scientific Department, Wellcomet GmbH, Karlsruhe, Germany
| |
Collapse
|
30
|
Sahay B, Mergia A. The Potential Contribution of Caveolin 1 to HIV Latent Infection. Pathogens 2020; 9:pathogens9110896. [PMID: 33121153 PMCID: PMC7692328 DOI: 10.3390/pathogens9110896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is not capable of eradicating HIV from infected individuals mainly due to HIV’s persistence in small reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription have been described. Despite these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore, there is a need for more understanding of novel mechanisms that are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin 1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1 in lymphocytes has been controversial. Recent evidence, however, convincingly established the expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to understand HIV latent infection.
Collapse
Affiliation(s)
| | - Ayalew Mergia
- Correspondence: ; Tel.: +352-294-4139; Fax: +352-392-9704
| |
Collapse
|
31
|
Gopu V, Fan L, Shetty RS, Nagaraja M, Shetty S. Caveolin-1 scaffolding domain peptide regulates glucose metabolism in lung fibrosis. JCI Insight 2020; 5:137969. [PMID: 32841217 PMCID: PMC7566714 DOI: 10.1172/jci.insight.137969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Increased metabolism distinguishes myofibroblasts or fibrotic lung fibroblasts (fLfs) from the normal lung fibroblasts (nLfs). The mechanism of metabolic activation in fLfs has not been fully elucidated. Furthermore, the antifibrogenic effects of caveolin-1 scaffolding domain peptide CSP/CSP7 involving metabolic reprogramming in fLfs are unclear. We therefore analyzed lactate and succinate levels, as well as the expression of glycolytic enzymes and hypoxia inducible factor-1α (HIF-1α). Lactate and succinate levels, as well as the basal expression of glycolytic enzymes and HIF-1α, were increased in fLfs. These changes were reversed following restoration of p53 or its transcriptional target microRNA-34a (miR-34a) expression in fLfs. Conversely, inhibition of basal p53 or miR-34a increased glucose metabolism, glycolytic enzymes, and HIF-1α in nLfs. Treatment of fLfs or mice having bleomycin- or Ad-TGF-β1-induced lung fibrosis with CSP/CSP7 reduced the expression of glycolytic enzymes and HIF-1α. Furthermore, inhibition of p53 or miR-34a abrogated CSP/CSP7-mediated restoration of glycolytic flux in fLfs in vitro and in mice with pulmonary fibrosis and lacking p53 or miR-34a expression in fibroblasts in vivo. Our data indicate that dysregulation of glucose metabolism in fLfs is causally linked to loss of basal expression of p53 and miR-34a. Treatment with CSP/CSP7 constrains aberrant glucose metabolism through restoration of p53 and miR-34a.
Collapse
|
32
|
Marudamuthu AS, Bhandary YP, Fan L, Radhakrishnan V, MacKenzie B, Maier E, Shetty SK, Nagaraja MR, Gopu V, Tiwari N, Zhang Y, Watts AB, Williams RO, Criner GJ, Bolla S, Marchetti N, Idell S, Shetty S. Caveolin-1-derived peptide limits development of pulmonary fibrosis. Sci Transl Med 2020; 11:11/522/eaat2848. [PMID: 31826982 DOI: 10.1126/scitranslmed.aat2848] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease with a median 5-year survival of ~20%. Current U.S. Food and Drug Administration-approved pharmacotherapies slow progression of IPF, providing hope that even more effective treatments can be developed. Alveolar epithelial progenitor type II cell (AEC) apoptosis and proliferation, and accumulation of activated myofibroblasts or fibrotic lung fibroblasts (fLfs) contribute to the progression of IPF. Full-length caveolin-1 scaffolding domain peptide (CSP; amino acids 82 to 101 of Cav1: DGIWKASFTTFTVTKYWFYR) inhibits AEC apoptosis and fLf activation and expansion and attenuates PF in bleomycin (BLM)-induced lung injury in mice. Like full-length CSP, a seven-amino acid deletion fragment of CSP, CSP7 (FTTFTVT), demonstrated antifibrotic effects in murine models of lung fibrosis. When CSP7 was administered during the fibrotic phase in three preclinical models [single-dose BLM, repeated-dose BLM, and adenovirus expressing constitutively active transforming growth factor-β1 (Ad-TGF-β1)-induced established PF], CSP7 reduced extracellular matrix (ECM) markers characteristic of PF, increased AEC survival, and improved lung function. CSP7 is amenable to both systemic (intraperitoneal) or direct lung delivery in a nebulized or dry powder form. Furthermore, CSP7 treatment of end-stage human IPF lung tissue explants attenuated ECM production and promoted AEC survival. Ames testing for mutagenicity and in vitro human peripheral blood lymphocyte and in vivo mouse micronucleus transformation assays indicated that CSP7 is not carcinogenic. Together, these findings support the further development of CSP7 as an antifibrotic treatment for patients with IPF or other interstitial lung diseases.
Collapse
Affiliation(s)
- Amarnath Satheesh Marudamuthu
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Yashodhar Prabhakar Bhandary
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Liang Fan
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Vijay Radhakrishnan
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - BreAnne MacKenzie
- Lung Therapeutics Inc., 2801 Via Fortuna Suite 425 Austin, TX 78746, USA
| | - Esther Maier
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Shwetha Kumari Shetty
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - M R Nagaraja
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Venkadesaperumal Gopu
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Nivedita Tiwari
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Alan B Watts
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Gerald J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, 3401 North Broad Street, Philadelphia, PA 19140, USA
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, 3401 North Broad Street, Philadelphia, PA 19140, USA
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, 3401 North Broad Street, Philadelphia, PA 19140, USA
| | - Steven Idell
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Sreerama Shetty
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA.
| |
Collapse
|
33
|
Sun S, Cai B, Li Y, Su W, Zhao X, Gong B, Li Z, Zhang X, Wu Y, Chen C, Tsang SH, Yang J, Li X. HMGB1 and Caveolin-1 related to RPE cell senescence in age-related macular degeneration. Aging (Albany NY) 2020; 11:4323-4337. [PMID: 31284269 PMCID: PMC6660032 DOI: 10.18632/aging.102039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Accumulation of lipofuscin in the retinal pigment epithelium (RPE) is considered a major cause of RPE dysfunction and senescence in age-related macular degeneration (AMD), and N-retinylidene-N-retinylethanolamine (A2E) is the main fluorophore identified in lipofuscin from aged human eyes. Here, human-induced pluripotent stem cell (iPSC)-RPE was generated from healthy individuals to reveal proteomic changes associated with A2E-related RPE cell senescence. A novel RPE cell senescence-related protein, high-mobility group box 1 (HMGB1), was identified based on proteomic mass spectrometry measurements on iPSC-RPE with A2E treatment. Furthermore, HMGB1 upregulated Caveolin-1, which also was related RPE cell senescence. To investigate whether changes in HMGB1 and Caveolin-1 expression under A2E exposure contribute to RPE cell senescence, human ARPE-19 cells were stimulated with A2E; expression of HMGB1, Caveolin-1, tight junction proteins and senescent phenotypes were verified. HMGB1 inhibition alleviated A2E induced cell senescence. Migration of RPE cells was evaluated. Notably, A2E less than or equal to 10μM induced both HMGB1 and Caveolin-1 protein upregulation and HMGB1 translocation, while Caveolin-1 expression was downregulated when there was more than 10μM A2E. Our data indicate that A2E-induced upregulation of HMGB1、Caveolin-1 and HMGB1 release may relate to RPE cell senescence and play a role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Shuo Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Bincui Cai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Yao Li
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA.,Departments of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Wenqi Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xuzheng Zhao
- Tangshan Eye Hospital, Tangshan, People's Republic of China
| | - Boteng Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen City, People's Republic of China
| | - Chao Chen
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen City, People's Republic of China
| | - Stephen H Tsang
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA.,Departments of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Jin Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| |
Collapse
|
34
|
Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020; 60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the most common disease to increase as life expectancy increases. Most high-profile pharmacological treatments for age-related CVD have led to inefficacious results, implying that novel approaches to treating these pathologies are needed. Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug-mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and precisely targeted therapeutics for CVD prevention and treatment.
Collapse
|
35
|
Yu S, Xia H, Guo Y, Qian X, Zou X, Yang H, Yin M, Liu H. Ginsenoside Rb1 retards aging process by regulating cell cycle, apoptotic pathway and metabolism of aging mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112746. [PMID: 32165173 DOI: 10.1016/j.jep.2020.112746] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenoside Rb1 (GRb1), an active ingredient of traditional Chinese medicine Panax ginseng C. A. Meyer, has displayed various activities such as antioxidative stress, autophagic regulation and apoptotic inhibition. However, the role of GRb1 in natural aging process remains unclear. AIM OF THE STUDY In this study, we investigated the anti-aging effect and underlying molecular mechanisms of ginsenoside Rb1 in natural aging process. MATERIALS AND METHODS We treated the natural aging C57BL/6J mice by intragastrical administration of GRb1 (100 mg/kg·BW) every other day for 10 months and investigated the effect of GRb1 on aging symptoms. By RT-qPCR and WB analysis, we examined the expression levels of senescence-associated biomarkers and aging-related pathways, including cell cycle, apoptosis and inflammation in aging process. Further, metabolomics analysis was conducted to investigate the changes of aging-related metabolites after GRb1 treatment. RESULTS Treatment with GRb1 significantly attenuated the aging-induced physiological changes, including slowed reduction of body weight, suppression of hair loss, decrease of arterial wall thickness and heart weight. We found that GRb1 treatment remarkably reversed the changed expression of p53-p21-Cdk2 axis in heart tissues of aging mice, which was responsible for the cell cycle repression. And the activations of apoptosis-associated factors (Bax and Caspase-3) were also inhibited by GRb1 treatment. Further, based on the serum metabolomics analysis using HPLC-MS/MS analysis, several metabolites were identified as potential biomarkers related to the anti-aging effect of GRb1, including glycerophospholipids, carboxylic acids and fatty acyls. Especially, the change of glycerophospholipid metabolism pathway was found to be the mostly changed. CONCLUSION Our studies suggest that GRb1 retards the aging process in mice by regulating cell cycle and apoptotic pathway, which were associated with the alleviation of metabolic disorders.
Collapse
Affiliation(s)
- Shujie Yu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, China.
| | - Hui Xia
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China.
| | - Xiaoxian Qian
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, China.
| | - Xiaojuan Zou
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Huabing Yang
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Mingzhu Yin
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Hongtao Liu
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| |
Collapse
|
36
|
Kruglikov IL, Scherer PE. Caveolin as a Universal Target in Dermatology. Int J Mol Sci 2019; 21:E80. [PMID: 31877626 PMCID: PMC6981867 DOI: 10.3390/ijms21010080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 is strongly expressed in different dermal and subdermal cells and physically interacts with signaling molecules and receptors, among them with transforming growth factor beta (TGF-β), matrix metalloproteinases, heat shock proteins, toll-like and glucocorticoid receptors. It should therefore be heavily involved in the regulation of cellular signaling in various hyperproliferative and inflammatory skin conditions. We provide an overview of the role of the caveolin-1 expression in different hyperproliferative and inflammatory skin diseases and discuss its possible active involvement in the therapeutic effects of different well-known drugs widely applied in dermatology. We also discuss the possible role of caveolin expression in development of the drug resistance in dermatology. Caveolin-1 is not only an important pathophysiological factor in different hyperproliferative and inflammatory dermatological conditions, but can also serve as a target for their treatment. Targeted regulation of caveolin is likely to serve as a new treatment strategy in dermatology.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| |
Collapse
|
37
|
Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Mol Neurobiol 2019; 57:1656-1673. [PMID: 31811565 DOI: 10.1007/s12035-019-01800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Preclinical experiments and clinical trials demonstrated that angiotensin II AT1 receptor overactivity associates with aging and cellular senescence and that AT1 receptor blockers (ARBs) protect from age-related brain disorders. In a primary neuronal culture submitted to glutamate excitotoxicity, gene set enrichment analysis (GSEA) revealed expression of several hundred genes altered by glutamate and normalized by candesartan correlated with changes in expression in Alzheimer's patient's hippocampus. To further establish whether our data correlated with gene expression alterations associated with aging and senescence, we compared our global transcriptional data with additional published datasets, including alterations in gene expression in the neocortex and cerebellum of old mice, human frontal cortex after age of 40, gene alterations in the Werner syndrome, rodent caloric restriction, Ras and oncogene-induced senescence in fibroblasts, and to tissues besides the brain such as the muscle and kidney. The most significant and enriched pathways associated with aging and senescence were positively correlated with alterations in gene expression in glutamate-injured neurons and, conversely, negatively correlated when the injured neurons were treated with candesartan. Our results involve multiple genes and pathways, including CAV1, CCND1, CDKN1A, CHEK1, ICAM1, IL-1B, IL-6, MAPK14, PTGS2, SERPINE1, and TP53, encoding proteins associated with aging and senescence hallmarks, such as inflammation, oxidative stress, cell cycle and mitochondrial function alterations, insulin resistance, genomic instability including telomere shortening and DNA damage, and the senescent-associated secretory phenotype. Our results demonstrate that AT1 receptor blockade ameliorates central mechanisms of aging and senescence. Using ARBs for prevention and treatment of age-related disorders has important translational value.
Collapse
|
38
|
Joshi B, Pawling J, Shankar J, Pacholczyk K, Kim Y, Tran W, Meng F, Rahman AMA, Foster LJ, Leong HS, Dennis JW, Nabi IR. Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion. Oncotarget 2019; 10:6668-6677. [PMID: 31803361 PMCID: PMC6877104 DOI: 10.18632/oncotarget.27313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/26/2019] [Indexed: 01/07/2023] Open
Abstract
Caveolin-1 is a transmembrane protein with both tumor promoter and suppressor functions that remain poorly understood. Cav1 phosphorylation by Src kinase on tyrosine 14 is closely associated with focal adhesion dynamics and tumor cell migration, however the role of pCav1 in vivo in tumor progression remains poorly characterized. Herein, we expressed phosphomimetic Y14D, wild type, and non-phosphorylatable Y14F forms of Cav1 in MDA-MB-435 cancer cells. Expression of Cav1Y14D reduced cell proliferation and induced the TP53 tumor suppressor. Ectopic expression in MDA-MB-435 cells of Y14 phosphorylatable Cav1 was required for induction of TP53 in response to oxidative stress. Cav1Y14D promotes an apparent reversal of the Warburg effect and markedly inhibited tumor growth in vivo. However, Cav1 induced pseudopodial recruitment of glycolytic enzymes, and time-lapse intravital imaging showed increased invadopodia protrusion and extravasation into blood vessels for Cav1WT and Y14D but not for Y14F. Our results suggest that Cav1 Y14 phosphorylation levels play a role in the conflicting demands on metabolic resources associated with cancer cell proliferation versus motility.
Collapse
Affiliation(s)
- Bharat Joshi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jay Shankar
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Karina Pacholczyk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yohan Kim
- Translational Prostate Cancer Research Group, London Regional Cancer Program, University of Western Ontario, London, Canada
| | - Wynn Tran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Fanrui Meng
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Leonard J Foster
- Centre for High-throughput Biology, University of British Columbia, Vancouver, Canada
| | - Hon S Leong
- Translational Prostate Cancer Research Group, London Regional Cancer Program, University of Western Ontario, London, Canada
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ivan R Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Kruglikov IL, Zhang Z, Scherer PE. Caveolin-1 in skin aging - From innocent bystander to major contributor. Ageing Res Rev 2019; 55:100959. [PMID: 31493519 PMCID: PMC6783389 DOI: 10.1016/j.arr.2019.100959] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 01/10/2023]
Abstract
Caveolin-1 (Cav-1) appears to be both a pathophysiological contributor and a target in different inflammatory and hyperproliferative skin conditions as well as in skin aging. Skin fibroblasts demonstrate an up-regulation of Cav-1 expression both in chronological and UV-induced aging, and such an up-regulation was observed both in vitro and in vivo. Typical alterations in aging skin involve a reduction of the dermis thickness, a significant expansion of the dermal white adipose tissue as well as modifications of the content and distribution of hyaluronan, impairment of autophagic flux, a reduction of collagen expression and an increase in tissue inflammation. All of these phenomena can be connected with changes in Cav-1 expression in the aging skin. Modified expression of Cav-1 can also significantly influence the mechanical properties of individual skin layers, thus changing the total mechanical stability of the layered composite skin/WAT, leading to typical structural modifications of the skin surface in the aging skin. Selective reduction of Cav-1 expression has the potential to exert anti-aging effects on the skin.
Collapse
Affiliation(s)
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8549, USA.
| |
Collapse
|
40
|
Parton RG, Del Pozo MA, Vassilopoulos S, Nabi IR, Le Lay S, Lundmark R, Kenworthy AK, Camus A, Blouin CM, Sessa WC, Lamaze C. Caveolae: The FAQs. Traffic 2019; 21:181-185. [PMID: 31448516 DOI: 10.1111/tra.12689] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Caveolae are an abundant, but enigmatic, plasma membrane feature of vertebrate cells. In this brief commentary, the authors attempt to answer some key questions related to the formation and function of caveolae based on round-table discussions at the first EMBO Workshop on Caveolae held in France in May 2019.
Collapse
Affiliation(s)
- Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Queensland, Australia
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Stéphane Vassilopoulos
- Myology Research Center/Institute of Myology, UMRS 974 Sorbonne University-Inserm, Paris, France
| | - Ivan R Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soazig Le Lay
- SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, Bat IRIS IBS, Angers, France
| | | | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anne Camus
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
| | - Cedric M Blouin
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR 3666, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Paris, France
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Christophe Lamaze
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR 3666, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Paris, France
| |
Collapse
|
41
|
The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1. Biomolecules 2019; 9:biom9080341. [PMID: 31382626 PMCID: PMC6723262 DOI: 10.3390/biom9080341] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Stress-induced premature cellular senescence is a significant factor in the onset of age-dependent disease in the cardiovascular system. Plasminogen activator inhibitor-1 (PAI-1), a major TGF-β1/p53 target gene and negative regulator of the plasmin-based pericellular proteolytic cascade, is elevated in arterial plaques, vessel fibrosis, arteriosclerosis, and thrombosis, correlating with increased tissue TGF-β1 levels. Additionally, PAI-1 is necessary and sufficient for the induction of p53-dependent replicative senescence. The mechanism of PAI-1 transcription in senescent cells appears to be dependent on caveolin-1 signaling. Src kinases are upstream effectors of both FAK and caveolin-1 activation as FAKY577,Y861 and caveolin-1Y14 phosphorylation are not detected in TGF-β1-stimulated src family kinase (pp60c-src, Yes, Fyn) triple-deficient (SYF−/−/−) cells. However, restoration of pp60c-src expression in SYF-null cells rescued both caveolin-1Y14 phosphorylation and PAI-1 induction in response to TGF-β1. Furthermore, TGF-β1-initiated Src phosphorylation of caveolin-1Y14 is critical in Rho-ROCK-mediated suppression of the SMAD phosphatase PPM1A maintaining and, accordingly, SMAD2/3-dependent transcription of the PAI-1 gene. Importantly, TGF-β1 failed to induce PAI-1 expression in caveolin-1-null cells, correlating with reductions in both Rho-GTP loading and SMAD2/3 phosphorylation. These findings implicate caveolin-1 in expression controls on specific TGF-β1/p53 responsive growth arrest genes. Indeed, up-regulation of caveolin-1 appears to stall cells in G0/G1 via activation of the p53/p21 cell cycle arrest pathway and restoration of caveolin-1 in caveolin-1-deficient cells rescues TGF-β1 inducibility of the PAI-1 gene. Although the mechanism is unclear, caveolin-1 inhibits p53/MDM2 complex formation resulting in p53 stabilization, induction of p53-target cell cycle arrest genes (including PAI-1), and entrance into premature senescence while stimulating the ATM→p53→p21 pathway. Identification of molecular events underlying senescence-associated PAI-1 expression in response to TGF-β1/src kinase/p53 signaling may provide novel targets for the therapy of cardiovascular disease.
Collapse
|
42
|
Husari A, Steinberg T, Dieterle MP, Prucker O, Rühe J, Jung B, Tomakidi P. On the relationship of YAP and FAK in hMSCs and osteosarcoma cells: Discrimination of FAK modulation by nuclear YAP depletion or YAP silencing. Cell Signal 2019; 63:109382. [PMID: 31376525 DOI: 10.1016/j.cellsig.2019.109382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
The HIPPO pathway effector YAP has been shown to be regulated by FAK-signaling. However, the existence of an inverse relationship between YAP and FAK is unknown. Here we demonstrate in hMSCs and in the human osteosarcoma derived cell line Saos that Verteporfin- or RNAi-dependent YAP depletion has opposing influence on FAK. While Verteporfin strikingly reduced cellular FAK protein and phosphorylation, RNAi led to an increase of both molecules and point on a generalizable aspect of the YAP/FAK interrelationship. YAP depletion also caused down-regulation of osteogenic genes in hMSCs, irrespective from the YAP intervention mode. Verteporfin induced topological changes in conjunction with reduced protein levels of β1 integrin, paxillin, and zyxin of focal adhesions (FAs) in hMSCs, suggesting FAK-decrease-related alterations in FAs, which seems to be a FAK-dependent mechanism. On the cell behavioral level, YAP-FAK-interrelation involves proliferation and senescence, as indicated by proliferation inhibition and increase of β-Galactosidase-activity in hMSCs. Our findings, derived from this dual strategy of YAP intervention, reveal a YAP-FAK relationship in conjunction with molecular and cell behavioral consequences. Moreover, they deepen the current scientific knowledge on YAP from a different scientific point of view, since this inverse YAP/FAK-relationship seems to be transferrable to other cell types, including cell entities with pathological background.
Collapse
Affiliation(s)
- Ayman Husari
- Department of Orthodontics, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany.
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Oswald Prucker
- IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany.
| | - Jürgen Rühe
- IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany.
| | - Britta Jung
- Department of Orthodontics, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| |
Collapse
|
43
|
Ni B, Shen H, Wang W, Lu H, Jiang L. TGF-β1 reduces the oxidative stress-induced autophagy and apoptosis in rat annulus fibrosus cells through the ERK signaling pathway. J Orthop Surg Res 2019; 14:241. [PMID: 31358027 PMCID: PMC6664534 DOI: 10.1186/s13018-019-1260-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study is to explore the effects of TGF-β1 on autophagy and apoptosis induced by exogenous hydrogen peroxide (H2O2) in annulus fibrosus (AF) cells and possible signal pathways involved in this process. Methods AF cells were isolated from rat lumbar discs and subjected to different concentrations of exogenous H2O2 (50, 100, 200 μmol/L) for different time periods (0.5, 1, 2, and 4 h). Cell viability was determined by CCK-8 assay, and the levels of autophagy and apoptosis were evaluated by Western blotting and caspase 3, 8, 9 activity assay. By administration with different concentrations of TGF-β1 (5, 10, 20 ng/mL), the effects of TGF-β1 on autophagy and apoptosis induced by H2O2 were observed, and the possible signaling pathways were also investigated by using various apoptosis inhibitors or an autophagy inhibitor Bafilomycin A (Baf A) in AF cells. Results H2O2 significantly impaired cell viability in a dose- and time-dependent manner. H2O2 also induced a sudden and the highest level of autophagy at 1 h, and gradually increased apoptosis through ERK pathway. The mitochondrial pathway was involved in H2O2-induced apoptosis in AF cells. TGF-β1 reduced the expression of p-ERK and downregulated the expressions of Beclin-1, LC3 II/I, and mitochondrial-related apoptotic proteins (Bax/Bcl-2, caspase-9). Meanwhile, TGF-β1 downregulated the level of intracellular H2O2 through upregulating the expression level of glutathione peroxidase-1 (GPx-1). Conclusions TGF-β1 reduced autophagy and apoptosis induced by exogenous H2O2 through downregulating the expression of ERK in AF cells. TGF-β1 could downregulate the level of ERK and intracellular H2O2 by upregulating GPx-1.
Collapse
Affiliation(s)
- Binbin Ni
- Department of Orthopaedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hao Shen
- Department of Orthopaedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wei Wang
- Department of Orthopaedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hua Lu
- Department of Orthopaedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Leisheng Jiang
- Department of Orthopaedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
44
|
Cell Intrinsic and Extrinsic Mechanisms of Caveolin-1-Enhanced Metastasis. Biomolecules 2019; 9:biom9080314. [PMID: 31362353 PMCID: PMC6723107 DOI: 10.3390/biom9080314] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Caveolin-1 (CAV1) is a scaffolding protein with a controversial role in cancer. This review will initially discuss earlier studies focused on the role as a tumor suppressor before elaborating subsequently on those relating to function of the protein as a promoter of metastasis. Different mechanisms are summarized illustrating how CAV1 promotes such traits upon expression in cancer cells (intrinsic mechanisms). More recently, it has become apparent that CAV1 is also a secreted protein that can be included into exosomes where it plays a significant role in determining cargo composition. Thus, we will also discuss how CAV1 containing exosomes from metastatic cells promote malignant traits in more benign recipient cells (extrinsic mechanisms). This ability appears, at least in part, attributable to the transfer of specific cargos present due to CAV1 rather than the transfer of CAV1 itself. The evolution of how our perception of CAV1 function has changed since its discovery is summarized graphically in a time line figure.
Collapse
|
45
|
The Effect of the Repression of Oxidative Stress on Tenocyte Differentiation: A Preliminary Study of a Rat Cell Model Using a Novel Differential Tensile Strain Bioreactor. Int J Mol Sci 2019; 20:ijms20143437. [PMID: 31336919 PMCID: PMC6678503 DOI: 10.3390/ijms20143437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
Because of limitations in the current understanding of the exact pathogenesis of tendinopathy, and the lack of an optimal experimental model, effective therapy for the disease is currently unavailable. This study aims to prove that repression of oxidative stress modulates the differentiation of tendon-derived cells (TDCs) sustaining excessive tensile strains, and proposes a novel bioreactor capable of applying differential tensile strains to cultured cells simultaneously. TDCs, including tendon-derived stem cells, tenoblasts, tenocytes, and fibroblasts, were isolated from the patellar tendons of Sprague‒Dawley rats. Cyclic uniaxial stretching with 4% or 8% strain at 0.5 Hz for 8 h was applied to TDCs. TDCs subjected to 8% strain were treated with epigallocatechin gallate (EGCG), piracetam, or no medication. Genes representing non-tenocyte lineage (Pparg, Sox9, and Runx2) and type I and type III collagen were analyzed by quantitative polymerase chain reaction. The 8% strain group showed increased expression of non-tenocyte lineage genes and type III/type I collagen ratios compared with the control and 4% strain groups, and the increased expression was ameliorated with addition of EGCG and piracetam. The model developed in this work could be applied to future research on the pathophysiology of tendinopathy and development of treatment options for the disease. Repression of oxidative stress diminishes the expression of genes indicating aberrant differentiation in a rat cell model, which indicates potential therapeutic intervention of tendinopathy, the often relentlessly degenerate condition.
Collapse
|
46
|
Kruglikov IL, Scherer PE. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. NPJ Regen Med 2019; 4:9. [PMID: 31044089 PMCID: PMC6486604 DOI: 10.1038/s41536-019-0071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Reduced expression of caveolin-1 (Cav-1) is an important pathogenic factor in hypertrophic scarring (HTS). Such a reduction can be found in connection with the main known risk factors for HTS, including dark skin, female gender, young age, burn site and severity of the injury. The degree of overexpression of Cav-1 associated with different therapeutic options for HTS correlates with clinical improvements in HTS. This makes endo- or exogenous induction of Cav-1 not only an important therapeutic target for HTS, but also highlights its use as a preventive target to reduce or avoid HTS formation.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549 USA
| |
Collapse
|
47
|
Charles S, Raj V, Ramasamy M, Ilango K, Arockiaraj J, Murugesan S, Mala K. Pharmacological inhibition of guanosine triphosphate cyclohydrolase1 elevates tyrosine phosphorylation of caveolin1 and cellular senescence. Eur J Pharmacol 2019; 848:1-10. [PMID: 30690003 DOI: 10.1016/j.ejphar.2019.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023]
Abstract
The role of 2,4-diamino-6-hydroxypyrimidine (DAHP), on cellular-senescence remains unclear as differential effects of DAHP have been reported in cardiovascular and cerebrovascular systems. We investigated the effect of pharmacologically-induced guanosine-triphosphate-cyclohydrolase1 (GTPCH1)-inhibition, through DAHP, on cellular-senescence in experimentally-induced diabetic and non-diabetic Wistar rats. Cellular-senescence was evaluated through senescence-associated events, namely, cell-cycle-arrest of peripheral blood mononuclear cells (PBMNCs); myocardial DNA fragmentation, total antioxidant capacity (TAC), telomerase-activity, nicotinamide adenine dinucleotide (NAD+)-content and tyrosine14-phosphorylation of caveolin1 (pY14) in similarly-aged, pubertal Wistar rats with streptozotocin (STZ) and/or DAHP. Oxidative stress (OS) indices such as myocardial biopterin concentrations (tetrahydrobiopterin-BH4 and dihydrobiopterin-BH2) and plasma total nitrite and nitrate (NOx) were determined. DAHP, per se, exhibited distinct senescence; in addition, in STZ+DAHP (the cardiomyopathy model), there was a marked accumulation of cells in G0G1 phase, as evidenced through flow-cytometry analysis, as-well-as fragmented DNA, than the respective controls suggesting the DAHP-mediated onset of senescence in circulating cells and the myocardium, with or without STZ. Concentrations of BH4 and BH2, and NOx were impaired in STZ and/or DAHP, indicating elevated OS in the treatment groups. In the independent treatment groups or the combination treatment, typical senescence indicators including myocardial telomerase-activity, NAD+-content and TAC were significantly reduced, while there was a marked elevation in the concentrations of pY14 as compared to the respective controls, reinforcing the occurrence of senescence in PBMNCs and the myocardium. We postulate that DAHP promotes early onset of cellular-senescence, potentially through OS-mediated cellular events in diabetic or non-diabetic models.
Collapse
Affiliation(s)
- Soniya Charles
- Department of Medical Research, Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur 603202, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603202, Tamil Nadu, India
| | - Vijay Raj
- Department of Medical Research, Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur 603202, Tamil Nadu, India
| | - Mohankumar Ramasamy
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603202, Tamil Nadu, India; Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603202, Tamil Nadu, India
| | - Kaliappan Ilango
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603202, Tamil Nadu, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603202, Tamil Nadu, India
| | | | - Kanchana Mala
- Department of Medical Research, Medical College Hospital and Research Center, SRM Institute of Science and Technology, Kattankulathur 603202, Tamil Nadu, India.
| |
Collapse
|
48
|
Yamao T, Yamashita YI, Yamamura K, Nakao Y, Tsukamoto M, Nakagawa S, Okabe H, Hayashi H, Imai K, Baba H. Cellular Senescence, Represented by Expression of Caveolin-1, in Cancer-Associated Fibroblasts Promotes Tumor Invasion in Pancreatic Cancer. Ann Surg Oncol 2019; 26:1552-1559. [PMID: 30805811 DOI: 10.1245/s10434-019-07266-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The role of senescence of cancer-associated fibroblasts (CAFs) in the development of cancer is controversial. In this study, we investigated whether cellular senescence of CAFs, represented by CAV1 expression, affects tumor progression in pancreatic cancers (PC). METHODS Because CAV1 plays a major role in cellular senescence, we used CAV1 expression to monitor cellular senescence. A total of 157 consecutive patients with PC who underwent curative resection were enrolled in the study. Patients were divided into two groups according to CAV1 expression in CAFs by immunohistochemistry. We investigated the relationship between the CAV1 expression in CAFs and the patients' clinicopathological characteristics, including survival. We also established ten CAFs cell lines using PC clinical samples and chose one of them to knock down CAV1 expression. Finally, we cultured a PC cell line (MIAPaCa-2) in CAF-conditioned medium (CM). RESULTS Regarding patients' clinicopathological characteristics, the serum levels of carbohydrate antigen 19-9 and the rate of advanced tumor stage (pT2, 3, and 4) were significantly higher in the high-CAV1 group. The high-CAV1 group had significantly worse outcomes in both overall and disease-free survival (p < 0.01). Additionally, in co-culture assays using CAFs-CM and MIAPaCa-2 cells, we found that knockdown of CAV1 in CAFs negatively affected the invasion of PC cells. CONCLUSIONS In PC, CAV1 expression in CAFs is associated with patients' poor prognosis and the downregulation of CAV1 in CAFs reduces the invasiveness of PC cells. Therefore, CAV1 of CAFs might be a new target for the treatment of PC.
Collapse
Affiliation(s)
- Takanobu Yamao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kensuke Yamamura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayo Tsukamoto
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan. .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan.
| |
Collapse
|
49
|
Abstract
INTRODUCTION Flask-shaped plasma membrane (PM) invaginations called caveolae and their constitutive caveolin and cavin proteins regulate cellular function via plasma membrane and intracellular signal transduction pathways. Caveolae are present in a variety of cells in the lung including airway smooth muscle (ASM) where they interact with other proteins, receptors, and ion channels and thereby have the potential to affect both normal and disease processes such as inflammation, contractility, and fibrosis. Given their involvement in cell signaling, caveolae may play important roles in mediating and modulating aging processes, and contribute to lung diseases of aging. Areas covered: This review provides a broad overview of the current state of knowledge regarding caveolae and their constituent proteins in lung diseases in the elderly and identifies potential mechanisms that can be targeted for future therapies. Expert Commentary: Caveolin-1 may play a protective role in lung disease. What is less clear is whether altered caveolin-1 with aging is a natural process, or a biomarker of disease progression in the elderly.
Collapse
Affiliation(s)
- Sarah A Wicher
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA
| | - Y S Prakash
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,b Department of Anesthesiology& Perioperative Medicine , Mayo Clinic , Rochester , MN , USA
| | - Christina M Pabelick
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,b Department of Anesthesiology& Perioperative Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
50
|
Chen NC, Partridge AT, Tuzer F, Cohen J, Nacarelli T, Navas-Martín S, Sell C, Torres C, Martín-García J. Induction of a Senescence-Like Phenotype in Cultured Human Fetal Microglia During HIV-1 Infection. J Gerontol A Biol Sci Med Sci 2018; 73:1187-1196. [PMID: 29415134 PMCID: PMC6093403 DOI: 10.1093/gerona/gly022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
HIV-1 causes premature aging in chronically infected patients. Despite effective anti-retroviral therapy, around 50% of patients suffer HIV-associated neurocognitive disorders (HAND), which likely potentiate aging-associated neurocognitive decline. Microglia support productive HIV-1 infection in the brain. Elevated markers of cellular senescence, including p53 and p21, have been detected in brain tissues from patients with HAND, but the potential for microglia senescence during HIV-1 infection has not been investigated. We hypothesized that HIV-1 can induce senescence in microglia. Primary human fetal microglia were exposed to single-round infectious HIV-1 pseudotypes or controls, and examined for markers of senescence. Post-infection, microglia had significantly elevated: senescence-associated β-galactosidase activity, p21 levels, and production of cytokines such as IL-6 and IL-8, potentially indicative of a senescence-associated secretory phenotype. We also found increased detection of p53-binding protein foci in microglia nuclei post-infection. Additionally, we examined mitochondrial reactive oxygen species (ROS) and respiration, and found significantly increased mitochondrial ROS levels and decreased ATP-linked respiration during HIV-1 infection. Supernatant transfer from infected cultures to naïve microglia resulted in elevated p21 and caveolin-1 levels, and IL-8 production. Finally, nucleoside treatment reduced senescence markers induction in microglia. Overall, HIV-1 induces a senescence-like phenotype in human microglia, which could play a role in HAND.
Collapse
Affiliation(s)
- Natalie C Chen
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania
- MD/PhD Program, Philadelphia, Pennsylvania
- Molecular and Cell Biology and Genetics Graduate Program, Philadelphia, Pennsylvania
| | - Andrea T Partridge
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania
- Microbiology and Immunology Graduate Program, Philadelphia, Pennsylvania
| | - Ferit Tuzer
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Justin Cohen
- Molecular and Cell Biology and Genetics Graduate Program, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Timothy Nacarelli
- Molecular and Cell Biology and Genetics Graduate Program, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Sonia Navas-Martín
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Christian Sell
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Julio Martín-García
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|