1
|
Jerab D, Blangero F, da Costa PCT, de Brito Alves JL, Kefi R, Jamoussi H, Morio B, Eljaafari A. Beneficial Effects of Omega-3 Fatty Acids on Obesity and Related Metabolic and Chronic Inflammatory Diseases. Nutrients 2025; 17:1253. [PMID: 40219010 PMCID: PMC11990730 DOI: 10.3390/nu17071253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are known to help resolve inflammation through generation of anti-inflammatory eicosanoids and specialized pro-resolving mediators, including resolvins, protectins, and maresins. Through binding to the GPR120/FFAR4 receptor, their beneficial effects result from phospholipid membrane remodeling, impairment of inflammatory signaling molecules clustering, subsequent inhibition of NF-κB and inflammasome activation, and a reduction in oxidative stress. Obesity, a chronic inflammatory disease that contributes to metabolic disorders, is alleviated by n-3 PUFAs. In the adipose tissue (AT) of individuals with obesity, n-3 PUFAs counteract hypoxia, inhibit immune cell infiltration and AT inflammation, improve insulin sensitivity, and reduce fat mass. Beyond AT, n-3 PUFAs also alleviate other metabolic disorders such as metabolic-associated steatotic liver disease (MASLD), gut dysbiosis, and/or renal dysfunction. In cardiovascular disease (CVD), they are mainly recommended as a secondary prevention for patients with coronary heart disease risks. This review provides an in-depth analysis of the benefits of n-3 PUFAs in obesity and related metabolic diseases, examining both the mechanistic and clinical aspects. Additionally, it also explores the effects of n-3 PUFAs in obesity-related chronic inflammatory conditions, including inflammatory bowel disease, psoriasis, rheumatoid arthritis, osteoarthritis, and multiple sclerosis, by targeting specific pathophysiological mechanisms. Clinical applications and limitations of n-3 PUFAs are discussed based on findings from human clinical trials.
Collapse
Affiliation(s)
- Donia Jerab
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia;
| | - Ferdinand Blangero
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil (J.L.d.B.A.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil (J.L.d.B.A.)
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia;
| | - Henda Jamoussi
- Research Unit “Obesity: Etiopathology and Treatment, UR18ES01”, Faculty of Medicine, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Beatrice Morio
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
| | - Assia Eljaafari
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
- Department of Clinical Research, Hospices Civils de Lyon, 69002 Lyon, France
| |
Collapse
|
2
|
Albuquerque-Souza E, Dalli J. Specialized pro-resolving lipid mediators in gut immunophysiology: from dietary precursors to inflammation resolution. Curr Opin Clin Nutr Metab Care 2025; 28:96-103. [PMID: 39819646 DOI: 10.1097/mco.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW This review aims to examine recent research on the role of specialized pro-resolving mediators (SPMs) in the regulation of gut immunophysiology. RECENT FINDINGS Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, driven by disruptions in the intestinal barrier and an imbalance between the host immune system and gut microbiota. Dietary polyunsaturated fatty acids (PUFAs), especially ω-3 and ω-6, are key regulators of immune responses and help maintain the integrity of the intestinal barrier. These PUFAs serve as precursors to SPMs, lipid mediators that play a critical role in resolving inflammation. SPMs actively reprogram immune cells, promoting the clearance of cellular debris, reducing cytokine production, and restoring tissue homeostasis without suppressing the immune response. Emerging evidence indicates that in the gut, SPMs strengthen intestinal barrier function, modulate immune responses in colitis and colon cancer, and influence gut microbiota composition. SUMMARY The recent evidence strongly supports the central role of SPMs in maintaining gut health and restoring organ function following inflammatory challenges. This evidence highlights the potential of therapeutic approaches that target these pathways for both the prevention and treatment of gut-related inflammatory conditions.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Maliha A, Tahsin M, Fabia TZ, Rahman SM, Rahman MM. Pro-resolving metabolites: Future of the fish oil supplements. J Funct Foods 2024; 121:106439. [DOI: 10.1016/j.jff.2024.106439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Lee CT, Tribble GD. Roles of specialized pro-resolving mediators and omega-3 polyunsaturated fatty acids in periodontal inflammation and impact on oral microbiota. FRONTIERS IN ORAL HEALTH 2023; 4:1217088. [PMID: 37559676 PMCID: PMC10409488 DOI: 10.3389/froh.2023.1217088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by dysbiotic dental biofilms. Management of periodontitis is primarily anti-bacterial via mechanical removal of bacterial biofilm. The successful resolution requires wound healing and tissue regeneration, which are not always achieved with these traditional methods. The discovery of specialized pro-resolving mediators (SPMs), a class of lipid mediators that induce the resolution of inflammation and promote local tissue homeostasis, creates another option for the treatment of periodontitis and other diseases of chronic inflammation. In this mini-review, we discuss the host-modulatory effects of SPMs on periodontal tissues and changes in the taxonomic composition of the gut and oral microbiome in the presence of SPMs and SPM precursor lipids. Further research into the relationship between host SPM production and microbiome-SPM modification has the potential to unveil new diagnostic markers of inflammation and wound healing. Expanding this field may drive the discovery of microbial-derived bioactive therapeutics to modulate immune responses.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gena D. Tribble
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Balta MG, Schreurs O, Hansen TV, Tungen JE, Vik A, Glaab E, Küntziger TM, Schenck K, Baekkevold ES, Blix IJS. Expression and function of resolvin RvD1 n-3 DPA receptors in oral epithelial cells. Eur J Oral Sci 2022; 130:e12883. [PMID: 35808844 PMCID: PMC9544308 DOI: 10.1111/eos.12883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Chronic inflammatory responses can inflict permanent damage to host tissues. Specialized pro‐resolving mediators downregulate inflammation but also can have other functions. The aim of this study was to examine whether oral epithelial cells express the receptors FPR2/ALX and DRV1/GPR32, which bind RvD1n‐3 DPA, a recently described pro‐resolving mediator derived from omega‐3 docosapentaenoic acid (DPA), and whether RvD1n‐3 DPA exposure induced significant responses in these cells. Gingival biopsies were stained using antibodies to FPR2/ALX and DRV1/GPR32. Expression of FPR2/ALX and DRV1/GPR32 was examined in primary oral epithelial cells by qRT‐PCR, flow cytometry, and immunofluorescence. The effect of RvD1n‐3 DPA on intracellular calcium mobilization and transcription of beta‐defensins 1 and 2, and cathelicidin was evaluated by qRT‐PCR. FPR2/ALX and DRV1/GPR32 were expressed by gingival keratinocytes in situ. In cultured oral epithelial cells, FPR2/ALX was detected on the cell surface, whereas FPR2/ALX and DRV1/GPR32 were detected intracellularly. Exposure to RvD1n‐3 DPA induced intracellular calcium mobilization, FPR2/ALX internalization, DRV1/GPR32 translocation to the nucleus, and significantly increased expression of genes coding for beta‐defensin 1, beta‐defensin 2, and cathelicidin. This shows that the signal constituted by RvD1n‐3 DPA is recognized by oral keratinocytes and that this can strengthen the antimicrobial and regulatory potential of the oral epithelium.
Collapse
Affiliation(s)
- Maria G Balta
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Olav Schreurs
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Trond V Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, Norway
| | - Jørn E Tungen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, Norway
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, Norway
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Thomas M Küntziger
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Espen S Baekkevold
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Inger Johanne S Blix
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Hughes FM, Allkanjari A, Odom MR, Jin H, Purves JT. Specialized pro-resolution mediators in the bladder: Receptor expression and recovery of bladder function from cystitis. Exp Biol Med (Maywood) 2022; 247:700-711. [PMID: 35044873 PMCID: PMC9039492 DOI: 10.1177/15353702211067465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a central process in most benign bladder disorders, and its control is a delicate balance between initiating factors and resolving factors. While recent discoveries have shown a central role for the NLRP3 inflammasome in initiation, the resolving pathways remain unexplored. Resolution is controlled by specialized pro-resolution mediators (SPMs) functioning through seven receptors (six in rodents). Here we demonstrate expression of all seven in humans (six in mice) through immunocytochemistry. Expression was universal in urothelia with most also expressed in smooth muscle. We next explored the therapeutic potential of three SPMs; Resolvin E1 (RvE1), Maresin 1 (MaR1), and Protectin D1 (PD1). SPMs promote epithelial wound/barrier repair and RvE1 triggered dose-dependent wound closure in urothelia in vitro (scratch assay) (EC90 = 12.5 nM). MaR1 and PD1 were equally effective at this concentration. In vivo analyses employed a cyclophosphamide (CP) model of bladder inflammation (Day 0-CP [150 mg/kg], Day 1 to 3 SPM [25 µg/kg/day], Day 4 - analysis). All three SPMs reduced bladder inflammation (Evans blue) and bladder weights to control levels. Effects of RvE1 were also examined by urodynamics. CP decreased void volume, increased frequency and decreased bladder capacity while RvE1 restored values to control levels. Finally, SPMs reduce fibrosis and RvE1 reduced urothelial expression of TGF-β and collagen I to control values. Together these results expand the known SPMs active in the bladder tissue and provide promising therapeutic targets for controlling inflammation in a wide variety of inflammation-associated benign bladder diseases.
Collapse
|
7
|
Hughes FM, Harper SN, Nosé BD, Allkanjari A, Zheng MT, Jin H, Purves JT. Specialized Pro-resolution Mediators in the bladder; Annexin-A1 normalizes inflammation and bladder dysfunction during bladder outlet obstruction. Am J Physiol Renal Physiol 2021; 321:F443-F454. [PMID: 34396790 DOI: 10.1152/ajprenal.00205.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bladder Outlet Obstruction (BOO) is ultimately experienced by ≈90% of men, most commonly secondary to benign prostatic hyperplasia. Inflammation is a critical driver of BOO pathology in the bladder and can be divided into two critical steps; initiation and resolution. While great strides have been made toward understanding initiation of inflammation in the bladder (through the NLRP3 inflammasome), no studies have examined resolution. Resolution is controlled by 5 classes of compounds known as Specialized Pro-resolving Mediators (SPMs), all of which bind to one or more of 7 different receptors. Using immunocytochemistry, we show the presence of 6 of the known SPM receptors in the bladder of control and BOO rats; the 7th has no rodent homolog. The expression was predominantly localized to the urothelia, often with some expression in the smooth muscle, but little to none in the interstitial cells. We next examined the therapeutic potential of the Annexin-A1 resolution system, also present in control and BOO bladders. Using the peptide mimetic Ac2-26, we blocked inflammation-initiating pathways (NLRP3 activation), diminished BOO-induced inflammation (Evans blue dye extravasation), and normalized bladder dysfunction (urodynamics). Excitingly, Ac2-26 also promoted faster and more complete functional recovery after surgical de-obstruction. Together, the results demonstrate that the bladder expresses a wide variety of potential pro-resolving pathways and that modulation of just one of these pathways can alleviate many detrimental aspects of BOO and speed recovery after de-obstruction. This work establishes a precedent for future studies evaluating SPM effectiveness in resolving the many conditions associated with bladder inflammation.
Collapse
Affiliation(s)
- Francis M Hughes
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Shelby N Harper
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brent D Nosé
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Armand Allkanjari
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Michael T Zheng
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Huixia Jin
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - J Todd Purves
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Specialized Pro-Resolving Mediators and the Lymphatic System. Int J Mol Sci 2021; 22:ijms22052750. [PMID: 33803130 PMCID: PMC7963193 DOI: 10.3390/ijms22052750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Diminished lymphatic function and abnormal morphology are common in chronic inflammatory diseases. Recent studies are investigating whether it is possible to target chronic inflammation by promoting resolution of inflammation, in order to enhance lymphatic function and attenuate disease. Resolution of inflammation is an active process regulated by bioactive lipids known as specialized pro-resolving mediators (SPMs). SPMs can modulate leukocyte migration and function, alter cytokine/chemokine release, modify autophagy, among other immune-related activities. Here, we summarize the role of the lymphatics in resolution of inflammation and lymphatic impairment in chronic inflammatory diseases. Furthermore, we discuss the current literature describing the connection between SPMs and the lymphatics, and the possibility of targeting the lymphatics with innovative SPM therapy to promote resolution of inflammation and mitigate disease.
Collapse
|
9
|
Jeong YS, Bae YS. Formyl peptide receptors in the mucosal immune system. Exp Mol Med 2020; 52:1694-1704. [PMID: 33082511 PMCID: PMC7572937 DOI: 10.1038/s12276-020-00518-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Formyl peptide receptors (FPRs) belong to the G protein-coupled receptor (GPCR) family and are well known as chemotactic receptors and pattern recognition receptors (PRRs) that recognize bacterial and mitochondria-derived formylated peptides. FPRs are also known to detect a wide range of ligands, including host-derived peptides and lipids. FPRs are highly expressed not only in phagocytes such as neutrophils, monocytes, and macrophages but also in nonhematopoietic cells such as epithelial cells and endothelial cells. Mucosal surfaces, including the gastrointestinal tract, the respiratory tract, the oral cavity, the eye, and the reproductive tract, separate the external environment from the host system. In mucosal surfaces, the interaction between the microbiota and host cells needs to be strictly regulated to maintain homeostasis. By sharing the same FPRs, immune cells and epithelial cells may coordinate pathophysiological responses to various stimuli, including microbial molecules derived from the normal flora. Accumulating evidence shows that FPRs play important roles in maintaining mucosal homeostasis. In this review, we summarize the roles of FPRs at mucosal surfaces.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
|
11
|
Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019; 56:100980. [PMID: 31726228 DOI: 10.1016/j.arr.2019.100980] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Sarcopenia, obesity and their coexistence, obese sarcopenia (OBSP) as well as atherosclerosis-related cardio-vascular diseases (ACVDs), including chronic heart failure (CHF), are among the greatest public health concerns in the ageing population. A clear age-dependent increased prevalence of sarcopenia and OBSP has been registered in CHF patients, suggesting mechanistic relationships. Development of OBSP could be mediated by a crosstalk between the visceral and subcutaneous adipose tissue (AT) and the skeletal muscle under conditions of low-grade local and systemic inflammation, inflammaging. The present review summarizes the emerging data supporting the idea that inflammaging may serve as a mutual mechanism governing the development of sarcopenia, OBSP and ACVDs. In support of this hypothesis, various immune cells release pro-inflammatory mediators in the skeletal muscle and myocardium. Subsequently, the endothelial structure is disrupted, and cellular processes, such as mitochondrial activity, mitophagy, and autophagy are impaired. Inflamed myocytes lose their contractile properties, which is characteristic of sarcopenia and CHF. Inflammation may increase the risk of ACVD events in a hyperlipidemia-independent manner. Significant reduction of ACVD event rates, without the lowering of plasma lipids, following a specific targeting of key pro-inflammatory cytokines confirms a key role of inflammation in ACVD pathogenesis. Gut dysbiosis, an imbalanced gut microbial community, is known to be deeply involved in the pathogenesis of age-associated sarcopenia and ACVDs by inducing and supporting inflammaging. Dysbiosis induces the production of trimethylamine-N-oxide (TMAO), which is implicated in atherosclerosis, thrombosis, metabolic syndrome, hypertension and poor CHF prognosis. In OBSP, AT dysfunction and inflammation induce, in concert with dysbiosis, lipotoxicity and other pathophysiological processes, thus exacerbating sarcopenia and CHF. Administration of specialized, inflammation pro-resolving mediators has been shown to ameliorate the inflammatory manifestations. Considering all these findings, we hypothesize that sarcopenia, OBSP, CHF and dysbiosis are inflammaging-oriented disorders, whereby inflammaging is common and most probably the causative mechanism driving their pathogenesis.
Collapse
Affiliation(s)
- Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.; Adelson School of Medicine, Ariel University, Ariel, Israel..
| | - Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
12
|
Norris PC, Libreros S, Serhan CN. Resolution metabolomes activated by hypoxic environment. SCIENCE ADVANCES 2019; 5:eaax4895. [PMID: 31681846 PMCID: PMC6810174 DOI: 10.1126/sciadv.aax4895] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/14/2019] [Indexed: 05/02/2023]
Abstract
Targeting hypoxia-sensitive pathways in immune cells is of interest in treating diseases. Here, we demonstrate that physiologic hypoxia (1% O2), as encountered in bone marrow and spleen, accelerates human M2 macrophage efferocytosis of apoptotic-neutrophils and senescent erythrocytes via lipolysis-dependent biosynthesis of specialized pro-resolving mediators (SPMs), i.e. resolvins, protectins, maresins and lipoxin. SPM-production was enhanced via hypoxia in M2 macrophages interacting with neutrophils and erythrocytes enabling structural elucidation of a novel eicosapentaenoic acid (EPA)-derived resolvin, resolvin E4 (RvE4) that stimulates efferocytosis of senescent erythrocytes and more potently than aspirin in mouse hemorrhagic exudates. In hypoxia, glycolysis inhibition enhanced neutrophil RvE4-SPM biosynthesis. Human macrophage-erythrocyte co-incubations in physiologic hypoxia produced RvE4-SPM from erythrocyte stores of omega-3 fatty acids. These results indicate that hypoxic environments, including bone marrow and spleen as well as sites of inflammation, activate SPM-biosynthetic circuits that in turn stimulate resolution and clearance of senescent erythrocytes and apoptotic neutrophils.
Collapse
|
13
|
Joffre C, Rey C, Layé S. N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front Pharmacol 2019; 10:1022. [PMID: 31607902 PMCID: PMC6755339 DOI: 10.3389/fphar.2019.01022] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
In the past few decades, as a result of their anti-inflammatory properties, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), have gained greater importance in the regulation of inflammation, especially in the central nervous system (in this case known as neuroinflammation). If sustained, neuroinflammation is a common denominator of neurological disorders, including Alzheimer’s disease and major depression, and of aging. Hence, limiting neuroinflammation is a real strategy for neuroinflammatory disease therapy and treatment. Recent data show that n-3 LC-PUFAs exert anti-inflammatory properties in part through the synthesis of specialized pro-resolving mediators (SPMs) such as resolvins, maresins and protectins. These SPMs are crucially involved in the resolution of inflammation. They could be good candidates to resolve brain inflammation and to contribute to neuroprotective functions and could lead to novel therapeutics for brain inflammatory diseases. This review presents an overview 1) of brain n-3 LC-PUFAs as precursors of SPMs with an emphasis on the effect of n-3 PUFAs on neuroinflammation, 2) of the formation and action of SPMs in the brain and their biological roles, and the possible regulation of their synthesis by environmental factors such as inflammation and nutrition and, in particular, PUFA consumption.
Collapse
Affiliation(s)
- Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| | - Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France.,ITERG, Nutrition Health and Lipid Biochemistry Department, Canéjan, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| |
Collapse
|
14
|
Flak MB, Colas RA, Muñoz-Atienza E, Curtis MA, Dalli J, Pitzalis C. Inflammatory arthritis disrupts gut resolution mechanisms, promoting barrier breakdown by Porphyromonas gingivalis. JCI Insight 2019; 4:125191. [PMID: 31292292 PMCID: PMC6629160 DOI: 10.1172/jci.insight.125191] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis is linked with altered host immune responses and severe joint destruction. Recent evidence suggests that loss of gut homeostasis and barrier breach by pathobionts, including Porphyromonas gingivalis, may influence disease severity. The mechanism(s) leading to altered gut homeostasis and barrier breakdown in inflammatory arthritis are poorly understood. In the present study, we found a significant reduction in intestinal concentrations of several proresolving mediators during inflammatory arthritis, including downregulation of the gut-protective mediator resolvin D5n-3 DPA (RvD5n-3 DPA). This was linked with increased metabolism of RvD5n-3 DPA to its inactive 17-oxo metabolite. We also found downregulation of IL-10 expression in the gut of arthritic mice that was coupled with a reduction in IL-10 and IL-10 receptor (IL-10R) in lamina propria macrophages. These changes were linked with a decrease in the number of mucus-producing goblet cells and tight junction molecule expression in the intestinal epithelium of arthritic mice when compared with naive mice. P. gingivalis inoculation further downregulated intestinal RvD5n-3 DPA and Il-10 levels and the expression of gut tight junction proteins. RvD5n-3 DPA, but not its metabolite 17-oxo-RvD5n-3 DPA, increased the expression of both IL-10 and IL-10R in macrophages via the upregulation of the aryl hydrocarbon receptor agonist l-kynurenine. Administration of RvD5n-3 DPA to arthritic P. gingivalis-inoculated mice increased intestinal Il-10 expression, restored gut barrier function, and reduced joint inflammation. Together, these findings uncover mechanisms in the pathogenesis of rheumatoid arthritis, where disruption of the gut RvD5n-3 DPA-IL-10 axis weakens the gut barrier, which becomes permissive to the pathogenic actions of the pathobiont P. gingivalis.
Collapse
Affiliation(s)
- Magdalena B. Flak
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
| | - Romain A. Colas
- Lipid Mediator Unit, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Estefanía Muñoz-Atienza
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
| | | | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, QMUL, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, QMUL, London, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, QMUL, London, United Kingdom
| |
Collapse
|
15
|
Zhang L, Gui S, Liang Z, Liu A, Chen Z, Tang Y, Xiao M, Chu F, Liu W, Jin X, Zhu J, Lu X. Musca domestica Cecropin (Mdc) Alleviates Salmonella typhimurium-Induced Colonic Mucosal Barrier Impairment: Associating With Inflammatory and Oxidative Stress Response, Tight Junction as Well as Intestinal Flora. Front Microbiol 2019; 10:522. [PMID: 30930887 PMCID: PMC6428779 DOI: 10.3389/fmicb.2019.00522] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella typhimurium, a Gram-negative food-borne pathogen, induces impairment in intestinal mucosal barrier function frequently. The injury is related to many factors such as inflammation, oxidative stress, tight junctions and flora changes in the host intestine. Musca domestica cecropin (Mdc), a novel antimicrobial peptide containing 40 amino acids, has potential antibacterial, anti-inflammatory, and immunological functions. It remains unclear exactly whether and how Mdc reduces colonic mucosal barrier damage caused by S. typhimurium. Twenty four 6-week-old male mice were divided into four groups: normal group, control group (S. typhimurium-challenged), Mdc group, and ceftriaxone sodium group (Cs group). HE staining and transmission electron microscopy (TEM) were performed to observe the morphology of the colon tissues. Bacterial load of S. typhimurium in colon, liver and spleen were determined by bacterial plate counting. Inflammatory factors were detected by enzyme linked immunosorbent assay (ELISA). Oxidative stress levels in the colon tissues were also analyzed. Immunofluorescence analysis, RT-PCR, and Western blot were carried out to examine the levels of tight junction and inflammatory proteins. The intestinal microbiota composition was assessed via 16s rDNA sequencing. We successfully built and evaluated an S. typhimurium-infection model in mice. Morphology and microcosmic change of the colon tissues confirmed the protective qualities of Mdc. Mdc could inhibit colonic inflammation and oxidative stress. Tight junctions were improved significantly after Mdc administration. Interestingly, Mdc ameliorated intestinal flora imbalance, which may be related to the improvement of tight junction. Our results shed a new light on protective effects and mechanism of the antimicrobial peptide Mdc on colonic mucosal barrier damage caused by S. typhimurium infection. Mdc is expected to be an important candidate for S. typhimurium infection treatment.
Collapse
Affiliation(s)
- Lun Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhaobo Liang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Along Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhaoxia Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Tang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingzhu Xiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fujiang Chu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayong Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
16
|
Garrido-Mesa J, Rodríguez-Nogales A, Algieri F, Vezza T, Hidalgo-Garcia L, Garrido-Barros M, Utrilla MP, Garcia F, Chueca N, Rodriguez-Cabezas ME, Garrido-Mesa N, Gálvez J. Immunomodulatory tetracyclines shape the intestinal inflammatory response inducing mucosal healing and resolution. Br J Pharmacol 2018; 175:4353-4370. [PMID: 30184260 DOI: 10.1111/bph.14494] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Immunomodulatory tetracyclines are well-characterized drugs with a pharmacological potential beyond their antibiotic properties. Specifically, minocycline and doxycycline have shown beneficial effects in experimental colitis, although pro-inflammatory actions have also been described in macrophages. Therefore, we aimed to characterize the mechanism behind their effect in acute intestinal inflammation. EXPERIMENTAL APPROACH A comparative pharmacological study was initially used to elucidate the most relevant actions of immunomodulatory tetracyclines: doxycycline, minocycline and tigecycline; other antibiotic or immunomodulatory drugs were assessed in bone marrow-derived macrophages and in dextran sodium sulfate (DSS)-induced mouse colitis, where different barrier markers, inflammatory mediators, microRNAs, TLRs, and the gut microbiota composition were evaluated. The sequential immune events that mediate the intestinal anti-inflammatory effect of minocycline in DSS-colitis were then characterized. KEY RESULTS Novel immunomodulatory activity of tetracyclines was identifed; they potentiated the innate immune response and enhanced resolution of inflammation. This is also the first report describing the intestinal anti-inflammatory effect of tigecycline. A minor therapeutic benefit seems to derive from their antibiotic properties. Conversely, immunomodulatory tetracyclines potentiated macrophage cytokine release in vitro, and while improving mucosal recovery in colitic mice, they up-regulated Ccl2, miR-142, miR-375 and Tlr4. In particular, minocycline initially enhanced IL-1β, IL-6, IL-22, GM-CSF and IL-4 colonic production and monocyte recruitment to the intestine, subsequently increasing Ly6C- MHCII+ macrophages, Tregs and type 2 intestinal immune responses. CONCLUSIONS AND IMPLICATIONS Immunomodulatory tetracyclines potentiate protective immune pathways leading to mucosal healing and resolution, representing a promising drug reposition strategy for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- J Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - A Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - F Algieri
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - T Vezza
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - L Hidalgo-Garcia
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M Garrido-Barros
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M P Utrilla
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - F Garcia
- Clinical Microbiology Service, Hospital Universitario San Cecilio, ibs. GRANADA, Red de, Investigación en SIDA, Granada, Spain
| | - N Chueca
- Clinical Microbiology Service, Hospital Universitario San Cecilio, ibs. GRANADA, Red de, Investigación en SIDA, Granada, Spain
| | - M E Rodriguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - N Garrido-Mesa
- School of Health, Sport and Bioscience, University of East London, London, UK
| | - J Gálvez
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
17
|
|