1
|
He S, Yang Z, Li X, Wu H, Zhang L, Wang J, Shan A. Optimized proteolytic resistance motif (DabW)-based U1-2WD: A membrane-induced self-aggregating peptide to trigger bacterial agglutination and death. Acta Biomater 2022; 153:540-556. [PMID: 36162762 DOI: 10.1016/j.actbio.2022.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022]
Abstract
The biggest application bottleneck of antimicrobial peptides (AMPs) is the low oral bioavailability caused by the poor stability of digestive enzymes in the gastrointestinal tract. However, the research methods and evaluation criteria of available studies about anti-proteolytic strategies are not uniform and far from the actual environment in vivo. Here, we developed a research system and evaluation criteria for proteolytic resistance and systematically evaluated the effectiveness of different strategies for improving the protease stability of AMPs on the same platform for the first time. After a comprehensive analysis, Dab modification is identified as the most effective strategy to improve the trypsin stability of AMPs. By further modulating the proteolytic resistance optimization motif (DabW)n, U1-2WD is obtained with ideal stability and antimicrobial properties in vivo and in vitro. Notably, U1-2WD has a unique antibacterial mechanism, which forms amorphous aggregates in the bacteria environment to trigger the agglutination of bacterial cells to prevent bacterial escape. It then kills bacteria by disrupting bacterial membranes and inhibiting bacterial energy metabolism. Overall, our work has led to a new understanding of the effectiveness of proteolytic resistance strategies and accelerated the development of anti-proteolytic AMPs to combat multidrug-resistant bacterial infections. STATEMENT OF SIGNIFICANCE: We developed research system and evaluation criteria for proteolytic resistance and systematically evaluated the effectiveness of different strategies for improving protease stability of AMPs on the same platform for the first time. we found effective strategies to resist trypsin hydrolysis: modification with backbone (β-Arg), D-enantiomer (D-Arg) and L-2,4-diaminobutanoic acid (Dab). Further, the proteolytic resistance optimization motif (DabW)n was designed. When n=3, derivative U1-2WD was obtained with desirable stability and antimicrobial properties in vivo and in vitro. Notably, U1-2WD has a unique antibacterial mechanism, which can self-aggregate into amorphous aggregates in the bacteria environment to mediate the agglutination and sedimentation of bacterial cells to prevent bacterial escape, and then kill bacteria by destroying bacterial membranes and inhibiting bacterial energy metabolism.
Collapse
Affiliation(s)
- Shiqi He
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanyi Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuefeng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hua Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
2
|
Burnaford JL, Nguyen TVT, Henderson SY, Van Alstyne KL. Linking Physiology To Ecological Function: Environmental Conditions Affect Performance And Size Of The Intertidal Kelp Hedophyllum Sessile (Laminariales, Phaeophyceae). JOURNAL OF PHYCOLOGY 2021; 57:128-142. [PMID: 32931614 DOI: 10.1111/jpy.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
For autogenic ecosystem engineers, body size is an aspect of individual performance that has direct connections to community structure; yet the complex morphology of these species can make it difficult to draw clear connections between the environment and performance. We combined laboratory experiments and field surveys to test the hypothesis that individual body size was determined by disparate localized physiological responses to environmental conditions across the complex thallus of the intertidal kelp Hedophyllum sessile, a canopy-forming physical ecosystem engineer. We documented substantial (> 40%) declines in whole-thallus photosynthetic potential (as Maximum Quantum Yield, MQY) as a consequence of emersion, which were related to greater than 10-fold increases in intra-thallus MQY variability (as Coefficient of Variation). In laboratory experiments, desiccation and high light levels during emersion led to lasting impairment of photosynthetic potential and an immediate > 25% reduction in area due to tissue contraction, which was followed by complete loss of structural integrity after three days of submersion. Tissue exposed to desiccation and high light during emersion had higher nitrogen concentrations and lower phlorotannin concentrations than tissue in control treatments (on average 1.36 and 0.1x controls, respectively), suggesting that conditions during emersion have the potential to affect food quality for consumers. Our data indicate that the complex thallus morphology of H. sessile may be critical to this kelp's ability to persist in the intertidal zone despite the physiological challenges of emersion and encourage a more nuanced view of the concept of "sub-lethal stress" on the scale of the whole individual.
Collapse
Affiliation(s)
- Jennifer L Burnaford
- Department of Biological Science, California State University Fullerton, Fullerton, California, USA, 92834
| | - Tuong-Vy T Nguyen
- Department of Biological Science, California State University Fullerton, Fullerton, California, USA, 92834
| | | | - Kathryn L Van Alstyne
- Shannon Point Marine Center, Western Washington University, Anacortes, Washington, 98221, USA
| |
Collapse
|
3
|
Román M, Román S, Vázquez E, Troncoso J, Olabarria C. Heatwaves during low tide are critical for the physiological performance of intertidal macroalgae under global warming scenarios. Sci Rep 2020; 10:21408. [PMID: 33293562 PMCID: PMC7722886 DOI: 10.1038/s41598-020-78526-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
The abundance and distribution of intertidal canopy-forming macroalgae are threatened by the increase in sea surface temperature and in the frequency and intensity of heatwaves caused by global warming. This study evaluated the physiological response of predominant intertidal macroalgae in the NW Iberian Peninsula (Bifurcaria bifurcata, Cystoseira tamariscifolia and Codium tomentosum) to increased seawater temperature during immersion and increased air temperatures during consecutive emersion cycles. We combined field mensuration and laboratory experiments in which we measured mortality, growth, maximum quantum yield and C:N content of the macroalgae. Air temperature was a critical factor in determining physiological responses and survivorship of all species, whereas high seawater temperature had sublethal effects. Cystoseira tamariscifolia suffered the greatest decreases in Fv/Fm, growth and the highest mortality under higher air temperatures, whereas C. tomentosum was the most resistant and resilient species. Two consecutive cycles of emersion under atmospheric heatwaves caused cumulative stress in all three macroalgae, affecting the physiological performance and increasing the mortality. The potential expansion of the warm-temperate species B. bifurcata, C. tamariscifolia and C. tomentosum in the NW Iberian Peninsula in response to increasing seawater temperature may be affected by the impact of increased air temperature, especially in a region where the incidence of atmospheric heatwaves is expected to increase.
Collapse
Affiliation(s)
- Marta Román
- Departamento de Ecoloxía E Bioloxía Animal. Facultade de Ciencias Do Mar, Universidade de Vigo, Campus Lagoas-Marcosende, s/n, 36310, Vigo, Pontevedra, Spain.
- CIM. Grupo de Ecoloxía Costeira, Edificio CC Experimentais, Universidade de Vigo, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Salvador Román
- Departamento de Ecoloxía E Bioloxía Animal. Facultade de Ciencias Do Mar, Universidade de Vigo, Campus Lagoas-Marcosende, s/n, 36310, Vigo, Pontevedra, Spain
- CIM. Grupo de Ecoloxía Costeira, Edificio CC Experimentais, Universidade de Vigo, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain
| | - Elsa Vázquez
- Departamento de Ecoloxía E Bioloxía Animal. Facultade de Ciencias Do Mar, Universidade de Vigo, Campus Lagoas-Marcosende, s/n, 36310, Vigo, Pontevedra, Spain
- CIM. Grupo de Ecoloxía Costeira, Edificio CC Experimentais, Universidade de Vigo, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain
| | - Jesús Troncoso
- Departamento de Ecoloxía E Bioloxía Animal. Facultade de Ciencias Do Mar, Universidade de Vigo, Campus Lagoas-Marcosende, s/n, 36310, Vigo, Pontevedra, Spain
- CIM. Grupo de Ecoloxía Costeira, Edificio CC Experimentais, Universidade de Vigo, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain
| | - Celia Olabarria
- Departamento de Ecoloxía E Bioloxía Animal. Facultade de Ciencias Do Mar, Universidade de Vigo, Campus Lagoas-Marcosende, s/n, 36310, Vigo, Pontevedra, Spain
- CIM. Grupo de Ecoloxía Costeira, Edificio CC Experimentais, Universidade de Vigo, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain
| |
Collapse
|