1
|
Rivaldi M, Frediansyah A, Aziz SAA, Nugroho AP. Active biomonitoring of stream ecosystems: untargeted metabolomic and proteomic responses and free radical scavenging activities in mussels. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:425-443. [PMID: 39789405 DOI: 10.1007/s10646-024-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3). The investigation examined untargeted metabolomic and proteomic responses in the gills and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities in the gills, mantle, and digestive glands. Metabolomic analysis revealed a clear separation between mussel responses from the three stations after 28 days of exposure, with specific metabolites responding to different pollution levels. Proteomic analysis identified β-Actin protein in all stations. The β-Actin protein sequence of unexposed mussels had coverage of 17%, and increased to 23% at S1 on day 28 and 34% at S2 and S3 on day 28. All tissues showed increased DPPH and ABTS activities from day 3 to day 28, mainly in stations S2 and S3. These findings underscore the impact of pollution levels on the metabolomic and proteomic responses of S. woodiana and the importance of these discoveries as early indicators (biomarkers) of long-term aquatic environmental problems. In the face of current environmental challenges, this research raises concerns about the health of water bodies. It underscores the importance of developing robust, standardized, and dependable analytical techniques for monitoring the health of aquatic environments.
Collapse
Affiliation(s)
- Muhammad Rivaldi
- Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia
| | - Solihatun Amidan Amatul Aziz
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia
| | - Andhika Puspito Nugroho
- Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Mosquera JD, Escotte-Binet S, Poulle ML, Betoulle S, St-Pierre Y, Caza F, Saucède T, Zapata S, De Los Angeles Bayas R, Ramirez-Villacis DX, Villena I, Bigot-Clivot A. Detection of Toxoplasma gondii in wild bivalves from the Kerguelen and Galapagos archipelagos: influence of proximity to cat populations, exposure to marine currents and kelp density. Int J Parasitol 2024; 54:607-615. [PMID: 38885873 DOI: 10.1016/j.ijpara.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Oocysts of the protozoan Toxoplasma gondii are found in felid feces and can be washed into coastal waters, where they persist for months, attaching to algae and accumulating in invertebrates. We used wild bivalves to assess contamination of coastal waters of the Kerguelen and Galapagos archipelagos by this zoonotic parasite. Additionally, we leveraged the contrasting situations of these archipelagos to identify some potential drivers of contamination. In the Galapagos, with a cat density reaching 142 per km2, 15.38% of the sampled oysters (Saccostrea palmula) tested positive for T. gondii by quantitative real-time PCR (qPCR) (n = 260), and positive samples were found in all eight sampling sites. In Kerguelen, with 1-3 cats per km2, 40.83% of 120 tested mussels (Mytilus edulis platensis) were positive, and positive samples were found in four out of the five sampling sites. These findings provide evidence of T. gondii contamination in the coastal waters of these archipelagos. Furthermore, T. gondii-positive bivalves were found on islands located 20 km away (Galapagos) and 5 km away (Kerguelen) from the nearest cat population, indicating that T. gondii oocysts can disperse through waterborne mechanisms over several kilometers from their initial deposition site. In the Galapagos, where runoff is infrequent and all sites are exposed to currents, the prevalence of qPCR-positive bivalves did not show significant variations between sites (p = 0.107). In Kerguelen where runoff is frequent and site exposure variable, the prevalence varied significantly (p < 0.001). The detection of T. gondii in Kerguelen mussels was significantly correlated with the site exposure to currents (odds ratio (OR) 60.2, p < 0.001) and the on-site density of giant kelp forests (OR 2.624, p < 0.001). This suggests that bivalves can be contaminated not only by oocysts transported by currents but also by consuming marine aggregates containing oocysts that tend to form in kelp forests.
Collapse
Affiliation(s)
- Juan D Mosquera
- Université de Reims Champagne-Ardenne, Univ Rouen Normandie, Normandie Univ, ESCAPE, Reims, France; Universidad San Francisco de Quito, Instituto de Microbiología, COCIBA, Quito, Ecuador
| | - Sandie Escotte-Binet
- Université de Reims Champagne-Ardenne, Univ Rouen Normandie, Normandie Univ, ESCAPE, Reims, France
| | - Marie-Lazarine Poulle
- Université de Reims Champagne-Ardenne, Univ Rouen Normandie, Normandie Univ, ESCAPE, Reims, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, ULHN, INERIS, Normandie Univ, SEBIO, UMR-I 02, Reims, France
| | - Yves St-Pierre
- INRS Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - France Caza
- INRS Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Thomas Saucède
- Bourgogne Franche-Comté University, CNRS, EPHE, UMR 6282 Biogéosciences, Dijon, France
| | - Sonia Zapata
- Universidad San Francisco de Quito, Instituto de Microbiología, COCIBA, Quito, Ecuador
| | | | | | - Isabelle Villena
- Université de Reims Champagne-Ardenne, Univ Rouen Normandie, Normandie Univ, ESCAPE, Reims, France; Centre Hospitalo-Universitaire (CHU) de Reims, Centre National de Référence (CNR) Toxoplasmose, Centre de Référence Biologique (CRB) Toxoplasma, Reims, France
| | - Aurélie Bigot-Clivot
- Université de Reims Champagne-Ardenne, ULHN, INERIS, Normandie Univ, SEBIO, UMR-I 02, Reims, France.
| |
Collapse
|
3
|
Schwartz LC, González VL, Strong EE, Truebano M, Hilbish TJ. Transgressive gene expression and expression plasticity under thermal stress in a stable hybrid zone. Mol Ecol 2024; 33:e17333. [PMID: 38597343 DOI: 10.1111/mec.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Interspecific hybridization can lead to myriad outcomes, including transgressive phenotypes in which the hybrids are more fit than either parent species. Such hybrids may display important traits in the context of climate change, able to respond to novel environmental conditions not previously experienced by the parent populations. While this has been evaluated in an agricultural context, the role of transgressive hybrids under changing conditions in the wild remains largely unexplored; this is especially true regarding transgressive gene expression. Using the blue mussel species complex (genus Mytilus) as a model system, we investigated the effects of hybridization on temperature induced gene expression plasticity by comparing expression profiles in parental species and their hybrids following a 2-week thermal challenge. Hybrid expression plasticity was most often like one parent or the other (50%). However, a large fraction of genes (26%) showed transgressive expression plasticity (i.e. the change in gene expression was either greater or lesser than that of both parent species), while only 2% were intermediately plastic in hybrids. Despite their close phylogenetic relationship, there was limited overlap in the differentially expressed genes responding to temperature, indicating interspecific differences in the responses to high temperature in which responses from hybrids are distinct from both parent species. We also identified differentially expressed long non-coding RNAs (lncRNAs), which we suggest may contribute to species-specific differences in thermal tolerance. Our findings provide important insight into the impact of hybridization on gene expression under warming. We propose transgressive hybrids may play an important role in population persistence under future warming conditions.
Collapse
Affiliation(s)
- Lindsey C Schwartz
- Department of Biological Sciences, The University of South Carolina, Columbia, South Carolina, USA
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Vanessa L González
- Informatics and Data Science Center, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Ellen E Strong
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Thomas J Hilbish
- Department of Biological Sciences, The University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
4
|
Han Y, Zhang W, Tang Y, Shi W, Liu Z, Lamine I, Zhang H, Liu J, Liu G. Triclosan exposure induces immunotoxic impacts by disrupting the immunometabolism, detoxification, and cellular homeostasis in blood clam (Tegillarca granosa). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106778. [PMID: 38056281 DOI: 10.1016/j.aquatox.2023.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Omnipresent presence of triclosan (TCS) in aqueous environment puts a potential threat to organisms. However, it's poorly understood about its immunometabolic impacts of marine invertebrates. In present study, we use a representative bivalve blood clam (Tegillarca granosa) as a model, investigating the effects of TCS exposure at 20 and 200 μg/L for 28 days on immunometabolism, detoxification, and cellular homeostasis to explore feasible toxicity mechanisms. Results demonstrated that the clams exposed to TCS resulting in evident immunotoxic impacts on both cellular and humoral immune responses, through shifting metabolic pathways and substances, as well as suppressing the expressions of genes from the immune- and metabolism-related pathways. In addition, significant alterations in contents (or activity) of detoxification enzymes and the expression of key detoxification genes were detected in TCS-exposed clams. Moreover, exposure to TCS also disrupted cellular homeostasis of clams through increasing MDA contents and caspase activities, and promoting activation of the apoptosis-related genes. These findings suggested that TCS might induce immunotoxic impacts by disrupting the immunometabolism, detoxification, and cellular homeostasis.
Collapse
Affiliation(s)
- Yu Han
- School of life sciences, Central South University, Changsha, China, 410083; Hangzhou Normal University, Hangzhou, China, 311121; College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Weixia Zhang
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Yu Tang
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Wei Shi
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China, 311121
| | - Imane Lamine
- Laboratory of Aquatic Systems, Marine and Continental Ecosystems,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | | | - Jing Liu
- School of life sciences, Central South University, Changsha, China, 410083
| | - Guangxu Liu
- College of Animal Sciences, ZheJiang University, Hangzhou, China, 310058.
| |
Collapse
|
5
|
Chen Y, Han C, Chen H, Yan J, Zhan X. The mechanisms involved in byssogenesis in Pteria penguin under different temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166894. [PMID: 37704154 DOI: 10.1016/j.scitotenv.2023.166894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Byssus is important for marine bivalves to adhere robustly to diverse substrates and resist environmental impacts. The winged pearl oyster, Pteria penguin, can reattach or not reattach to the same environment, which leaves the development and survival of the oyster population at risk. In this study, diverse methods were employed to evaluate the byssus quality and explore the mechanism of byssus secretion at different temperatures. The results demonstrated that oysters maintained their byssus properties at different temperatures through polyphenol oxidase (PPO) and reactive oxygen species (ROS) variation. They were both higher at 27 °C than at 21 °C. Furthermore, PPO activities of WB27 (31.78 U/g ± 1.50 U/g) were significantly higher than NB27, WB21, and NB21. Sectional observation revealed three types of vesicles, from which a novel vesicle might participate in byssogenesis as a putative metal storage particle. Moreover, cytoskeletal proteins may cooperate with cilia to transport byssal proteins, which then facilitate byssus formation under the regulation of upstream signals. Transcriptome analysis demonstrated that protein quality control, ubiquitin-mediated proteolysis, and cytoskeletal reorganization-related genes contributed to adaptation to temperature changes and byssus fabrication, and protection-related genes play a critical role in byssogenesis, byssus toughness, and durability. These results were utilized to create a byssogenesis mechanism model, to reveal the foot gland and vesicle types of P. penguin and provide new insights into adaptation to temperature changes and byssus fabrication in sessile bivalves.
Collapse
Affiliation(s)
- Yi Chen
- School of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Jie Yan
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Gurr SJ, Trigg SA, Vadopalas B, Roberts SB, Putnam HM. Acclimatory gene expression of primed clams enhances robustness to elevated pCO 2. Mol Ecol 2022; 31:5005-5023. [PMID: 35947503 DOI: 10.1111/mec.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Sub-lethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data analyzed after 1) a 110-day acclimation under ambient (921 μatm, naïve) and moderately-elevated pCO2 (2870 μatm, pre-exposed); then following 2) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately-elevated: 2750 μatm; severely-elevated: 4940 μatm), a 7-day return to ambient pCO2 , and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately-elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation, and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defense under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicates pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.
Collapse
Affiliation(s)
- Samuel J Gurr
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Shelly A Trigg
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | | | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|