1
|
Zhao X, Li F, Yuan Y, Ari G, Yan Y, Zhang Q, Olhnuud A, Liu P. Wind farms reduce grassland plant community diversity and lead to plant community convergence. BMC Ecol Evol 2025; 25:10. [PMID: 39815201 PMCID: PMC11734415 DOI: 10.1186/s12862-025-02350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Climate warming has become a hot issue of common concern all over the world, and wind energy has become an important clean energy source. Wind farms, usually built in wild lands like grassland, may cause damage to the initial ecosystem and biodiversity. However, the impact of wind farms on the functional diversity of plant communities remains a subject with unclear outcomes. In this study, we chose 108 sample plots and identified 10 plant functional traits through a field vegetation survey. We used general linear regression analysis to assess how wind farm influenced vegetation community diversity, focusing on ten distinct plant functional traits. The study revealed that wind farm had significant impacts on grassland plant communities, diminishing diversity and functional traits, which leads to species composition convergence. Additionally, wind farm increased certain functional traits, like height and leaf area, while decreasing phosphorus content. Furthermore, the productivity of these plant communities was reduced by wind farm presence. This study highlights the negative consequences of wind farms in Inner Mongolia on plant diversity, aiming to offer scientific recommendations for the optimal arrangement of wind farms to safeguard biodiversity.
Collapse
Affiliation(s)
- Xuancheng Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, 010021, China
| | - Fengshi Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, 010021, China
| | - Yuan Yuan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, 010021, China
| | - Guna Ari
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, 010021, China
| | - Yongzhi Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, 010021, China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, 010021, China
| | - Aruhan Olhnuud
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, 010021, China.
| | - Pengtao Liu
- Inner Mongolia Autonomous Region Ecological and Agricultural Meteorological Center, Hohhot, 010040, China.
| |
Collapse
|
2
|
Wang C, Xu Z, Wan A, Wang X, Luo G, Bian W, Chen Q, Chen X, Zhang W. Diatom bloom trigger notable variations in microzooplanktonic ciliate composition, body-size spectrum and biotic-abiotic interaction in the Arctic Ocean. ENVIRONMENTAL RESEARCH 2024; 252:118821. [PMID: 38615793 DOI: 10.1016/j.envres.2024.118821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
How microzooplanktonic ciliate adaptative strategies differ across diatom bloom and non-diatom bloom areas in the Arctic Ocean remains poorly documented. To address this gap, two different situations were categorized in the Arctic Ocean at summer 2023: diatom bloom stations (DBS) (genus Thalassiosira, chain-like) and non-diatom bloom stations (nDBS). Total abundance of ciliate at 3 m and 25 m in DBS was 2.8 and 1.8 folds higher than in nDBS, respectively. Aloricate ciliates were singled out in both DBS and nDBS, whilst their average abundance and biomass of large size-fraction (>50 μm) in former were 4.5-5.6 folds higher than in latter. Regarding tintinnids, high abundance of Ptychocylis acuta (Bering Strait species) mainly occurred at DBS, coupled with distribution of co-occurring Pacific-origin species Salpingella sp.1, collectively suggested a strong intrusion of Pacific Inflow during summer 2023. Additionally, presence of high abundance of Acanthostomella norvegica and genus Parafavella in nDBS might indicate the trajectory of the Transpolar Drift. Alternatively, tintinnids can serve as credible bioindicators for either monitoring currents or evaluating microzooplankton Borealization. Average abundance of total ciliate within 15-135 μm body-size spectrum in DBS was higher than nDBS. Moreover, spearman's rank correlation between biotic and abiotic analysis revealed that temperature and dissolved oxygen at DBS determined tintinnid species richness and ciliate total abundance, respectively. The results clearly demonstrate that remarkable divergences in large size-fraction of ciliate abundance between DBS and nDBS validate their irreplaceable role in controlling phytoplankton outbreak and associated biological processes in polar seas.
Collapse
Affiliation(s)
- Chaofeng Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhiqiang Xu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Aiyong Wan
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyu Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, 266100, China
| | - Guangfu Luo
- Polar Research Institute of China, Shanghai, 200136, China
| | - Wenhua Bian
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qiong Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
3
|
Wang C, Zhao C, Zhou B, Xu Z, Ma J, Li H, Wang W, Chen X, Zhang W. Latitudinal pronounced variations in tintinnid (Ciliophora) community at surface waters from the South China Sea to the Yellow Sea: Oceanic-to-neritic species shift, biotic-abiotic interaction and future prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169354. [PMID: 38104840 DOI: 10.1016/j.scitotenv.2023.169354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The oceanic-to-neritic species shift of microzooplanktonic tintinnids and their interaction with relevant abiotic variables are two crucial processes in the marine ecosystem. However, these processes remain poorly documented in China's marginal seas. In the summer of 2022, we investigated the community structure of pelagic tintinnids in surface waters from the South China Sea (SCS) to the Yellow Sea (YS), passing through the East China Sea (ECS). A number of 58 species from 23 genera were identified, with 36 and 22 species belonging to oceanic and neritic genera, respectively. The abundance proportion of oceanic and neritic genera exhibited a decreasing and increasing trend, respectively, from the SCS to YS. Furthermore, four distinctive tintinnid community groups were classified based on cluster analysis using tintinnid species and abundance data, and the position of southern Taiwan Strait was identified as the "Shift Point" for oceanic-to-neritic species dominance. The top two tintinnid species in each group showed distinct variations in body size. Additionally, multivariate biotic-abiotic statistical analyses revealed that temperature determined tintinnid species richness, while temperature, salinity, Si(OH)4, and Chl a determined tintinnid abundance. Our study provides a substantial foundation for recognizing the oceanic-to-neritic species shift of tintinnids in the China's marginal seas, and highlights the role of biotic-abiotic factors in driving biogeochemical fluxes and the potential response of microzooplankton to future climate change.
Collapse
Affiliation(s)
- Chaofeng Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chenhao Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Bu Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jun Ma
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haibo Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weicheng Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|