1
|
Kedia S, Marder E. Blue light responses in Cancer borealis stomatogastric ganglion neurons. Curr Biol 2022; 32:1439-1445.e3. [PMID: 35148862 PMCID: PMC8967796 DOI: 10.1016/j.cub.2022.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
In many animals, the daily cycling of light is a key environmental cue, encoded in part by specialized light-sensitive neurons without visual functions. We serendipitously discovered innate light-responsiveness while imaging the extensively studied stomatogastric ganglion (STG) of the crab, Cancer borealis. The STG houses a motor circuit that controls the rhythmic contractions of the foregut, and the system has facilitated deep understanding of circuit function and neuromodulation. We illuminated the crab STG in vitro with different wavelengths and amplitudes of light and found a dose-dependent increase in neuronal activity upon exposure to blue light (λ460-500 nm). The response was elevated in the absence of neuromodulatory inputs to the STG. The pacemaker kernel that drives the network rhythm was responsive to light when synaptically isolated, and light shifted the threshold for slow wave and spike activity in the hyperpolarized direction, accounting for the increased activity patterns. Cryptochromes are evolutionarily conserved blue-light photoreceptors that are involved in circadian behaviors.1 Their activation by light can lead to enhanced neuronal activity.2 We identified cryptochrome sequences in the C. borealis transcriptome as potential mediators of this response and confirmed their expression in pyloric dilator (PD) neurons, which are part of the pacemaker kernel, by single-cell RNA-seq analysis.
Collapse
Affiliation(s)
- Sonal Kedia
- Volen Center and Biology Department, MS 013, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Eve Marder
- Volen Center and Biology Department, MS 013, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
2
|
Does Differential Receptor Distribution Underlie Variable Responses to a Neuropeptide in the Lobster Cardiac System? Int J Mol Sci 2021; 22:ijms22168703. [PMID: 34445418 PMCID: PMC8395929 DOI: 10.3390/ijms22168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022] Open
Abstract
Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster.
Collapse
|
3
|
Christie AE, Rivera CD, Call CM, Dickinson PS, Stemmler EA, Hull JJ. Multiple transcriptome mining coupled with tissue specific molecular cloning and mass spectrometry provide insights into agatoxin-like peptide conservation in decapod crustaceans. Gen Comp Endocrinol 2020; 299:113609. [PMID: 32916171 PMCID: PMC7747469 DOI: 10.1016/j.ygcen.2020.113609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, in silico genome and transcriptome mining has led to the identification of many new crustacean peptide families, including the agatoxin-like peptides (ALPs), a group named for their structural similarity to agatoxin, a spider venom component. Here, analysis of publicly accessible transcriptomes was used to expand our understanding of crustacean ALPs. Specifically, transcriptome mining was used to investigate the phylogenetic/structural conservation, tissue localization, and putative functions of ALPs in decapod species. Transcripts encoding putative ALP precursors were identified from one or more members of the Penaeoidea (penaeid shrimp), Sergestoidea (sergestid shrimps), Caridea (caridean shrimp), Astacidea (clawed lobsters and freshwater crayfish), Achelata (spiny/slipper lobsters), and Brachyura (true crabs), suggesting a broad, and perhaps ubiquitous, conservation of ALPs in decapods. Comparison of the predicted mature structures of decapod ALPs revealed high levels of amino acid conservation, including eight identically conserved cysteine residues that presumably allow for the formation of four identically positioned disulfide bridges. All decapod ALPs are predicted to have amidated carboxyl-terminals. Two isoforms of ALP appear to be present in most decapod species, one 44 amino acids long and the other 42 amino acids in length, both likely generated by alternative splicing of a single gene. In carideans, a gene or terminal exon duplication appears to have occurred, with alternative splicing producing four ALPs, two 44 and two 42 amino acid isoforms. The identification of ALP precursor-encoding transcripts in nervous system-specific transcriptomes (e.g., Homarus americanus brain, eyestalk ganglia, and cardiac ganglion assemblies, finding confirmed using RT-PCR) suggests that members of this peptide family may serve as locally-released and/or hormonally-delivered neuromodulators in decapods. Their detection in testis- and hepatopancreas-specific transcriptomes suggests that members of the ALP family may also play roles in male reproduction and innate immunity/detoxification.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Cindy D Rivera
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Catherine M Call
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| |
Collapse
|
4
|
Hull JJ, Stefanek MA, Dickinson PS, Christie AE. Cloning of the first cDNA encoding a putative CCRFamide precursor: identification of the brain, eyestalk ganglia, and cardiac ganglion as sites of CCRFamide expression in the American lobster, Homarus americanus. INVERTEBRATE NEUROSCIENCE 2020; 20:24. [PMID: 33244646 DOI: 10.1007/s10158-020-00257-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023]
Abstract
Over the past decade, many new peptide families have been identified via in silico analyses of genomic and transcriptomic datasets. While various molecular and biochemical methods have confirmed the existence of some of these new groups, others remain in silico discoveries of computationally assembled sequences only. An example of the latter are the CCRFamides, named for the predicted presence of two pairs of disulfide bonded cysteine residues and an amidated arginine-phenylalanine carboxyl-terminus in family members, which have been identified from annelid, molluscan, and arthropod genomes/transcriptomes, but for which no precursor protein-encoding cDNAs have been cloned. Using routine transcriptome mining methods, we identified four Homarus americanus (American lobster) CCRFamide transcripts that share high sequence identity across the predicted open reading frames but more limited conservation in their 5' terminal ends, suggesting the Homarus gene undergoes alternative splicing. RT-PCR profiling using primers designed to amplify an internal fragment common to all of the transcripts revealed expression in the supraoesophageal ganglion (brain), eyestalk ganglia, and cardiac ganglion. Variant specific profiling revealed a similar profile for variant 1, eyestalk ganglia specific expression of variant 2, and an absence of variant 3 expression in the cDNAs examined. The broad distribution of CCRFamide transcript expression in the H. americanus nervous system suggests a potential role as a locally released and/or circulating neuropeptide. This is the first report of the cloning of a CCRFamide-encoding cDNA from any species, and as such, provides the first non-in silico support for the existence of this invertebrate peptide family.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, 21881 North Cardon Lane, Maricopa, AZ, 85138, USA.
| | - Melissa A Stefanek
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, 21881 North Cardon Lane, Maricopa, AZ, 85138, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| |
Collapse
|
5
|
Alexander JL, Oliphant A, Wilcockson DC, Brendler-Spaeth T, Dircksen H, Webster SG. Pigment Dispersing Factors and Their Cognate Receptors in a Crustacean Model, With New Insights Into Distinct Neurons and Their Functions. Front Neurosci 2020; 14:595648. [PMID: 33192283 PMCID: PMC7658428 DOI: 10.3389/fnins.2020.595648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022] Open
Abstract
Pigment dispersing factors (PDFs, or PDHs in crustaceans) form a structurally related group of neuropeptides found throughout the Ecdysozoa and were first discovered as pigmentary effector hormones in crustaceans. In insects PDFs fulfill crucial neuromodulatory roles, most notably as output regulators of the circadian system, underscoring their central position in physiological and behavioral organization of arthropods. Intriguingly, decapod crustaceans express multiple isoforms of PDH originating from separate genes, yet their differential functions are still to be determined. Here, we functionally define two PDH receptors in the crab Carcinus maenas and show them to be selectively activated by four PDH isoforms: PDHR 43673 was activated by PDH-1 and PDH-2 at low nanomolar doses whilst PDHR 41189 was activated by PDH-3 and an extended 20 residue e-PDH. Detailed examination of the anatomical distribution of all four peptides and their cognate receptors indicate that they likely perform different functions as secreted hormones and/or neuromodulators, with PDH-1 and its receptor 43,673 implicated in an authentic hormonal axis. PDH-2, PDH-3, and e-PDH were limited to non-neurohemal interneuronal sites in the CNS; PDHR 41189 was largely restricted to the nervous system suggesting a neuromodulatory function. Notably PDH-3 and e-PDH were without chromatophore dispersing activity. This is the first report which functionally defines a PDHR in an endocrine system in a crustacean and to indicate this and other putative roles of this physiologically pivotal peptide group in these organisms. Thus, our findings present opportunities to further examine the endocrine and circadian machinery in this important arthropod phylum.
Collapse
Affiliation(s)
- Jodi L. Alexander
- School of Natural Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David C. Wilcockson
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
| | - Timothy Brendler-Spaeth
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Simon G. Webster
- School of Natural Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| |
Collapse
|
6
|
Oleisky ER, Stanhope ME, Hull JJ, Christie AE, Dickinson PS. Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion. J Neurophysiol 2020; 124:1241-1256. [PMID: 32755328 PMCID: PMC7654637 DOI: 10.1152/jn.00089.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin.NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.
Collapse
Affiliation(s)
| | | | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
| | | |
Collapse
|
7
|
Christie AE, Hull JJ, Dickinson PS. Assessment and comparison of putative amine receptor complement/diversity in the brain and eyestalk ganglia of the lobster, Homarus americanus. INVERTEBRATE NEUROSCIENCE 2020; 20:7. [PMID: 32215729 DOI: 10.1007/s10158-020-0239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
In decapods, dopamine, octopamine, serotonin, and histamine function as locally released/hormonally delivered modulators of physiology/behavior. Although the functional roles played by amines in decapods have been examined extensively, little is known about the identity/diversity of their amine receptors. Recently, a Homarus americanus mixed nervous system transcriptome was used to identify putative neuronal amine receptors in this species. While many receptors were identified, some were fragmentary, and no evidence of splice/other variants was found. Here, the previously predicted proteins were used to search brain- and eyestalk ganglia-specific transcriptomes to assess/compare amine receptor complements in these portions of the lobster nervous system. All previously identified receptors were reidentified from the brain and/or eyestalk ganglia transcriptomes, i.e., dopamine alpha-1, beta-1, and alpha-2 (Homam-DAα2R) receptors, octopamine alpha (Homam-OctαR), beta-1, beta-2, beta-3, beta-4, and octopamine-tyramine (Homam-OTR-I) receptors, serotonin type-1A, type-1B (Homam-5HTR1B), type-2B, and type-7 receptors; and histamine type-1 (Homam-HA1R), type-2, type-3, and type-4 receptors. For many previously partial proteins, full-length receptors were deduced from brain and/or eyestalk ganglia transcripts, i.e., Homam-DAα2R, Homam-OctαR, Homam-OTR-I, and Homam-5HTR1B. In addition, novel dopamine/ecdysteroid, octopamine alpha-2, and OTR receptors were discovered, the latter, Homam-OTR-II, being a putative paralog of Homam-OTR-I. Finally, evidence for splice/other variants was found for many receptors, including evidence for some being assembly-specific, e.g., a brain-specific Homam-OTR-I variant and an eyestalk ganglia-specific Homam-HA1R variant. To increase confidence in the transcriptome-derived sequences, a subset of receptors was cloned using RT-PCR. These data complement/augment those reported previously, providing a more complete picture of amine receptor complement/diversity in the lobster nervous system.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii At Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, 85138, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| |
Collapse
|
8
|
Christie AE, Hull JJ, Dickinson PS. In silico analyses suggest the cardiac ganglion of the lobster, Homarus americanus, contains a diverse array of putative innexin/innexin-like proteins, including both known and novel members of this protein family. INVERTEBRATE NEUROSCIENCE 2020; 20:5. [PMID: 32115669 DOI: 10.1007/s10158-020-0238-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/31/2020] [Indexed: 01/16/2023]
Abstract
Gap junctions are physical channels that connect adjacent cells, permitting the flow of small molecules/ions between the cytoplasms of the coupled units. Innexin/innexin-like proteins are responsible for the formation of invertebrate gap junctions. Within the nervous system, gap junctions often function as electrical synapses, providing a means for coordinating activity among electrically coupled neurons. While some gap junctions allow the bidirectional flow of small molecules/ions between coupled cells, others permit flow in one direction only or preferentially. The complement of innexins present in a gap junction determines its specific properties. Thus, understanding innexin diversity is key for understanding the full potential of electrical coupling in a species/system. The decapod crustacean cardiac ganglion (CG), which controls cardiac muscle contractions, is a simple pattern-generating neural network with extensive electrical coupling among its circuit elements. In the lobster, Homarus americanus, prior work suggested that the adult neuronal innexin complement consists of six innexins (Homam-Inx1-4 and Homam-Inx6-7). Here, using a H. americanus CG-specific transcriptome, we explored innexin complement in this portion of the lobster nervous system. With the exception of Homam-Inx4, all of the previously described innexins appear to be expressed in the H. americanus CG. In addition, transcripts encoding seven novel putative innexins (Homam-Inx8-14) were identified, four (Homam-Inx8-11) having multiple splice variants, e.g., six for Homam-Inx8. Collectively, these data indicate that the innexin complement of the lobster nervous system in general, and the CG specifically, is likely significantly greater than previously reported, suggesting the possibility of expanded gap junction diversity and function in H. americanus.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, 85138, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| |
Collapse
|
9
|
Identification of the molecular components of a putative Jasus edwardsii (Crustacea; Decapoda; Achelata) circadian signaling system. INVERTEBRATE NEUROSCIENCE 2020; 20:3. [PMID: 32048048 DOI: 10.1007/s10158-020-0236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Like all organisms, members of the crustacean order Decapoda must coordinate their physiology and behavior to accommodate recurring patterns of environmental change. Genetically encoded biological clocks are responsible, at least in part, for the proper timing of these organism-environment patternings. While biological clocks cycling on a wide range of timescales have been identified, the circadian signaling system, which serves to coordinate physiological/behavioral events to the solar day, is perhaps the best known and most thoroughly investigated. While many circadian patterns of physiology/behavior have been documented in decapods, few data exist concerning the identity of circadian genes/proteins in members of this taxon. In fact, large collections of circadian genes/proteins have been described from just a handful of decapod species. Here, a publicly accessible transcriptome, produced from tissues that included the nervous system (brain and eyestalk ganglia), was used to identify the molecular components of a circadian signaling system for rock lobster, Jasus edwardsii, a member of the decapod infraorder Achelata. Complete sets of core clock (those involved in the establishment of the molecular feedback loop that allows for ~ 24-h cyclical timing), clock-associated (those involved in modulation of core clock output), and clock input pathway (those that allow for synchronization of the core clock to the solar day) genes/proteins are reported. This is the first description of a putative circadian signaling system from any member of the infraorder Achelata, and as such, expands the decapod taxa for which complete complements of putative circadian genes/proteins have been identified.
Collapse
|
10
|
Christie AE. Assessment of midgut enteroendocrine peptide complement in the honey bee, Apis mellifera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103257. [PMID: 31678581 DOI: 10.1016/j.ibmb.2019.103257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Peptides modulate physiological/behavioral control systems in all animals. In arthropods, midgut epithelial endocrine cells are one of the largest sources of these signaling agents. At present, little is known about the identity of the peptides that form arthropod midgut enteroendocrine peptidomes. While many techniques can be used for peptide structural identification, in silico transcriptome mining is one that has been used extensively for arthropod neuropeptidome prediction; this strategy has yet to be used for large-scale arthropod enteroendocrine peptide discovery. Here, a tissue-specific transcriptome was used to assess putative enteroendocrine peptide complement in the honey bee, Apis mellifera, midgut. Searches for transcripts encoding members of 42 peptide families were conducted, with evidence of expression for 15 groups found in the assembly: adipokinetic hormone, allatostatin A, allatostatin C, bursicon, CCHamide, CNMamide, diuretic hormone 31, diuretic hormone 44, insulin-like peptide, myosuppressin, neuropeptide F, pigment dispersing hormone, pyrokinin, short neuropeptide F, and tachykinin-related peptide. The proteins deduced from the midgut transcripts are identical in sequence, or nearly so, to those of Apis pre/preprohormones deposited previously into NCBI, providing increased confidence in the accuracy of the reported data. Seventy-five peptides were predicted from the deduced precursor proteins, 26 being members of known peptide families. Comparisons to previously published mass spectrometric data support the existence of many of the predicted Apis peptides. This study is the first prediction of an arthropod midgut peptidome using transcriptomics, and provides a powerful new resource for investigating enteroendocrine peptide signaling within/from the Apis midgut, a species of significant ecological/economic importance.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
11
|
Hunt BJ, Mallon EB, Rosato E. In silico Identification of a Molecular Circadian System With Novel Features in the Crustacean Model Organism Parhyale hawaiensis. Front Physiol 2019; 10:1325. [PMID: 31681024 PMCID: PMC6813248 DOI: 10.3389/fphys.2019.01325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022] Open
Abstract
The amphipod Parhyale hawaiensis is a model organism of growing importance in the fields of evolutionary development and regeneration. A small, hardy marine crustacean that breeds year-round with a short generation time, it has simple lab culture requirements and an extensive molecular toolkit including the ability to generate targeted genetic mutant lines. Here we identify canonical core and regulatory clock genes using genomic and transcriptomic resources as a first step in establishing this species as a model in the field of chronobiology. The molecular clock of P. hawaiensis lacks orthologs of the canonical circadian genes cryptochrome 1 and timeless, in common with the mammalian system but in contrast to many arthropods including Drosophila melanogaster. Furthermore the predicted CLOCK peptide is atypical and CRY2 shows an extended 5′ region of unknown function. These results appear to be shared by two other amphipod species.
Collapse
Affiliation(s)
- Benjamin James Hunt
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
Arboleda E, Zurl M, Waldherr M, Tessmar-Raible K. Differential Impacts of the Head on Platynereis dumerilii Peripheral Circadian Rhythms. Front Physiol 2019; 10:900. [PMID: 31354531 PMCID: PMC6638195 DOI: 10.3389/fphys.2019.00900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The marine bristle worm Platynereis dumerilii is a useful functional model system for the study of the circadian clock and its interplay with others, e.g., circalunar clocks. The focus has so far been on the worm's head. However, behavioral and physiological cycles in other animals typically arise from the coordination of circadian clocks located in the brain and in peripheral tissues. Here, we focus on peripheral circadian rhythms and clocks, revisit and expand classical circadian work on the worm's chromatophores, investigate locomotion as read-out and include molecular analyses. We establish that different pieces of the trunk exhibit synchronized, robust oscillations of core circadian clock genes. These circadian core clock transcripts are under strong control of the light-dark cycle, quickly losing synchronized oscillation under constant darkness, irrespective of the absence or presence of heads. Different wavelengths are differently effective in controlling the peripheral molecular synchronization. We have previously shown that locomotor activity is under circadian clock control. Here, we show that upon decapitation worms exhibit strongly reduced activity levels. While still following the light-dark cycle, locomotor rhythmicity under constant darkness is less clear. We also observe the rhythmicity of pigments in the worm's individual chromatophores, confirming their circadian pattern. These size changes continue under constant darkness, but cannot be re-entrained by light upon decapitation. Our works thus provides the first basic characterization of the peripheral circadian clock of P. dumerilii. In the absence of the head, light is essential as a major synchronization cue for peripheral molecular and locomotor circadian rhythms, while circadian changes in chromatophore size can continue for several days in the absence of light/dark changes and the head. Thus, in Platynereis the dependence on the head depends on the type of peripheral rhythm studied. These data show that peripheral circadian rhythms and clocks should also be considered in "non-conventional" molecular model systems, i.e., outside Drosophila melanogaster, Danio rerio, and Mus musculus, and build a basic foundation for future investigations of interactions of clocks with different period lengths in marine organisms.
Collapse
Affiliation(s)
- Enrique Arboleda
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Martin Zurl
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Monika Waldherr
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Dickinson PS, Dickinson ES, Oleisky ER, Rivera CD, Stanhope ME, Stemmler EA, Hull JJ, Christie AE. AMGSEFLamide, a member of a broadly conserved peptide family, modulates multiple neural networks in Homarus americanus. ACTA ACUST UNITED AC 2019; 222:jeb.194092. [PMID: 30464043 DOI: 10.1242/jeb.194092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023]
Abstract
Recent genomic/transcriptomic studies have identified a novel peptide family whose members share the carboxyl terminal sequence -GSEFLamide. However, the presence/identity of the predicted isoforms of this peptide group have yet to be confirmed biochemically, and no physiological function has yet been ascribed to any member of this peptide family. To determine the extent to which GSEFLamides are conserved within the Arthropoda, we searched publicly accessible databases for genomic/transcriptomic evidence of their presence. GSEFLamides appear to be highly conserved within the Arthropoda, with the possible exception of the Insecta, in which sequence evidence was limited to the more basal orders. One crustacean in which GSEFLamides have been predicted using transcriptomics is the lobster, Homarus americanus Expression of the previously published transcriptome-derived sequences was confirmed by reverse transcription (RT)-PCR of brain and eyestalk ganglia cDNAs; mass spectral analyses confirmed the presence of all six of the predicted GSEFLamide isoforms - IGSEFLamide, MGSEFLamide, AMGSEFLamide, VMGSEFLamide, ALGSEFLamide and AVGSEFLamide - in H. americanus brain extracts. AMGSEFLamide, of which there are multiple copies in the cloned transcripts, was the most abundant isoform detected in the brain. Because the GSEFLamides are present in the lobster nervous system, we hypothesized that they might function as neuromodulators, as is common for neuropeptides. We thus asked whether AMGSEFLamide modulates the rhythmic outputs of the cardiac ganglion and the stomatogastric ganglion. Physiological recordings showed that AMGSEFLamide potently modulates the motor patterns produced by both ganglia, suggesting that the GSEFLamides may serve as important and conserved modulators of rhythmic motor activity in arthropods.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | - Evyn S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | - Emily R Oleisky
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | - Cindy D Rivera
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, USA
| | - Meredith E Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822, USA
| |
Collapse
|
14
|
Christie AE, Stanhope ME, Gandler HI, Lameyer TJ, Pascual MG, Shea DN, Yu A, Dickinson PS, Hull JJ. Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lobster, Homarus americanus. INVERTEBRATE NEUROSCIENCE 2018; 18:12. [PMID: 30276482 DOI: 10.1007/s10158-018-0216-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/21/2018] [Indexed: 02/03/2023]
Abstract
The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine β-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA.
| | - Meredith E Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Helen I Gandler
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Tess J Lameyer
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| | - Devlin N Shea
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Andy Yu
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, 85138, USA
| |
Collapse
|