1
|
Chierichetti MA, Vazquez ND, Miglioranza KSB, Ramirez CL, Roman JM, Scenna LB, Lo Nostro FL. Persistent organic pollutants and chlorpyrifos in tissues of a histotrophic viviparous species, the Southern Eagle Ray Myliobatis goodei. MARINE POLLUTION BULLETIN 2024; 205:116573. [PMID: 38878415 DOI: 10.1016/j.marpolbul.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Elasmobranchs are good indicators of marine pollution as they accumulate pollutants from water and food, and occupy different trophic levels. Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and chlorpyrifos were quantified in muscle, liver, gonads, gills, and brain in both sexes and maturity stages of the Southern Eagle Ray, Myliobatis goodei, captured in Argentine coastal waters. Moreover, possible histological alterations in the liver and gonads were analyzed. Pollutant concentrations were pervasive across all tissues, with PCBs > OCPs > chlorpyrifos. Elevated pollutant levels were notably found in the liver and gills. We identified thirty-six PCB congeners in tissues, with low-chlorine congeners prevailing. Among OCPs, ∑DDT and ∑endosulfan were predominant. Females exhibited higher pollutant levels in most tissues compared to males, except in the gonads, and adults generally displayed elevated pollutant levels. Histological analysis revealed the presence of atretic follicles and melanomacrophages (MM). Continuous monitoring of pollutant levels, alongside their effects on physiological and ecological traits, is imperative for effective management and conservation efforts.
Collapse
Affiliation(s)
- Melisa A Chierichetti
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP) & Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina.
| | - Nicolas D Vazquez
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP) & Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina; Laboratorio de Biología de Cnidarios, UNMdP-IIMyC, Mar del Plata, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP) & Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina
| | - Cristina L Ramirez
- Departamento de Química, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina; Química Analítica y Modelado Molecular (QUIAMM), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), UMMdP-CONICET, Mar del Plata, Argentina
| | - Jorge M Roman
- Laboratorio de Biología de peces, UNMdP-IIMyC, Mar del Plata, Argentina
| | - Lorena B Scenna
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP) & Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Mar del Plata, Argentina
| | - Fabiana L Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Depto. de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos aires (UBA) & Instituto de Biodiversidad y Biología Experimental y Aplicada, UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Marciano J, Crawford L, Mukhopadhyay L, Scott W, McElroy A, McDonough C. Per/Polyfluoroalkyl Substances (PFASs) in a Marine Apex Predator (White Shark, Carcharodon carcharias) in the Northwest Atlantic Ocean. ACS ENVIRONMENTAL AU 2024; 4:152-161. [PMID: 38765060 PMCID: PMC11100321 DOI: 10.1021/acsenvironau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 05/21/2024]
Abstract
Per/polyfluoroalkyl substances (PFASs) are ubiquitous, highly persistent anthropogenic chemicals that bioaccumulate and biomagnify in aquatic food webs and are associated with adverse health effects, including liver and kidney diseases, cancers, and immunosuppression. We investigated the accumulation of PFASs in a marine apex predator, the white shark (Carcharodon carcharias). Muscle (N = 12) and blood plasma (N = 27) samples were collected from 27 sharks during 2018-2021 OCEARCH expeditions along the eastern coast of North America from Nova Scotia to Florida. Samples were analyzed for 47 (plasma) and 43 (muscle) targeted PFASs and screened for >2600 known and novel PFASs using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Perfluoroalkyl carboxylates with carbon chain-length C11 to C14 were frequently detected above the method reporting limits in plasma samples, along with perfluorooctanesulfonate and perfluorodecanesulfonate. Perfluoropentadecanoate was also detected in 100% of plasma samples and concentrations were estimated semiquantitatively as no analytical standard was available. Total concentrations of frequently detected PFASs in plasma ranged from 0.56 to 2.9 ng mL-1 (median of 1.4 ng mL-1). In muscle tissue, nine targeted PFASs were frequently detected, with total concentration ranging from 0.20 to 0.84 ng g-1 ww. For all frequently detected PFASs, concentrations were greater in plasma than in muscle collected from the same organism. In both matrices, perfluorotridecanoic acid was the most abundant PFAS, consistent with several other studies. PFASs with similar chain-lengths correlated significantly among the plasma samples, suggesting similar sources. Total concentrations of PFASs in plasma were significantly greater in sharks sampled off of Nova Scotia than all sharks from other locations, potentially due to differences in diet. HRMS suspect screening tentatively identified 13 additional PFASs in plasma, though identification confidence was low, as no MS/MS fragmentation was collected due to low intensities. The widespread detection of long-chain PFASs in plasma and muscle of white sharks highlights the prevalence and potential biomagnification of these compounds in marine apex predators.
Collapse
Affiliation(s)
- Jennifer Marciano
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lisa Crawford
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| | - Leenia Mukhopadhyay
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wesley Scott
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Anne McElroy
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| | - Carrie McDonough
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Ángel-Moreno Briones Á, Ramírez-Álvarez N, Hernández-Guzmán FA, Galván-Magaña F, Marmolejo-Rodríguez AJ, Sánchez-González A, Baró-Camarasa I, González-Armas R. Levels and species-specific organochlorine accumulation in three shark species from the western Gulf of California with different life history traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168468. [PMID: 37951268 DOI: 10.1016/j.scitotenv.2023.168468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Organochlorine compounds (OCs), such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), remain ubiquitous in marine ecosystems despite their prohibition or restriction, posing a risk to marine wildlife and humans. Their accumulation in liver tissue and potential toxicity in three exploited shark species (the scalloped hammerhead, Sphyrna lewini; the Pacific sharpnose shark, Rhizoprionodon longurio; and the Pacific angel shark, Squatina californica) with different physiological and ecological features from the western Gulf of California (GC) were investigated. Forty of the 47 OCs analyzed were identified, evidencing a greater agricultural than industrial influence considering the high DDTs/PCBs ratios. The DDT group was the main contributor to ∑OCs in the three species, while hexa- and hepta-CBs dominated the PCB profiles. S. lewini (juveniles) and R. longurio (juveniles and adults) had similar and significantly (p < 0.05) higher ∑OCP concentrations than S. californica (juveniles and adults), which is attributed to their migration to other polluted regions of the gulf. The three species' ∑PCB levels (lipid weight) were comparable and considered low in comparison to those documented in prior studies conducted worldwide. No intraspecific differences were observed when comparing by sex, but OC concentrations were higher in larger individuals. S. lewini and R. longurio showed different OC bioaccumulation trends against size, while no relationship between size and ∑OC concentrations was observed in S. californica. All shark species' toxic equivalents (TEQs) were calculated from dioxin-like PCB concentrations and were far below the established TEQ fish thresholds. However, future research is needed regarding the possible PCB and OCP effects in elasmobranchs. This study provides the basis for monitoring organic contaminants in predatory sharks from the western GC. It also highlights the importance of further research on unintentionally produced organochlorine environmental levels and sources.
Collapse
Affiliation(s)
- Ángela Ángel-Moreno Briones
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico.
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana no 3917, Ensenada, Baja California C. P. 22860, Mexico
| | - Félix Augusto Hernández-Guzmán
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana no 3917, Ensenada, Baja California C. P. 22860, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Ana Judith Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Alberto Sánchez-González
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Isis Baró-Camarasa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Rogelio González-Armas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| |
Collapse
|
4
|
Mitchell JD, Drymon JM, Vardon J, Coulson PG, Simpfendorfer CA, Scyphers SB, Kajiura SM, Hoel K, Williams S, Ryan KL, Barnett A, Heupel MR, Chin A, Navarro M, Langlois T, Ajemian MJ, Gilman E, Prasky E, Jackson G. Shark depredation: future directions in research and management. REVIEWS IN FISH BIOLOGY AND FISHERIES 2023; 33:475-499. [PMID: 36404946 PMCID: PMC9664043 DOI: 10.1007/s11160-022-09732-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/28/2022] [Indexed: 05/19/2023]
Abstract
Shark depredation is a complex social-ecological issue that affects a range of fisheries worldwide. Increasing concern about the impacts of shark depredation, and how it intersects with the broader context of fisheries management, has driven recent research in this area, especially in Australia and the United States. This review synthesises these recent advances and provides strategic guidance for researchers aiming to characterise the occurrence of depredation, identify the shark species responsible, and test deterrent and management approaches to reduce its impacts. Specifically, the review covers the application of social science approaches, as well as advances in video camera and genetic methods for identifying depredating species. The practicalities and considerations for testing magnetic, electrical, and acoustic deterrent devices are discussed in light of recent research. Key concepts for the management of shark depredation are reviewed, with recommendations made to guide future research and policy development. Specific management responses to address shark depredation are lacking, and this review emphasizes that a "silver bullet" approach for mitigating depredation does not yet exist. Rather, future efforts to manage shark depredation must rely on a diverse range of integrated approaches involving those in the fishery (fishers, scientists and fishery managers), social scientists, educators, and other stakeholders.
Collapse
Affiliation(s)
- J. D. Mitchell
- Queensland Government, Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102 Australia
| | - J. M. Drymon
- Mississippi State University, Coastal Research and Extension Center, 1815 Popps Ferry Road, Biloxi, MS 39532 USA
- Mississippi-Alabama Sea Grant Consortium, 703 East Beach Drive, Ocean Springs, MS 39564 USA
| | - J. Vardon
- Southern Cross University, Lismore, NSW Australia
| | - P. G. Coulson
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| | - C. A. Simpfendorfer
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS 7004 Australia
| | - S. B. Scyphers
- Coastal Sustainability Institute, Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908 USA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA 02115 USA
| | - S. M. Kajiura
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| | - K. Hoel
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Bldg 34 James Cook Drive, Douglas, QLD 4811 Australia
| | - S. Williams
- Queensland Government, Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102 Australia
- School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072 Australia
| | - K. L. Ryan
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| | - A. Barnett
- Biopixel Oceans Foundation, Cairns, QLD Australia
- Marine Data Technology Hub, James Cook University, Townsville, QLD 4811 Australia
| | - M. R. Heupel
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS 7004 Australia
| | - A. Chin
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Bldg 34 James Cook Drive, Douglas, QLD 4811 Australia
| | - M. Navarro
- School of Biological Sciences, The University of Western Australia, Crawley, WA Australia
- The Oceans Institute, University of Western Australia, Crawley, WA Australia
| | - T. Langlois
- School of Biological Sciences, The University of Western Australia, Crawley, WA Australia
- The Oceans Institute, University of Western Australia, Crawley, WA Australia
| | - M. J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - E. Gilman
- Pelagic Ecosystems Research Group, Honolulu, HI USA
- Heriot-Watt University, Edinburgh, UK
| | - E. Prasky
- Coastal Sustainability Institute, Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908 USA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA 02115 USA
| | - G. Jackson
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| |
Collapse
|
5
|
Muñoz-Arnanz J, Bartalini A, Alves L, Lemos MF, Novais SC, Jiménez B. Occurrence and distribution of persistent organic pollutants in the liver and muscle of Atlantic blue sharks: Relevance and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119750. [PMID: 35839970 DOI: 10.1016/j.envpol.2022.119750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Blue shark score among the most abundant, widely distributed and worldwide consumed elasmobranchs. In this work contents of PCBs, PCDD/Fs and PBDEs were studied by means of GC-HRMS in muscle and liver of sixty blue sharks from the North East Atlantic sampled in 2019. Concentrations relatively similar were found for PCBs and PCDD/Fs in comparison with those in Atlantic specimens from the same area sampled in 2015. In contrast, PBDE loads doubled, likely mirroring the increased environmental presence of these pollutants. This, together with the different congener profiles reported for the same species in other geographical areas, highlighted the blue shark's potential as bioindicator of the degree and fingerprints of regional pollution by POPs. Interesting dissimilarities between muscle and liver concentrations were detected, most likely ascribed to distinct toxicokinetics involved for the different pollutants. Whereas most POPs preferentially accumulated in liver, some did the opposite in muscle. BDE-209 was the most prominent example, being almost negligible its presence in liver (0.3%) while accounting for ca. 14% of the total PBDE content in muscle. Different findings in this regard described for other shark species call for focused research to ascertain the role of the species in this apparent favored metabolization of BDE-209 in the liver. From a consumption perspective, the concentrations found in muscle -the most relevant part in the human diet-for PCBs and dioxin-like POPs were below the EU maximum allowed levels in foodstuff. Conversely, in liver about 58% and 78% of samples overpassed the European levels for tolerable intake of i-PCBs and dioxin POPs, respectively. Concentrations of PBDEs exceeded EQS (0.0085 ng/g w.w.) established by the European Water Framework Directive in 100% and 92% of liver and muscle samples, respectively, which adds to the open debate of such as a reduce value for this current EQS.
Collapse
Affiliation(s)
- Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Madrid, Spain.
| | - Alice Bartalini
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Madrid, Spain
| | - Luis Alves
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Marco Fl Lemos
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Sara C Novais
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Madrid, Spain
| |
Collapse
|
6
|
Hasan GMMA, Shaikh MAA, Satter MA, Hossain MS. Detection of indicator polychlorinated biphenyls (I-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in cow milk from selected areas of Dhaka, Bangladesh and potential human health risks assessment. Toxicol Rep 2022; 9:1514-1522. [DOI: 10.1016/j.toxrep.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 12/01/2022] Open
|
7
|
Boldrocchi G, Spanu D, Mazzoni M, Omar M, Baneschi I, Boschi C, Zinzula L, Bettinetti R, Monticelli D. Bioaccumulation and biomagnification in elasmobranchs: A concurrent assessment of trophic transfer of trace elements in 12 species from the Indian Ocean. MARINE POLLUTION BULLETIN 2021; 172:112853. [PMID: 34425367 DOI: 10.1016/j.marpolbul.2021.112853] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
We provided the first multi-species study investigating the presence and organotropism of trace elements in three tissues of 12 elasmobranch species. Shark species showed comparable TE loads, although milk sharks and juvenile scalloped hammerhead sharks exhibited the highest Cd and Hg levels, respectively. Fins accumulated higher levels of Pb, Co, and Cr; muscles higher V, As, and Hg; livers higher Se and Cd levels. The organotropism of TEs calls for cautious when choosing a tissue to be sampled since certain tissues, like fin clips, do not provide reliable surrogate for the internal loads of some TEs. Strong correlations between essential and toxic TEs indicated detoxification mechanisms, while the TMF provided evidence for Hg, As and Se biomagnification along the food-web. Considering the difficulties in assessing elasmobranchs contamination from different areas, the proposed multi-species approach represents a valuable way to estimate the species-specific accumulation and transfer of pollutants in sharks.
Collapse
Affiliation(s)
- G Boldrocchi
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy.
| | - D Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - M Mazzoni
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy
| | - M Omar
- Centre d'Etude et de Recherche de Djibouti Route de l'aéroport, Djibouti
| | - I Baneschi
- Institute of Geosciences and Earth Resources - National Research Council of Italy, Pisa, Italy
| | - C Boschi
- Institute of Geosciences and Earth Resources - National Research Council of Italy, Pisa, Italy
| | - L Zinzula
- Centro di Educazione Ambientale e alla Sostenibilità Laguna di Nora, Pula, CA, Italy
| | - R Bettinetti
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy.
| | - D Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy.
| |
Collapse
|
8
|
Lozano-Bilbao E, Lozano G, Jiménez S, Jurado-Ruzafa A, Hardisson A, Rubio C, Weller DG, Paz S, Gutiérrez ÁJ. Influence of Biometric and Seasonal Parameters on the Metal Content of Scomber colias in Northwestern African Waters. Biol Trace Elem Res 2021; 199:3886-3897. [PMID: 33206306 DOI: 10.1007/s12011-020-02493-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
Studies of the content of heavy metals and trace elements in fish and other marine organisms are of great importance to know the state of the marine ecosystem. This study has been carried out in northwestern African waters, Scomber colias being the target species, sampling a total of 345 specimens over 2 years. For the determination of metals and trace elements (Al, B, Cd, Cr, Cu, Fe, Li, Ni, Pb, V, and Zn) in the muscle, the ICP-OES (inductively coupled plasma optical emission spectrometry) was used. In the statistical study, the factors (oceanographic and maturity in the seasons, size of the specimens) were used. The samples sampled in the cold season that had high concentrations of metals may be due to the influence that African upwelling has on the Canary Islands. The metallic contents of our samples are lower than those found in the studies in Mauritania and Morocco due to the greater influence that upwelling has in these areas.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, La Laguna, 38206, Santa Cruz de Tenerife, Spain.
| | - Gonzalo Lozano
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, La Laguna, 38206, Santa Cruz de Tenerife, Spain
| | - Sebastián Jiménez
- Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Dársena Pesquera s/n, 38180, Santa Cruz de Tenerife, Spain
| | - Alba Jurado-Ruzafa
- Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Dársena Pesquera s/n, 38180, Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, La Laguna, 38200, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, La Laguna, 38200, Santa Cruz de Tenerife, Spain
| | | | - Soraya Paz
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, La Laguna, 38200, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, La Laguna, 38200, Santa Cruz de Tenerife, Spain
| |
Collapse
|
9
|
Tiktak GP, Butcher D, Lawrence PJ, Norrey J, Bradley L, Shaw K, Preziosi R, Megson D. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. MARINE POLLUTION BULLETIN 2020; 160:111701. [PMID: 33181965 DOI: 10.1016/j.marpolbul.2020.111701] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
This review represents a comprehensive analysis on pollutants in elasmobranchs including meta-analysis on the most studied pollutants: mercury, cadmium, PCBs and DDTs, in muscle and liver tissue. Elasmobranchs are particularly vulnerable to pollutant exposure which may pose a risk to the organism as well as humans that consume elasmobranch products. The highest concentrations of pollutants were found in sharks occupying top trophic levels (Carcharhiniformes and Lamniformes). A human health risk assessment identified that children and adults consuming shark once a week are exposed to over three times more mercury than is recommended by the US EPA. This poses a risk to local fishing communities and international consumers of shark-based products, as well as those subject to the widespread mislabelling of elasmobranch products. Wider screening studies are recommended to determine the risk to elasmobranchs from emerging pollutants and more robust studies are recommended to assess the risks to human health.
Collapse
Affiliation(s)
- Guuske P Tiktak
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - Demi Butcher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Peter J Lawrence
- Bangor University, School of Ocean Sciences, Askew St, Menai Bridge, Wales LL59 5AB, UK
| | - John Norrey
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Lee Bradley
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kirsty Shaw
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Richard Preziosi
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - David Megson
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
10
|
Lozano-Bilbao E, Viñé R, Lozano G, Hardisson A, Rubio C, González-Weller D, Matos-Perdomo E, Gutiérrez ÁJ. Metal content in Mullus surmuletus in the Canary Islands (North-West African Atlantic). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21044-21051. [PMID: 31140089 DOI: 10.1007/s11356-019-05365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The contents of 3 heavy metals (Al, Cd, and Pb) and 10 trace elements (B, Cr, Cu, Fe, Li, Mg, Ni, Sr, V, Zn) were determined by means of atomic emission spectrometry with inductively coupled plasma (ICP-OES) in 117 specimens of red mullet, Mullus surmuletus. The specimens were taken in two of the Canary Islands; two locations on the island of Tenerife: Candelaria on the northeast coast and Punta de Hidalgo on the north coast and Arguineguín, on the south coast of the island of Gran Canaria. No significant differences were found between the two sites in Tenerife regarding the metal content of the specimens studied, but differences were found between the specimens captured in Arguineguín and the two sites in Tenerife, the latter having higher concentrations of the analyzed metals.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206 La Laguna, Santa Cruz de Tenerife, Spain.
| | - Raquel Viñé
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206 La Laguna, Santa Cruz de Tenerife, Spain
| | - Gonzalo Lozano
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206 La Laguna, Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Emiliano Matos-Perdomo
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
11
|
Cullen JA, Marshall CD, Hala D. Integration of multi-tissue PAH and PCB burdens with biomarker activity in three coastal shark species from the northwestern Gulf of Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1158-1172. [PMID: 30308804 DOI: 10.1016/j.scitotenv.2018.09.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Tissue-based burdens of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were integrated with ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST) enzyme activity in bull (Carcharhinus leucas), blacktip (Carcharhinus limbatus), and bonnethead (Sphyrna tiburo) sharks from Galveston Bay, TX. The potential toxicity of these burdens was evaluated by calculation of toxic equivalents (TEQs). Concentrations of total PAHs (∑PAHs) were significantly greater in blacktip and bonnethead sharks than bull sharks in liver, but did not exhibit differences in muscle among species. Hepatic concentrations of ∑PAHs in these sharks (range of means: 1560-2200 ng/g wet wt.) were greater than concentrations previously reported in oysters from Galveston Bay (range of means: 134-333 ng/g dry wt.), which suggests that trophic dilution of PAHs may not be reflected in sharks. Total PCBs (∑PCBs) were significantly greatest in bull sharks and lowest in bonnetheads, while blacktips were intermediate to these species. EROD activity was greater in bonnetheads than the other species, whereas GST activity was significantly higher in blacktips and bonnetheads than in bull sharks. Integration of hepatic burdens with biomarker activity via constrained multivariate analysis found correlations for only a small number of individual PAH/PCB congeners. Hepatic TEQ measurements suggest potential physiological effects of these burdens compared to established TEQ thresholds for other taxa, although the likelihood of similar effects in sharks requires further study and the inclusion of toxic endpoints. Our findings indicate that sharks may be prone to the accumulation of PAHs and PCBs, which may result in negative health outcomes for these cartilaginous fishes.
Collapse
Affiliation(s)
- Joshua A Cullen
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Christopher D Marshall
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA
| | - David Hala
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA.
| |
Collapse
|
12
|
Cagnazzi D, Consales G, Broadhurst MK, Marsili L. Bioaccumulation of organochlorine compounds in large, threatened elasmobranchs off northern New South Wales, Australia. MARINE POLLUTION BULLETIN 2019; 139:263-269. [PMID: 30686427 DOI: 10.1016/j.marpolbul.2018.12.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Persistent organic pollutants (POPs) include polychlorinated biphenyls (PCBs) dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene (HCB), which are resistant to biodegradation and therefore accumulate in the marine environment. In Australia, POPs occur in high concentrations primarily in costal water near farming regions and urban centres. From contaminated sediments and biota, POPs are transferred and biomagnified in larger marine organisms. We quantified POPs concentrations in 57 individuals from ten species of sharks and rays caught in bather-protection gillnets deployed off northern New South Wales, Australia. Polychlorinated biphenyls, DDTs and HCB were detected in all species. For some individuals, concentrations were at levels known to have deleterious sub-lethal effects. Overall, the POP concentrations analysed in this study were comparable to those in similar species from more polluted regions, and may have negative impacts on longer-term health. Future research is warranted to investigate spatio-temporal patterns of species-specific contaminant loads and their implications.
Collapse
Affiliation(s)
- Daniele Cagnazzi
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Guia Consales
- Department of Environment, Earth and Physical Sciences, Siena University, Via Mattioli 4, 53100 Siena, Italy
| | - Matt K Broadhurst
- NSW Department of Primary Industries, Fisheries Conservation Technology Unit, National Marine Science Centre, PO Box 4321, Coffs Harbour, NSW 2450, Australia; Marine and Estuarine Ecology Unit, School of Biological Sciences, University of Queensland, St Lucia, Australia
| | - Letizia Marsili
- Department of Environment, Earth and Physical Sciences, Siena University, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
13
|
Fossi MC, Baini M, Panti C, Galli M, Jiménez B, Muñoz-Arnanz J, Marsili L, Finoia MG, Ramírez-Macías D. Are whale sharks exposed to persistent organic pollutants and plastic pollution in the Gulf of California (Mexico)? First ecotoxicological investigation using skin biopsies. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:48-58. [PMID: 28274762 DOI: 10.1016/j.cbpc.2017.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022]
Abstract
The whale shark (Rhincodon typus) is an endangered species that may be exposed to micro- and macro-plastic ingestion as a result of their filter-feeding activity, particularly on the sea surface. In this pilot project we perform the first ecotoxicological investigation on whale sharks sampled in the Gulf of California exploring the potential interaction of this species with plastic debris (macro-, micro-plastics and related sorbed contaminants). Due to the difficulty in obtaining stranded specimens of this endangered species, an indirect approach, by skin biopsies was used for the evaluation of the whale shark ecotoxicological status. The levels of organochlorine compounds (PCBs, DDTs), polybrominated diphenyl ethers (PBDEs) plastic additives, and related biomarkers responses (CYP1A) were investigated for the first time in the whale shark. Twelve whale shark skin biopsy samples were collected in January 2014 in La Paz Bay (BCS, Mexico) and a preliminary investigation on microplastic concentration and polymer composition was also carried out in seawater samples from the same area. The average abundance pattern for the target contaminants was PCBs>DDTs>PBDEs>HCB. Mean concentration values of 8.42ng/g w.w. were found for PCBs, 1.31ng/g w.w. for DDTs, 0.29ng/g w.w. for PBDEs and 0.19ng/g w.w. for HCB. CYP1A-like protein was detected, for the first time, in whale shark skin samples. First data on the average density of microplastics in the superficial zooplankton/microplastic samples showed values ranging from 0.00items/m3 to 0.14items/m3. A focused PCA analysis was performed to evaluate a possible correlation among the size of the whale sharks, contaminants and CYP1A reponses. Further ecotoxicological investigation on whale shark skin biopsies will be carried out for a worldwide ecotoxicological risk assessment of this endangerd species.
Collapse
Affiliation(s)
- Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Matteo Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry. Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry. Institute of Organic Chemistry (IQOG-CSIC). Juan de la Cierva 3, 28006 Madrid, Spain
| | - Letizia Marsili
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Maria Grazia Finoia
- ISPRA, Institute for Environmental Protection and Research, Via V. Brancati 48, 00144 Rome, Italy
| | - Dení Ramírez-Macías
- Tiburon Ballena Mexico proyecto de ConCiencia Mexico AC, La Paz, BCS, Mexico
| |
Collapse
|
14
|
Ahmadkhaniha R, Nodehi RN, Rastkari N, Aghamirloo HM. Polychlorinated biphenyls (PCBs) residues in commercial pasteurized cows' milk in Tehran, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2017; 15:15. [PMID: 28680645 PMCID: PMC5496162 DOI: 10.1186/s40201-017-0278-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 06/21/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND To date, despite the facts that pasteurized milk is the most consumed dairy product in Iran and its consumption has increased almost two fold during the last 10 years, no data are available concerning the concentrations of polychlorinated biphenyls (PCBs) in commercial cow milk in Iran market. METHODS This study designed to determine the levels of PCBs in these products and to assess population exposure to PCBs by estimating the daily intakes. Pasteurized cows' milk samples (10 brands) were collected from local markets at two different seasons and analyzed using sensitive and reliable methods. RESULTS Based on the results all the indicator PCBs were detected and quantified in all of the samples, the mean ± SD concentration for the sum of the six congeners was 18.92 ± 14.36 ng g-1 fat. None of the samples surpassed the provisional value established by the EU of 40 ng g-1 fat. The sum of dioxin-like congeners, expressed as WHO-TEQ was 0.492 pg/g of fat which was considerably lower than the defined limit 3 pg/g fat, set for cow's milk. Furthermore, a similar DL-PCBs profile as other studies was found for analyzed samples. The results indicated that concentrations of DL-PCBs were very low, and all of milk samples were compliant with EC legislation. In addition, seasonal variations were not observed for DL- and NDL-PCBs levels (p values >0.05). CONCLUSIONS The estimated dietary intake for target population was 0.06 pg TEQ/kg of body weight/day, much smaller than the amounts declared by the World Health Organization as tolerable daily intake.
Collapse
Affiliation(s)
- Reza Ahmadkhaniha
- Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, 1417993359 Iran
| | - Hassan Mohammadi Aghamirloo
- Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Nos D, Navarro J, Barría C, Solé M. Carboxylesterase activities in chondrichthyans of the western Mediterranean Sea. MARINE POLLUTION BULLETIN 2017; 119:332-335. [PMID: 28438337 DOI: 10.1016/j.marpolbul.2017.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Affiliation(s)
- David Nos
- Institut de Ciències del Mar CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Joan Navarro
- Institut de Ciències del Mar CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain; Estación Biológica de Doñana CSIC, Avenida Américo Vespucio 26, 41092 Sevilla, Spain
| | - Claudio Barría
- Institut de Ciències del Mar CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Montserrat Solé
- Institut de Ciències del Mar CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| |
Collapse
|