1
|
Rodrigues JA, Chaves RS, Santos MM, Neuparth T, Gil AM. Direct and transgenerational effects of simvastatin on the metabolism of the amphipod Gammarus locusta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107221. [PMID: 39799757 DOI: 10.1016/j.aquatox.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
In this study, untargeted Nuclear Magnetic Resonance (NMR) metabolomics was applied for the first time, to our knowledge, to assess the metabolic impact of direct and transgenerational exposure (F0 and F3 generations, respectively) of amphipods Gammarus locusta to simvastatin (SIM), a pharmaceutical widely prescribed for the treatment of hypercholesterolemia. Results revealed the important gender-dependent nature of each of these effects. Directly exposed males showed enhanced glucose catabolism and tricarboxylic acid (TCA) cycle activity, in tandem with adaptations in osmotic regulation and glyoxylate metabolism. Exposed females exhibited only a small osmoregulatory effect. It is suggested that the response of exposed males may reflect reported high levels of methyl farnesoate hormone (low levels in females) and alterations in apical factors, namely decreased growth. Conversely, transgenerational effects were identified only in females, with impact on energy metabolism (glycolysis and TCA cycle enhancement) and osmoregulatory response. This expresses the ability of female gametes to transmit the effects of direct SIM exposure. Such effects were putatively related to reported delayed maturation and transcriptomic deviations impacting on carbohydrate and lipid metabolisms, possibly specifically engaging phenylalanine/tyrosine and choline in dopamine and choline metabolisms. These findings reflect the importance of untargeted metabolomics in addressing not only direct exposure of contaminants, but also their transgenerational effects, potentially contributing towards improving hazard and risk assessment of biologically active compounds.
Collapse
Affiliation(s)
- João A Rodrigues
- Department of Chemistry and CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Raquel S Chaves
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Portugal.
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Yokoyama D, Suzuki S, Asakura T, Kikuchi J. Chemometric Analysis of NMR Spectra and Machine Learning to Investigate Membrane Fouling. ACS OMEGA 2022; 7:12654-12660. [PMID: 35474825 PMCID: PMC9025983 DOI: 10.1021/acsomega.1c06891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 05/26/2023]
Abstract
Efficient membrane filtration requires the understanding of the membrane foulants and the functional properties of different membrane types in water purification. In this study, dead-end filtration of aquaculture system effluents was performed and the membrane foulants were investigated via nuclear magnetic resonance (NMR) spectroscopy. Several machine learning models (Random Forest; RF, Extreme Gradient Boosting; XGBoost, Support Vector Machine; SVM, and Neural Network; NN) were constructed, one to predict the maximum transmembrane pressure, for revealing the chemical compounds causing fouling, and the other to classify the membrane materials based on chemometric analysis of NMR spectra, for determining their effect on the properties of the different membrane types tested. Especially, RF models exhibited high accuracy; the important chemical shifts observed in both the regression and classification models suggested that the proportional patterns of sugars and proteins are key factors in the fouling progress and the classification of membrane types. Therefore, the proposed strategy of chemometric analysis of NMR spectra is suitable for membrane research, which aims at investigating comprehensively the fouling phenomenon and how the foulants and environmental conditions vary according to the filtration systems.
Collapse
Affiliation(s)
- Daiki Yokoyama
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sosei Suzuki
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Taiga Asakura
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Bioagricultural Sciences, Nagoya
University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| |
Collapse
|
3
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
4
|
Fohringer C, Dudka I, Spitzer R, Stenbacka F, Rzhepishevska O, Cromsigt JPGM, Gröbner G, Ericsson G, Singh NJ. Integrating omics to characterize eco-physiological adaptations: How moose diet and metabolism differ across biogeographic zones. Ecol Evol 2021; 11:3159-3183. [PMID: 33841775 PMCID: PMC8019042 DOI: 10.1002/ece3.7265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
With accelerated land conversion and global heating at northern latitudes, it becomes crucial to understand, how life histories of animals in extreme environments adapt to these changes. Animals may either adapt by adjusting foraging behavior or through physiological responses, including adjusting their energy metabolism or both. Until now, it has been difficult to study such adaptations in free-ranging animals due to methodological constraints that prevent extensive spatiotemporal coverage of ecological and physiological data.Through a novel approach of combining DNA-metabarcoding and nuclear magnetic resonance (NMR)-based metabolomics, we aim to elucidate the links between diets and metabolism in Scandinavian moose Alces alces over three biogeographic zones using a unique dataset of 265 marked individuals.Based on 17 diet items, we identified four different classes of diet types that match browse species availability in respective ecoregions in northern Sweden. Individuals in the boreal zone consumed predominantly pine and had the least diverse diets, while individuals with highest diet diversity occurred in the coastal areas. Males exhibited lower average diet diversity than females.We identified several molecular markers indicating metabolic constraints linked to diet constraints in terms of food availability during winter. While animals consuming pine had higher lipid, phospocholine, and glycerophosphocholine concentrations in their serum than other diet types, birch- and willow/aspen-rich diets exhibit elevated concentrations of several amino acids. The individuals with highest diet diversity had increased levels of ketone bodies, indicating extensive periods of starvation for these individuals.Our results show how the adaptive capacity of moose at the eco-physiological level varies over a large eco-geographic scale and how it responds to land use pressures. In light of extensive ongoing climate and land use changes, these findings pave the way for future scenario building for animal adaptive capacity.
Collapse
Affiliation(s)
- Christian Fohringer
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Ilona Dudka
- Department of ChemistryUmeå UniversityUmeåSweden
| | - Robert Spitzer
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Fredrik Stenbacka
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | | | - Joris P. G. M. Cromsigt
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | | | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Navinder J. Singh
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
5
|
Inverse or direct detect experiments and probes: Which are “best” for in-vivo NMR research of 13C enriched organisms? Anal Chim Acta 2020; 1138:168-180. [DOI: 10.1016/j.aca.2020.09.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023]
|
6
|
Ju YR, Chen CF, Chen CW, Tsai ML, Wu JC, Dong CD. An integrative assessment to determine the sediment toxicity of Kaohsiung Harbor in Taiwan: combining chemical analysis and cytotoxicity assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34321-34331. [PMID: 30919177 DOI: 10.1007/s11356-019-04840-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
To evaluate the toxicity of sediments collected from the mouths of four rivers and entrances of Kaohsiung Harbor, Taiwan, a combination of in vitro cytotoxicity assays (Clone 9 cells) and chemical analysis that quantified 16 polycyclic aromatic hydrocarbons (PAHs), 10 phthalate esters (PAEs), and 2 alkylphenols (APs) was employed. Results showed that the total concentrations of PAHs, PAEs, and APs ranged between 77.9 and 24,363 ng/g dw, between 268 and 118,010 ng/g dw, and between 32.6 and 84,438 ng/g dw in sediments, respectively. The highest concentrations of PAHs, PAEs, and APs were found in the mouths of the Salt River (SR), Love River (LR), and Jen-Gen River (JR), respectively. Mean reference sediment quotient (m-RSQ) values were calculated using the chemical concentrations measured in the sediment of entrance I (EI) as the benchmark, and the order was SR > LR > JR > CR (Canon River mouth) > EII (entrance II) > EI. Results of the cytotoxicity assay showed that the 50% inhibitory concentration (IC50) of Clone 9 cells was in the order of LR < SR < JR < CR < EII < EI. Results on DNA content, apoptotic and autophagy protein biomarkers, and acridine orange staining indicated that the cause of death of Clone 9 cells after treatment with sediment extracts of the LR site was mainly through apoptosis. There was a significant correlation between m-RSQ values and IC50 of Clone 9 cells. The correlation analysis between cytotoxicity and chemical analytical data indicated that certain unknown chemicals may exist in LR sediment. Overall, this study demonstrated that the combination of chemical and biological analyses can provide a more comprehensive and realistic assessment of sediment toxicity to aquatic organisms compared to traditional chemistry-based-only analytical approaches.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Jia-Ching Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
7
|
Lucas-Torres C, Wong A. Current Developments in µMAS NMR Analysis for Metabolomics. Metabolites 2019; 9:metabo9020029. [PMID: 30736341 PMCID: PMC6410107 DOI: 10.3390/metabo9020029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/02/2019] [Accepted: 02/02/2019] [Indexed: 12/30/2022] Open
Abstract
Analysis of microscopic specimens has emerged as a useful analytical application in metabolomics because of its capacity for characterizing a highly homogenous sample with a specific interest. The undeviating analysis helps to unfold the hidden activities in a bulk specimen and contributes to the understanding of the fundamental metabolisms in life. In NMR spectroscopy, micro(µ)-probe technology is well-established and -adopted to the microscopic level of biofluids. However, this is quite the contrary with specimens such as tissue, cell and organism. This is due to the substantial difficulty of developing a sufficient µ-size magic-angle spinning (MAS) probe for sub-milligram specimens with the capability of high-quality data acquisition. It was not until 2012; a µMAS probe had emerged and shown promises to µg analysis; since, a continuous advancement has been made striving for the possibility of µMAS to be an effective NMR spectroscopic analysis. Herein, the mini-review highlights the progress of µMAS development—from an impossible scenario to an attainable solution—and describes a few demonstrative metabolic profiling studies. The review will also discuss the current challenges in µMAS NMR analysis and its potential to metabolomics.
Collapse
Affiliation(s)
| | - Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Chen H, Diao X, Zhou H. Tissue-specific metabolic responses of the pearl oyster Pinctada martensii exposed to benzo[a]pyrene. MARINE POLLUTION BULLETIN 2018; 131:17-21. [PMID: 29886933 DOI: 10.1016/j.marpolbul.2018.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) that is well known for its teratogenic, mutagenic and carcinogenic effects. In this study, we applied metabolomics to investigate the tissue-specific metabolic responses of the Pinctada martensii digestive glands and gills after a short-duration exposure to BaP (1 μg/L and 10 μg/L). After 72 h of exposure to BaP, the majority of metabolite changes were related to osmolytes, energy metabolites, and amino acids. BaP (1 μg/L) accelerated energy deterioration and decreased osmotic regulation, while BaP (10 μg/L) disturbed energy metabolism and increased osmotic stress in the digestive glands. Both BaP doses disturbed osmotic regulation and energy metabolism in the gills. BaP also induced neurotoxicity in both tissues. These findings demonstrated that BaP exhibited tissue-specific metabolic responses in P. martensii. The difference in these metabolite responses between the digestive glands and gills might prove to be suitable biomarkers for indicating exposure to specific marine pollutants.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
Bastawrous M, Jenne A, Tabatabaei Anaraki M, Simpson AJ. In-Vivo NMR Spectroscopy: A Powerful and Complimentary Tool for Understanding Environmental Toxicity. Metabolites 2018; 8:E35. [PMID: 29795000 PMCID: PMC6027203 DOI: 10.3390/metabo8020035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Part review, part perspective, this article examines the applications and potential of in-vivo Nuclear Magnetic Resonance (NMR) for understanding environmental toxicity. In-vivo NMR can be applied in high field NMR spectrometers using either magic angle spinning based approaches, or flow systems. Solution-state NMR in combination with a flow system provides a low stress approach to monitor dissolved metabolites, while magic angle spinning NMR allows the detection of all components (solutions, gels and solids), albeit with additional stress caused by the rapid sample spinning. With in-vivo NMR it is possible to use the same organisms for control and exposure studies (controls are the same organisms prior to exposure inside the NMR). As such individual variability can be reduced while continual data collection over time provides the temporal resolution required to discern complex interconnected response pathways. When multidimensional NMR is combined with isotopic labelling, a wide range of metabolites can be identified in-vivo providing a unique window into the living metabolome that is highly complementary to more traditional metabolomics studies employing extracts, tissues, or biofluids.
Collapse
Affiliation(s)
- Monica Bastawrous
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Amy Jenne
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Maryam Tabatabaei Anaraki
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - André J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
- Department of Chemistry, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|