1
|
Oppenheimer JA, Prasse C, Newmeyer M, Schwab KJ, Jacangelo JG. Monitoring iohexol and its transformation products as evidence of reclaimed water irrigation input to contiguous waterbodies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174351. [PMID: 38960165 DOI: 10.1016/j.scitotenv.2024.174351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Irrigation with reclaimed water alleviates water supply shortages, but excess application often results in impairment of contiguous waterbodies. This project investigated the potential use of iohexol, an iodinated contrast media used in medical imaging, together with its bio- and phototransformation products as unique reconnaissance markers of reclaimed water irrigation intrusion at three golf courses within the state of Florida. Inter-facility iohexol concentrations measured in reclaimed waters ranged over ~2 orders of magnitude while observed intra-facility seasonal differences were ≤1 order of magnitude. A ~50 % reduction in iohexol was observed post-disinfection for reclaimed water facilities utilizing UV light while none was observed with use of chlorine. Iohexol biotransformation products were observed to decline or shift to lower molecular weight compounds when exposed to UV light but not during disinfection using chlorine. Iohexol biotransformation products were observed in most of the samples but were more prevalent in samples collected during the dry season. Much fewer iohexol phototransformation products were observed in chlorinated reclaimed water, and they were only observed in UV light irradiated reclaimed water when the pre-disinfectant iohexol concentration was ≥5000 ng/L or from solar exposure of reclaimed water spiked with 10 μM of iohexol. For the Hillsborough golf course overlaying an aquifer, the groundwater did not contain iohexol or phototransformation products but did contain biotransformation products. It is not known if these biotransformation products are from active or historical intrusion. The additional presence of sucralose in the aquifer suggests that intrusion has occurred within the past 3 years. This study demonstrates three crucial points in attempting to utilize iohexol to denote reclaimed water intrusion from irrigation overapplication: (1) interpretable results are obtained when iohexol concentrations in the reclaimed water employed for irrigation are ≥1000 ng/L, with higher concentrations in the range of ≥5000 ng/L better able to meet analytical sensitivity requirements after further dilution or degradation in the environment; (2) it is beneficial to assess iohexol transformation products in tandem with iohexol monitoring to account for environmental transformations of iohexol during storage and transport to the receiving water of concern; and (3) inclusion of monitoring for sucralose, an artificial sweetener ubiquitous in wastewater sources that is comparatively stable in the environment, can aid in interpretating whether reclaimed water intrusion based on identification of iohexol and transformation products in the receiving water is attributable to historic or ongoing irrigation overapplications.
Collapse
Affiliation(s)
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Matthew Newmeyer
- Department of Environmental Health and Engineering, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Kellogg J Schwab
- Department of Environmental Health and Engineering, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Joseph G Jacangelo
- Department of Environmental Health and Engineering, Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA; Stantec, 40814 Stoneburner Mill Lane, Lovettsville, VA 20180, USA
| |
Collapse
|
2
|
Westmoreland AG, Schafer TB, Breland KE, Beard AR, Osborne TZ. Sucralose (C 12H 19Cl 3O 8) impact on microbial activity in estuarine and freshwater marsh soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:451. [PMID: 38613723 DOI: 10.1007/s10661-024-12610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
As the general population's diet has shifted to reflect current weight-loss trends, there has been an increase in zero-calorie artificial sweetener usage. Sucralose (C12H19Cl3O8), commonly known as Splenda® in the USA, is a primary example of these sweeteners. In recent years, sucralose has been identified as an environmental contaminant that cannot easily be broken down via bacterial decomposition. This study focuses on the impact of sucralose presence on microbial communities in brackish and freshwater systems. Microbial respiration and fluorescence were measured as indicators of microbial activity in sucralose-dosed samples taken from both freshwater and estuarine marsh environments. Results showed a significant difference between microbial concentration and respiration when dosed with varying levels of sucralose. Diatom respiration implied a negative correlation of community abundance with sucralose concentration. The freshwater cyanobacterial respiration increased in the presence of sucralose, implying a positive correlation of community abundance with sucralose concentration. This was in direct contrast to its brackish water counterpart. However, further investigation is necessary to confirm any potential utility of these communities in the breakdown of sucralose in the marsh environment.
Collapse
Affiliation(s)
- Amelia G Westmoreland
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, USA.
| | - Tracey B Schafer
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, USA
| | - Kendall E Breland
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, USA
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL, USA
| | - Anna R Beard
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, USA
| | - Todd Z Osborne
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, USA
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Cai Y, Tian T, Huang Y, Yao H, Qi X, Fan J, Kuang Y, Chen J, Li X, Kadokami K. Occurrence and Health Risks of Organic Micropollutants in Tap Water in Dalian. Chem Res Toxicol 2023; 36:1938-1946. [PMID: 38039423 DOI: 10.1021/acs.chemrestox.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Organic micropollutants (OMPs) in tap water may pose risks to human health. Previous studies on the potential health risks of OMPs in tap water may have underestimated the potential health risks of OMPs due to their limited coverage in target pollutants and incomplete toxicity data. In this study, tap water samples were collected in 37 sampling sites in Dalian, China. More than 1,200 target pollutants were screened by combining screening analysis and target analysis. A total of 93 OMPs were detected, with concentration summation ranging from 157 to 1.7 × 104 ng/L among different sampling sites. A total of 17 OMPs (12 agrochemicals, 3 pharmaceuticals and personal care products, and 2 other compounds) were detected in over 80% of the sampling sites. Especially, imidacloprid, tebuconazole, and atrazine-desethyl were found in all the sampling sites. Computational toxicology models were adopted to predict the missing toxicity threshold values of the identified chemicals. Noncarcinogenic risks were estimated to be negligible among all the sampling sites, while carcinogenic risks at six sites were above 10-6 but below 10-4, indicating non-negligible risks. Griseofulvin contributed the most to the carcinogenic risk. This study offers valuable insights that can guide future initiatives to safeguard tap water safety.
Collapse
Affiliation(s)
- Yuantian Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongye Yao
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaojuan Qi
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jun Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yidan Kuang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, University of Kitakyushu, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
4
|
Kamanmalek S, Rice-Boayue J. Development of a national antibiotic multimetric index for identifying watersheds vulnerable to antibiotic pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122670. [PMID: 37813143 DOI: 10.1016/j.envpol.2023.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Improved surveillance of antibiotics and antibiotic resistance (AR) throughout the environment is an important aspect of the prevention and control of threats posed to human and ecological health. In response to field investigations often limited by resources and time, this study aims to develop a systematic approach to assess watershed vulnerability to antibiotic pollution and AR by integrating modeling and field studies. The national antibiotic pollution vulnerability index was developed to identify watersheds most impacted by antibiotic sources. The index incorporates multiple metrics representing antibiotic pollution driven by both agricultural activities and municipal wastewater (i.e. outpatient antibiotic prescriptions, wastewater treatment plant effluent flow, stream order and dilution factor of effluent-receiving streams, manure application, and animal facilities), alongside climate change indicators (i.e., temperature, precipitation, and runoff). The pollution index was applied at a state level in North Carolina to identify the most-impacted watersheds and inform site selection for targeted field study quantifying azithromycin, ciprofloxacin, sulfamethoxazole, and trimethoprim concentrations. Modeled-informed sites in NC demonstrated the highest reported concentrations of azithromycin, trimethoprim, and sulfamethoxazole compared to previous NC studies, confirming the index effectiveness in identifying watersheds with higher antibiotic concentrations. At the national scale, watersheds relatively more vulnerable to antibiotic pollution are predominantly located in the Midwest, South, and Northeast regions of the U.S., with Iowa and Indiana being the most impacted states. Climate change is expected to exacerbate watershed vulnerability to agriculture-driven AR in the Midwest and Northeast due to an increase in precipitation and mean temperature coupled with intense agricultural activities. In addition, due to climate change-induced reductions in precipitation and runoff, watersheds in the Midwest, Mid-Atlantic, and South Central are dominantly at higher risk of effluent-driven AR occurrences. We have disseminated the developed indices as open-source online tools to aid in prioritizing strategies to mitigate AR occurrence across the U.S.
Collapse
Affiliation(s)
- Sara Kamanmalek
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL, 32306, USA
| | - Jacelyn Rice-Boayue
- Department of Civil, Construction, And Environmental Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
5
|
Colín-García K, Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S. Influence of sucralose, acesulfame-k, and their mixture on brain's fish: A study of behavior, oxidative damage, and acetylcholinesterase activity in Daniorerio. CHEMOSPHERE 2023; 340:139928. [PMID: 37625490 DOI: 10.1016/j.chemosphere.2023.139928] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Sucralose (SUC) and acesulfame-k (ACE-K) are widely used artificial sweeteners worldwide; however, they are frequently detected in aquatic environments due to their low metabolism and inadequate removal during wastewater treatment. The harmful effects of these compounds on hydrobionts have yet to be fully understood, as data on their toxicity is limited and inconclusive. This research aimed to determine the impact of SUC (50, 75, 125 μg/L) and ACE-K (50, 75, 125 μg/L), individually and in combination, on fish's swimming behavior, acetylcholinesterase activity, and oxidative stress response after four months of exposure. Following exposure, adult Danio rerio displayed anxiety-like behavior, as evidenced by increased freezing time and decreased swimming activity. Additionally, analysis of fish brain tissue revealed a disruption of REDOX homeostasis, leading to oxidative stress, which may be responsible for the observed inhibition of AChE activity. The results indicated that ACE-K was more toxic than SUC, and the mixture of both compounds produced a more detrimental effect than when each compound was administered alone. These findings highlight the hazardous impacts of SUC and ACE-K on fish in environmentally relevant concentrations, suggesting that these compounds should be added to the priority pollutant list.
Collapse
Affiliation(s)
- Karla Colín-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
6
|
Shen G, Lei S, Li H, Yu Q, Wu G, Shi Y, Xu K, Ren H, Geng J. Occurrence and removal of four artificial sweeteners in wastewater treatment plants of China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:75-84. [PMID: 36476784 DOI: 10.1039/d2em00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Artificial sweeteners discharged into aquatic environments have raised concern because of their ubiquitous occurrence and potential biological effect. And some of them, such as sucralose (SUC) and acesulfame (ACE), have been identified as emerging contaminants. Wastewater treatment plants (WWTPs) are considered as important sources and sinks of artificial sweeteners discharged into the environment. In this study, the occurrence and removal of four representative artificial sweeteners in 12 WWTPs located in different provinces of China were investigated. The results showed that artificial sweeteners were detected widely in the investigated WWTPs. The median concentrations of the four target artificial sweeteners were detected in influents at levels of 0.03-3.85 μg L-1 and decreased in the order of SUC > ACE > aspartame (APM) > neotame (NTM). Additionally, the per capita mass loads of total artificial sweeteners in the WWTPs could be affected by the location of the WWTPs and were higher in southern cities than in northern cities. It was also found that there was a distinct linear correlation between the per capita mass load of ACE in influents and population density. During the treatment of WWTPs, the overall removal efficiency of artificial sweeteners ranged from -116% to 99.1%. Among the target artificial sweeteners, SUC and ACE might have potential risk to aquatic environments based on the calculation of the risk quotient. Thus, advanced treatment processes were carried to further remove SUC and ACE to reduce their long-term cumulative effect. Overall, UV/H2O2 and UV/PDS showed a better effect than granular activated carbon (GAC) adsorption in the removal of artificial sweeteners. The reaction constants of ACE by UV/H2O2 and UV/PDS were higher than those of SUC, which is related to molar extinction coefficients. Meanwhile, the adsorption ability of GAC adsorption for SUC was better than that of ACE, which is in correlation with the octanol-water partition coefficient. By comparison of removal efficiency, UV/PDS was considered as the most suitable advanced treatment process to remove ACE and SUC.
Collapse
Affiliation(s)
- Guochen Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Shaoting Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Hongzhou Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Yufei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Colín-García K, Elizalde-Velázquez GA, Gómez-Oliván LM, Islas-Flores H, García-Medina S, Galar-Martínez M. Acute exposure to environmentally relevant concentrations of sucralose disrupts embryonic development and leads to an oxidative stress response in Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154689. [PMID: 35314215 DOI: 10.1016/j.scitotenv.2022.154689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Sucralose (SUC) is the most consumed artificial sweetener worldwide, not metabolized by the human body, and barely eliminated from water in wastewater treatment plants. Although different studies have reported high concentrations of this sweetener in aquatic environments, limited to no information is known about the toxic effects this drug may produce over water organisms. Moreover, most of the current studies have used non-environmentally relevant concentrations of SUC for these effects. Herein, we aimed to evaluate the harmful effects that environmentally relevant concentrations of SUC may induce in the early life stages of Danio rerio. According to our results, SUC altered the embryonic development of D. rerio, producing several malformations that led to their death. The major malformations were scoliosis, pericardial edema, yolk deformation, and tail malformation. However, embryos also got craniofacial malformations, eye absence, fin absence, dwarfism, delay of the hatching process, and hypopigmentation. SUC also generated an oxidative stress response in the embryos characterized by an increase in the levels of lipid peroxidation, hydroperoxides, and carbonyl proteins. To overcome this oxidative stress response, we observed a significant increase in the levels of antioxidant enzymes superoxide dismutase and catalase. Moreover, a significant boost in the expression of antioxidant defense-related genes, Nuclear respiratory factor 1a (Nrf1a) and Nuclear respiratory factor 2a (Nrf2a), was also observed at all concentrations. Concerning apoptosis-related genes, we observed the expression of Caspase 3 (CASP3) and Caspase 9 (CASP9) was increased in a concentration-dependent manner. Overall, we conclude environmentally relevant concentrations of SUC are harmful to the early life stages of fish as they produce malformations, oxidative stress, and increased gene expression of apoptosis-related genes on embryos.
Collapse
Affiliation(s)
- Karla Colín-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
8
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
9
|
Abbott EA, Helbing CC. Sucralose Affects Thyroid Hormone Signaling in American Bullfrog [Rana (Lithobates) catesbeiana] Tadpoles. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:735-744. [PMID: 33787960 DOI: 10.1007/s00244-021-00838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Nonnutritive sweeteners used in food and beverage products are widespread, persistent aquatic pollutants. Despite this, their impact on aquatic organisms, particularly vertebrates, is not well-studied. Recent findings in rodents suggest sucralose, a chlorinated disaccharide, alters thyroid hormone (TH) metabolism. Because amphibian tadpole metamorphosis is TH-dependent, we hypothesized sucralose may alter signaling for this postembryonic developmental process. The present study used the American bullfrog, Rana (Lithobates) catesbeiana, as a sensitive, environmentally relevant model for testing TH disruption in the absence and presence of thyroxine (T4), a hormone that induces metamorphosis. Premetamorphic R. catesbeiana tadpoles were immersed in 1-, 15-, and 32-mg/L sucralose solutions ± 5 nM (3.9 µg/L) thyroxine (T4) for 48 h. RNA transcripts encoding thyroid hormone receptors alpha and beta (thra and thrb) and TH-induced basic region leucine zipper protein (thibz) were analyzed in four tissues: back skin, liver, olfactory epithelium, and tail fin, using reverse transcription quantitative real-time PCR (RT-qPCR). We found that sucralose altered the expression of fundamental TH-response genes involved in anuran metamorphosis in a tissue- and TH-status dependent manner. As organochlorines induce xenobiotic metabolism, we isolated and characterized three novel R. catesbeiana gene transcripts involved in xenobiotic metabolism: pregnane X receptor (nr1i2), constitutive androstane receptor (nr1i3), and cytochrome p450 3a4 (cyp3a4). We analyzed their expression using RT-qPCR and found evidence of their modulation by sucralose. To our knowledge, these data are the first to show xenobiotic and thyroid-disrupting activities in amphibians and further investigations into cumulative effects of environmental sucralose exposure are warranted.
Collapse
Affiliation(s)
- Ethan A Abbott
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
10
|
Naik AQ, Zafar T, Shrivastava VK. Environmental Impact of the Presence, Distribution, and Use of Artificial Sweeteners as Emerging Sources of Pollution. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:6624569. [PMID: 33936216 PMCID: PMC8060115 DOI: 10.1155/2021/6624569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Artificial sweeteners are posing a new threat to the environment. The water ecosystem is the primary recipient of these emerging contaminants. Once ingested, sufficient amount of these artificial sweeteners escape unchanged from the human body and are added to the environment. However, some are added in the form of their breakdown products through excretion. Artificial sweeteners are resistant to wastewater treatment processes and are therefore continuously introduced into the water environments. However, the environmental behavior, fate, and long-term ecotoxicological contributions of artificial sweeteners in our water resources still remain largely unknown. Some artificial sweeteners like saccharin are used as a food additive in animal feeds. It also forms the degradation product of the sulfonylurea herbicides. All artificial sweeteners enter into the wastewater treatment plants from the industries and households. From the effluents, they finally reside into the receiving environmental bodies including wastewaters, groundwaters, and surface waters. The global production of these sweeteners is several hundred tons annually and is continuously being added into the environment.
Collapse
Affiliation(s)
- Ab Qayoom Naik
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Tabassum Zafar
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Vinoy Kumar Shrivastava
- Laboratory of Endocrinology, Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| |
Collapse
|
11
|
Burket SR, Wright MV, Baker LF, Chambliss CK, King RS, Matson CW, Brooks BW. Periphyton, bivalves and fish differentially accumulate select pharmaceuticals in effluent-dependent stream mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140882. [PMID: 32726693 DOI: 10.1016/j.scitotenv.2020.140882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 04/15/2023]
Abstract
Pharmaceuticals and other ionizable contaminants from municipal wastewater treatment plant effluent can bioaccumulate in fish, particularly in effluent dominated and dependent systems in semi-arid and arid regions. However, invertebrate bioaccumulation of these compounds has been less studied. Using municipal wastewater effluent as source water in outdoor stream mesocosms to simulate effluent-dependent lotic systems, we examined bioaccumulation of several widely-used pharmaceuticals including acetaminophen (nonsteroidal anti-inflamatory), caffeine (stimulant), carbamazepine (anti-epileptic), diltiazem (calcium channel blocker), diphenhydramine (anti-histamine), fluoxetine (anti-depressant), norfluoxetine (anti-depressant metabolite), and sertraline (anti-depressant) in freshwater clams (Corbicula fluminea), periphyton and stoneroller minnows (Campostoma anomalum), a commonly studied grazer in stream ecology, during a replicated outdoor stream mesocosm study at the Baylor Experimental Aquatic Research facility. Target analytes were determined in tissues, source effluent and stream water by isotope dilution LC-MS/MS. After an 8-day uptake period, clams accumulated a number of pharmaceuticals, including acetaminophen, carbamazepine, diltiazem, diphenhydramine, fluoxetine, norfluoxetine and sertraline with maximum concentrations reaching low μg/kg. We observed uptake rates in clams for acetaminophen at 2.8 μg/kg per day, followed by diphenhydramine (1.2 μg/kg per day) and carbamazepine (1.1 μg/kg per day). Caffeine, carbamazepine, diltiazem and diphenhydramine were measured in periphyton. Diphenhydramine was the only compound detected in all matrices, where bioaccumulation factors (BAFs) were elevated in bivalves (1631 ± 589 L/kg), compared to stoneroller minnows (247 ± 84 L/kg) and periphyton (315 ± 116 L/kg). Such BAF variability across multiple biological matrices highlight the need to understand bioaccumulation differences for ionizable contaminants among freshwater biota, including threatened and endangered species (e.g., unionids), commercially important bivalves (e.g., estuarine and marine bivalves), and fish.
Collapse
Affiliation(s)
- S Rebekah Burket
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, United States; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97388, Waco, TX 76798, United States
| | - Moncie V Wright
- Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97388, Waco, TX 76798, United States; Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, United States; Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27707, United States
| | - Leanne F Baker
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, United States; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97388, Waco, TX 76798, United States; Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27707, United States
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Ryan S King
- Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97388, Waco, TX 76798, United States; Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, United States; Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27707, United States
| | - Cole W Matson
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, United States; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97388, Waco, TX 76798, United States; Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27707, United States; Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798, United States
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, United States; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97388, Waco, TX 76798, United States; Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798, United States; School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Henderson A, Ng B, Landeweer S, Quinete N, Gardinali P. Assessment of Sucralose, Caffeine and Acetaminophen as Anthropogenic Tracers in Aquatic Systems Across Florida. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:351-357. [PMID: 32749513 DOI: 10.1007/s00128-020-02942-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/13/2020] [Indexed: 05/25/2023]
Abstract
Sucralose is one of the most popular artificial sweeteners worldwide. Due to its high stability, persistence and low removal efficiency in wastewater treatment plants, sucralose has been used as an indicator of wastewater intrusion into aquatic systems. However, its stability has also been a reason for discussion whether sucralose's presence in surface water could indicate a recent anthropogenic input. Caffeine and acetaminophen have been considered as tracers in human impacted aquatic ecosystems and potentially good indicators of recent anthropogenic inputs into the environment due to their short half-lives in water. Here, a novel, high throughput and sensitive method based on online SPE-LC-HRMS for the determination of caffeine, sucralose and acetaminophen was developed and validated for both fresh and seawater samples and applied to environmental water samples to evaluate the efficiency of these compounds as tracers of aquatic pollution. Caffeine and sucralose were detected in > 70% of samples, while acetaminophen was only detected in 3% of samples above the MDL, demonstrating its limited environmental applicability.
Collapse
Affiliation(s)
- Autumn Henderson
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Brian Ng
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Steven Landeweer
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Natalia Quinete
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Southeast Environmental Research Center (SERC), Institute of Environment, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
- Southeast Environmental Research Center (SERC), Institute of Environment, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|