1
|
Jayaweera DD, Gunawickrama KBS, Evenset A, Kuganathan S. Bioaccumulation of Cadmium in Muscle and Liver Tissues of Juvenile Yellowfin Tuna (Thunnus albacares) from the Indian Ocean. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:10. [PMID: 39001943 DOI: 10.1007/s00128-024-03917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
The present study evaluated the cadmium (Cd) levels and temporal variation of Cd in dark muscle, white muscle, and liver of juvenile Thunnus albacares. 72 individuals (Standard length: 50-67 cm; weight: 0.8-2.5 kg) were collected from Indian Oceanic water around Sri Lanka during the period between April 2021 to May 2022. Total Cd levels were analyzed using an Inductively Coupled Plasma Mass Spectrophotometer. The mean Cd levels (mean ± SD mg kg-1 dry weight) in different tissues varied with significantly higher levels in the liver (13.62 ± 0.98, p < 0.05), compared to dark muscle (0.52 ± 0.05), and white muscle (0.42 ± 0.04). Cd levels in liver tissues were positively correlated (p < 0.05) with the fish weight. The Cd levels reported in dark muscles, white muscles, and liver tissues were significantly higher (p < 0.05) during 2nd inter-monsoon than in the other monsoonal regimes and exceeded the maximum permissible level (0.1 mg kg-1 wet weight) set by the European Union (EU). However, the measured Cd levels in white and dark muscles were below the maximum permissible level (0.2 mg kg-1 wet weight) set by FAO/WHO. The Cd levels in all the liver tissues were above the levels set by the EU and FAO/WHO. Accordingly, people should avoid the consumption of liver tissues of T. albacares from the Indian Ocean. A human with a body weight of 60 kg can consume white muscles up to 4.667 kg per week without exceeding the Provisional Tolerable Weekly Intake.
Collapse
Affiliation(s)
| | | | - Anita Evenset
- Akvaplan-Niva, Fram Centre (High North Research Centre for Climate and the Environment), Tromso, Norway
| | | |
Collapse
|
2
|
Balamanikandan V, Shalini R, Arisekar U, Shakila RJ, Padmavathy P, Sivaraman B, Devanesan S, Sundhar S, AlSalhi MS, Mythili R, Kim W. Bioaccumulation and health risk assessment of trace elements in Tilapia (Oreochromis mossambicus) from selected inland water bodies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:187. [PMID: 38696018 DOI: 10.1007/s10653-024-01909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/09/2024] [Indexed: 05/17/2024]
Abstract
The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.014 to 5.193 µg/L, Ni ranged from 0.283 to 11.133 µg/L, As ranged from 0.503 to 1.519 µg/L, Cd from 0.001 to 0.616 µg/L, and Pb ranged from non-detectable (ND) to 6.103 µg/L. The concentrations of TEs in sediment were found to vary within the following ranges: 5.259 to 32.621 mg/kg for Cr, 1.932 to 30.487 mg/kg for Ni, 0.129 to 0.563 mg/kg for As, 0.003 to 0.011 mg/kg for Cd, ND to 0.003 mg/kg for Hg, and 0.404 to 1.575 mg/kg for Pb. The study found that the accumulation pattern of TE in fishes across all selected areas was liver > bone > gill > muscle. The organs had TE concentrations of Cr (ND-0.769 mg/kg), Ni (ND-1.053 mg/kg), As (0.002-0.080 mg/kg), Pb (ND-0.411 mg/kg), and Hg (ND-0.067 mg/kg), which was below the maximum residual limit prescribed by EC and FSSAI. The bioconcentration factor (BCF) of TEs exhibited a greater magnitude in comparison with the biota-sediment accumulation factor due to the higher concentration of TEs in fish and lower level in water. The assessment of both carcinogenic and non-carcinogenic risks suggests that the consumption of Tilapia from the study region does not pose any significant risks.
Collapse
Affiliation(s)
- Vijayakumar Balamanikandan
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thoothukudi, Tamil Nadu, 628 008, India
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thoothukudi, Tamil Nadu, 628 008, India.
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thoothukudi, Tamil Nadu, 628 008, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thoothukudi, Tamil Nadu, 628 008, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thoothukudi, Tamil Nadu, 628 008, India
| | - Balasubramanian Sivaraman
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thoothukudi, Tamil Nadu, 628 008, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shanmugam Sundhar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Thoothukudi, Tamil Nadu, 628 008, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Arisekar U, Shakila RJ, Shalini R, Sivaraman B, Karthy A, Al-Ansari MM, Dahmash Al-Dahmash N, Mythili R, Kim W, Ramkumar S, Kalidass B, Sangma SN. Diffusion of organochlorine (OCPs) and cypermethrin pesticides from rohu (Labeo rohita) internal organs to edible tissues during ice storage: a threat to human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:126. [PMID: 38483641 DOI: 10.1007/s10653-024-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/27/2024] [Indexed: 03/19/2024]
Abstract
The migration of organochlorine pesticides (OCPs) and cypermethrin residues from internal organs to edible tissues of ice-held Labeo rohita (rohu) was investigated in this study. The liver (246 µg/kg) had the highest level of ∑OCP residues, followed by the gills (226 µg/kg), intestine (167 µg/kg), and muscle tissue (54 µg/kg). The predominant OCPs in the liver and gut were endosulfan (53-66 µg/kg), endrin (45-53 µg/kg), and dichloro-diphenyl-trichloroethane (DDT; 26-35 µg/kg). The ∑OCP residues in muscle increased to 152 µg/kg when the entire rohu was stored in ice, but they decreased to 129 µg/kg in gill tissues. On days 5 and 9, the total OCPs in the liver increased to 317 µg/kg and 933 µg/kg, respectively. Beyond day 5 of storage, total internal organ disintegration had led to an abnormal increase in OCP residues of liver-like mass. Despite a threefold increase in overall OCP residues by day 9, accumulation of benzene hexachloride (BHC) and heptachlor was sixfold, endrin and DDT were fourfold, aldrin was threefold, and endosulfan and cypermethrin were both twofold. Endosulfan, DDT, endrin, and heptachlor were similarly lost in the gills at a rate of 40%, while aldrin and BHC were also lost at 60 and 30%, respectively. The accumulation of OCP residues in tissues has been attributed to particular types of fatty acid derivatives. The study concluded that while pesticide diffusion to edible tissues can occur during ice storage, the levels observed were well below the allowable limit for endosulfan, endrin, and DDT.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India.
| | - Balasubramanian Sivaraman
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India
| | - Arjunan Karthy
- Department of Fishing Technology and Fisheries Engineering, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Sugumar Ramkumar
- ICAR-Central Marine Fisheries Research Institute, Mumbai, Maharashtra, 400061, India
| | | | - Shannon N Sangma
- ICAR-Indian Agricultural Research Institute, Hazaribagh, Jharkhand, 825405, India
| |
Collapse
|
4
|
Arisekar U, Shalini R, Iburahim SA, Deepika S, Reddy CPK, Anantharaja K, Albeshr MF, Ramkumar S, Kalidass B, Tamilarasan K, Kumar NN. Biomonitoring of mercury and selenium in commercially important shellfish: Distribution pattern, health benefit assessment and consumption advisories. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:122. [PMID: 38483653 DOI: 10.1007/s10653-024-01880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 03/19/2024]
Abstract
This study aims to explore the concentrations of Se and Hg in shellfish along the Gulf of Mannar (GoM) coast (Southeast India) and to estimate related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in shrimp, crab, and cephalopods ranged from 0.256 to 0.275 mg kg-1, 0.182 to 0.553 mg kg-1, and 0.176 to 0.255 mg kg-1, respectively, whereas Hg concentrations differed from 0.009 to 0.014 mg kg-1, 0.022 to 0.042 mg kg-1 and 0.011 to 0.024 mg kg-1, respectively. Se and Hg content in bamboo shark (C. griseum) was 0.242 mg kg-1 and 0.082 mg kg-1, respectively. The lowest and highest Se concentrations were found in C. indicus (0.176 mg kg-1) and C. natator (0.553 mg kg-1), while Hg was found high in C. griseum (0.082 mg kg-1) and low in P. vannamei (0.009 mg kg-1). Se shellfishes were found in the following order: crabs > shrimp > shark > cephalopods, while that of Hg were shark > crabs > cephalopods > shrimp. Se in shellfish was negatively correlated with trophic level (TL) and size (length and weight), whereas Hg was positively correlated with TL and size. Hg concentrations in shellfish were below the maximum residual limits (MRL) of 0.5 mg kg-1 for crustaceans and cephalopods set by FSSAI, 0.5 mg kg-1 for crustaceans and 1.0 mg kg-1 for cephalopods and sharks prescribed by the European Commission (EC/1881/2006). Se risk-benefit analysis, the AI (actual intake):RDI (recommended daily intake) ratio was > 100%, and the AI:UL (upper limit) ratio was < 100%, indicating that all shellfish have sufficient level of Se to meet daily requirements without exceeding the upper limit (UL). The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of shellfish has no non-carcinogenic health impacts for all age groups. However, despite variations among the examined shellfish, it was consistently observed that they all exhibited a Se:Hg molar ratio > 1. This finding implies that the consumption of shellfish is generally safe in terms of Hg content. The health benefit indexes, Se-HBV and HBVse, consistently showed high positive values across all shellfish, further supporting the protective influence of Se against Hg toxicity and reinforcing the overall safety of shellfish consumption. Enhancing comprehension of food safety analysis, it is crucial to recognize that the elevated Se:Hg ratio in shellfish may be attributed to regular selenoprotein synthesis and the mitigation of Hg toxicity by substituting Se bound to Hg.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | | | - S Deepika
- Department of Aquatic Animal Health Management, Dr MGR Fisheries College and Research Institute, Thalainayeru, Nagapattinam, 614 712, India
| | | | - Kanagaraja Anantharaja
- Regional Research Centre of ICAR-Central Institute of Freshwater Aquaculture, Bengaluru, Karnataka, 560089, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - Sugumar Ramkumar
- ICAR-Central Marine Fisheries Research Institute, Mumbai, Maharashtra, 400061, India
| | | | - K Tamilarasan
- Livestock Production and Management Division, ICAR-Research Complex for NEH Region, Kolasib, Mizoram, 796 081, India
| | - N Nandha Kumar
- ICAR-Indian Institute of Soil and Water Conservation Research Centre, Vasad, Gujarat, 388 306, India
| |
Collapse
|
5
|
Arisekar U, Shalini R, Shakila RJ, Sundhar S, Afrin Banu AM, Iburahim SA, Umamaheshwari T. Trace metals in commercial seafood products (canned, pickled and smoked): Comparison, exposure and health risk assessment. Food Res Int 2024; 178:113969. [PMID: 38309917 DOI: 10.1016/j.foodres.2024.113969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
This study used inductively coupled plasma and mass spectrometry, followed by microwave digestion, to assess the concentration of six trace metals (Cr, Ni, As, Cd, Hg, and Pb) in three canned products (tuna in oil [TIO], sardine in oil [SIO], and mackerel in oil [MIO]), two pickled products (prawn pickle [PP] and fish pickle [FP]), and one smoked product (masmin) collected from Tuticorin market, southern India. Trace metal (TM) levels in canned, pickled, and smoked fish varied from 0.01 to 1.48, 0.009 to 0.94, and 0.08 to 4.13 mg/kg, respectively. The concentration of TMs in the seafood was observed in the following order: As > Cr > Pb > Ni > Cd > Hg. Regarding their accumulation in the seafood products, masmin showed the highest levels followed by SIO, MIO, TIO, FP, and PP. The results revealed that smoked products showed higher TM concentrations, followed by canned and pickled products. The level of TMs in seafood products was below the maximum residue limit set by the European Commission (EC/1881/2006) and the Food Safety and Standards Authority of India (FSSAI). Risk assessment for consumer health implied that the evaluated target hazard quotient (THQ < 1), hazard index (HI < 1), and target cancer risk (TCR < 1.E-04) values did not exceed their guideline values and did not cause non-carcinogenic and carcinogenic health impacts through seafood product consumption. The pollution index (Pi) values of TMs in seafood products ranged from 0.01 to 0.7, with As and Cd showing the lowest and highest values, which were below 0.7, indicating their safety for consumption. The metal pollution index (MPI) for TMs in seafood ranged from 9.E-05 to 0.007, with the lowest and highest values associated with PP and TIO products. The MPI value for seafood products was below 1, signifying low TMs accumulation, suggesting the safety of seafood for consumption. The maximum seafood meal consumption limit (CRmm) was calculated, showing that adults can safely consume > 16 meals/month without chronic or acute toxicity. The results of this study suggest that the accumulation of TMs in the analyzed seafood product was below the health guidelines and pollution index values, making it suitable for smooth domestic and international export as well as safe consumption.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Shanmugam Sundhar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Abdul Mujeeb Afrin Banu
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | | | - Thiravidalingam Umamaheshwari
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
6
|
Arisekar U, Shalini R, Sundhar S, R Sangma S, Bharathi Rathinam R, Albeshr MF, Alrefaei AF, Chanikya Naidu B, Kanagaraja A, M D S, J SP. De-novo exposure assessment of heavy metals in commercially important fresh and dried seafood: Safe for human consumption. ENVIRONMENTAL RESEARCH 2023; 235:116672. [PMID: 37453502 DOI: 10.1016/j.envres.2023.116672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The heavy metals (HMs) in seafood are alarming due to their biomagnification in the food chain. The concentrations of As, Cd, Hg, Pb, Cr, and Ni in both fresh and dried fish were quantified, and the potential exposure and safe intake levels for human consumption were assessed by the European Commission (EC) and the Food Safety Standard Authority of India (FSSAI). HMs concentrations ranged from 0.003 mg/kg (Cr) to 2.08 mg/kg for (As) and 0.007 mg/kg (Hg) to 2.76 mg/kg (As). Cd, Hg, and Pb levels in fresh and dried fish were below the maximum residue limits (MRLs) set by the EC and FSSAI, which were 0.1 mg/kg, 0.5 mg/kg, and 0.3 mg/kg, respectively. Cr and As concentrations were also below the MRLs of 12 mg/kg and 76 mg/kg for aquatic products specified by FSSAI. The concentration of HMs in fresh and dried fish was found in the order of As > Cr > Ni > Pb > Cd > Hg and As > Cd > Cr > Ni > Pb > Hg, while the fresh and dried fishes contained HMs in the following order: E. areolatus > S. longiceps > L.lentjen > S. barracuda > E. affinis > S. javus and DA > DS > DR > DB > DSF. The metal pollution index (MPI) validates seafood is HMs free, while the single (Pi) and Nemerow integrated pollution index (Pnw) indicate that concentrations of Cd and As in fresh and dried fish have exceeded the threshold value. The target hazard quotient (THQ<1), hazard index (HI < 1), and target cancer risk (TCR<10-4) indicate that there are no non-carcinogenic and carcinogenic risks through the consumption of seafood and seafood products collected from the Tuticorin coast and marketed at the domestic and international levels. The preliminary findings emphasize the importance of formulating domestic legislation/government initiatives to promote seafood and its consumption. The attainment of this objective shall be facilitated by examining the levels of persistent organic pollutants (POPs) in seafood and evaluating its potential risk to consumers.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Shanmugam Sundhar
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| | - Shannon R Sangma
- ICAR-Indian Agricultural Research Institute, Hazaribagh, 825405, Jharkhand, India
| | | | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | | | - Anantharaja Kanagaraja
- Regional Research Centre of ICAR - Central Institute of Freshwater Aquaculture, Bengaluru, 560089, Karnataka, India
| | - Sahana M D
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Saranya Packialakshmi J
- Department of Food and Nutrition, Kyung Hee University (KHU), 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
7
|
Kumar Reddy CP, Manikandavelu D, Arisekar U, Albeshr MF, Alrefaei AF, Sudhakar O, Keerthana M, Packialakshmi JS. Toxicological effect of endocrine disrupting heavy metal (Pb) on Mekong silurid Pangasius catfish, Pangasius hypophthalmus. ENVIRONMENTAL RESEARCH 2023; 231:116033. [PMID: 37142082 DOI: 10.1016/j.envres.2023.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
The current study aimed to investigate the effects of lead nitrate exposure on the enzymatical, haematological, and histological changes in the gill, liver, and kidney of Pangasius hypophthalmus. The fish were divided into six groups and treated with different Pb concentrations. The LC50 value of Pb was 55.57 mg/L at 96 h for P. hypophthalmus, and sublethal toxicity was assessed for 45 days at 1/5th (11.47 mg/L) and 1/10th (5.57 mg/L) of LC50 concentration. Enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels, alkaline phosphate (ALP), and lactate dehydrogenase (LDH) content increased significantly during sublethal toxicity of Pb. The reduction of HCT and PCV indicates an anemic condition due to the toxicity of Pb. Differential leucocytes, lymphocytes, and monocytes and their % values significantly decreased, indicating Pb exposure. The main histological changes observed in the gills were the destruction of secondary lamellae, the fusion of adjacent gill lamellae, primary lamellae hypertrophy, and severe hyperplasia, while in kidney exposed to Pb showed melanomacrophages, increased periglomerular, peritubular space, vacuolation, shrunken glomerulus, destruction of tubular epithelium, and hypertrophy of distal convoluted segment. The liver showed severe necrosis and rupture of hepatic cells, hyper trepheoid bile duct, shifting of nuclei, and vascular hemorrhage, while in the brain, binucleus, mesoglea cells, vacuole, and ruptured nucleus were observed. In conclusion, P. hypophthalmus, which has been exposed to Pb has developed a number of toxicity markers. Consequently, prolonged exposure to higher Pb concentrations may be harmful to fish health. The findings strongly suggest that the lead had a detrimental impact on the P. hypophthalmus population, as well as on the water quality and non-target aquatic organisms.
Collapse
Affiliation(s)
| | - D Manikandavelu
- Dr. M.G. R. Fisheies College and Research Institute, Tamil Nadu Fisheries University, Ponneri, 601 204, India
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India.
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - O Sudhakar
- College of Fishery Science, Andhra Pradesh Fisheries University, Muthukur, 524344, India
| | - M Keerthana
- Department of Fisheries and Fishermen Welfare, Thoothukudi, 628 001, Tamil Nadu, India.
| | - J Saranya Packialakshmi
- Department of Food and Nutrition, Kyung Hee University (KHU), 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
8
|
Wu D, Shi Y, Wang M, Ran M, Wang Y, Tian L, Ye H, Han F. A baseline study on the distribution characteristics and health risk assessment of cadmium in edible tissues of the swimming crabs (Portunus trituberculatus) from Shanghai, China. MARINE POLLUTION BULLETIN 2022; 185:114253. [PMID: 36279728 DOI: 10.1016/j.marpolbul.2022.114253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study analyzed the cadmium accumulation differences in edible tissues of the swimming crabs (Portunus trituberculatus) from Shanghai markets, which were mostly caught in the East China Sea, and the human health risk of cadmium from crabs consumption was evaluated. A total of 78 swimming crabs were collected, and the white meat and brown meat were separated for the cadmium analysis by Inductively coupled plasma mass spectrometry. The results revealed that there was difference in cadmium content in brown meat (1.260-16.303 mg/kg) and white meat (0.005-0.542 mg/kg). Furthermore, pollution index (Pi) results showed that only the claw muscle was at low contamination levels, while other edible tissues had varying degrees of contamination. Based on the health risk assessment by estimated daily intake (EDI), target hazard quotient (THQ) and target cancer risk (TCR), the consumption of the swimming crabs in Shanghai is considered safe, however, the accumulation of cadmium in the brown meat of swimming crabs deserves further attention and evaluation.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yongfu Shi
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| | - Mengyuan Wang
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Maoxia Ran
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan Wang
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Liangliang Tian
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Hongli Ye
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Feng Han
- Key Laboratory of Oceanic and Polar Fisheries Ministry of Agriculture and Rural Affairs P. R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
9
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Arumugam N, Almansour AI, Keerthana M, Perumal K. Bioaccumulation of organochlorine pesticide residues (OCPs) at different growth stages of pacific white leg shrimp (Penaeus vannamei): First report on ecotoxicological and human health risk assessment. CHEMOSPHERE 2022; 308:136459. [PMID: 36150495 DOI: 10.1016/j.chemosphere.2022.136459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues (PRs) in farmed shrimps are concerning food safety risks. Globally, India is a major exporter of pacific white leg shrimp (P. vannamei). This study was undertaken to analyze PRs in the water, sediments, shrimps, and feed at different growth stages to evaluate the ecotoxicological and human health risks. PRs in the seawater and sediments ranged from not detected (ND) to 0.027 μg/L and 0.006-12.39 μg/kg, and the concentrations were within the maximum residual limits (MRLs) and sediment quality guidelines prescribed by the World Health Organization and Canadian Environment Guidelines, respectively. PRs in shrimps at three growth stages viz. Postlarvae, juvenile, and adults, ranged from ND to 0.522 μg/kg, below the MRLs set by Codex Alimentarius Commission and European Commission. Most of the PRs in water, sediments, and shrimps did not vary significantly (p > 0.05) from days of culture (DOC-01) to DOC-90. The hazard quotient (HQ) and hazard ratio (HR) were found to be < 1, indicating that consumption of shrimps has no noncarcinogenic and carcinogenic risks. PRs in shrimp feed ranged from ND to 0.777 μg/kg and were found to be below the MRLs set by EC, which confirms that the feed fed is safe for aquaculture practices and does not biomagnify in animals. The risk quotient (RQ) and toxic unit (TU) ranged from insignificant level (ISL) to 0.509 and ISL to 0.022, indicating that PRs do not pose acute and chronic ecotoxicity to aquatic organisms. The study suggested no health risk due to PRs in shrimps cultured in India and exported to the USA, China, and Japan. However, regular monitoring of PRs is recommended to maintain a sustainable ecosystem.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muruganantham Keerthana
- Department of Fisheries and Fishermen Welfare, Department of Fisheries (AD Office), Thoothukudi, 628 008, Tamil Nadu, India
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
10
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Padmavathy P, Hari MS, Sudhan C. Accumulation potential of heavy metals at different growth stages of Pacific white leg shrimp, Penaeus vannamei farmed along the Southeast coast of Peninsular India: A report on ecotoxicology and human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 212:113105. [PMID: 35351458 DOI: 10.1016/j.envres.2022.113105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
This study compared the heavy metal concentration in water, sediment, and shrimp at different growth stages of culture and subsequently evaluated the ecotoxicological and human health risk status. Total trace element concentration in the water, sediment and shrimp ranged from not detected (ND) (Hg) to 91.05 (Fe) μg/L, 0.01 (Hg) to 19, 246.33 (Fe) mg/kg, and ND (Hg) to 13.98 (Fe) mg/kg, respectively. Toxic metals such as, Cd, Hg, and Pb in shrimps ranged from ND to 2.11 mg/kg, ND to 0.158 mg/kg, ND to 0.088 mg/kg, and ND to 0.469 mg/kg, respectively. Toxic heavy metals at all the growth stages of shrimps (days of culture (DOC)-01 to DOC-90) were found below the maximum residual limit (MRL) of 0.5 mg/kg set by the European Commission (EC). Similarly, Cu, Zn, and As concentrations in shrimp were also far below the MRLs of 30 mg/kg, 100 mg/kg, and 76 mg/kg set by the World Health Organization and Food Safety and Standard Authority of India, respectively. The concentration of heavy metals increased from DOC-01 to DOC-90 and was positively correlated with the length and weight of the shrimps (p < 0.05). The risk assessment was estimated for both Indians and Americans and found no carcinogenic (lifetime cancer risk (LCR) < 10-4) and non-carcinogenic (THQ and TTHQ<1) health risks through consumption of shrimp cultured in this region. The hazard quotient (HQdermal < 1), hazard index (HI < 1), and LCR (<10-4) values of the heavy metals indicated that the dermal absorption might not be a concern for the local fishermen and marine fish/shrimp farmworkers. Water and sediment quality indices were applied to assess the surface water and sediment quality, and their results were found nil to low levels of heavy metal contamination at all the sampling sites. All heavy metals studied in sediments were < effect range low (ERL) and < threshold effect level (TEL), indicating no adverse biological effects on aquatic organisms. Therefore, regular monitoring of the shrimp aquaculture system throughout the crop will provide evidence of heavy metals bioaccumulation in shrimps. This research will provide baseline data to help farmers establish the optimal aquaculture practices and regulatory authorities to formulate legislation and strategies to reduce heavy metal biomagnification in shrimps from farm to fork.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam, 611002, Tamil Nadu, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment and Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| | - Murugesan Sri Hari
- School of Fisheries, Centurion University of Technology and Management, Odhisa, 761 211, India
| | - Chandran Sudhan
- Department of Fisheries Biology and Resources Management Fisheries College and Research Institute Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| |
Collapse
|
11
|
Schmidt CV, Mouritsen OG. Cephalopods as Challenging and Promising Blue Foods: Structure, Taste, and Culinary Highlights and Applications. Foods 2022; 11:foods11172559. [PMID: 36076747 PMCID: PMC9455610 DOI: 10.3390/foods11172559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Foods are complex systems due to their biological origin. Biological materials are soft matter hierarchically structured on all scales from molecules to tissues. The structure reflects the biological constraints of the organism and the function of the tissue. The structural properties influence the texture and hence the mouthfeel of foods prepared from the tissue, and the presence of flavour compounds is similarly determined by biological function. Cephalopods, such as squid, cuttlefish, and octopuses, are notoriously known for having challenging texture due to their muscles being muscular hydrostats with highly cross-linked collagen. Similar with other marine animals such as fish and crustaceans, cephalopods are rich in certain compounds such as free amino acids and free 5′-ribonucleotides that together elicit umami taste. Scientific investigations of culinary applications of cephalopods as foods must therefore involve mechanical studies (texture analysis), physicochemical measurements of thermodynamic properties (protein denaturation), as well as chemical analysis (taste and aroma compounds). The combination of such basic science investigations of food as a soft material along with an exploration of the gastronomic potential has been termed gastrophysics. In this review paper, we reviewed available gastrophysical studies of cephalopod structure, texture, and taste both as raw, soft material and in certain preparations.
Collapse
|
12
|
Vinothkannan A, Charles PE, Rajaram R. Consumption of metal-contaminated shellfish from the Cuddalore coast in Southeastern India poses a hazard to public health. MARINE POLLUTION BULLETIN 2022; 181:113827. [PMID: 35716490 DOI: 10.1016/j.marpolbul.2022.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Seasonal distribution of four metals (Cd, Cu, Pb, and Zn) in eight shellfish species collected from the heavily contaminated Cuddalore coast in Tamil Nadu, Southern India, were analyzed. Metal concentrations in all shellfish species were determined using atomic absorption spectrometry. All metals were present in all seasons in most of the species, however, with a few exceptions. Overall, the metal concentration was in the descending order: Zn > Cu > Pb > Cd. Metals might have emerged from both natural and anthropogenic sources as per multivariate statistical analysis. Bioaccumulation factor results showed that cadmium was more bioaccumulated and beyond the threshold limit. Hazard index (HI) values revealed that consuming shellfish from Cuddalore coast can pose hazards to human health, with all HI values beyond threshold limit across all seasons - premonsoon (1.33), monsoon (1.73), postmonsoon (2.55), and summer (2.64). It is evident that consumption of shellfish across all seasons may have adverse health impacts to the people.
Collapse
Affiliation(s)
- Anbazhagan Vinothkannan
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Partheeban Emmanuel Charles
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India.
| |
Collapse
|
13
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Padmavathy P. Effect of household culinary processes on organochlorine pesticide residues (OCPs) in the seafood (Penaeus vannamei) and its associated human health risk assessment: Our vision and future scope. CHEMOSPHERE 2022; 297:134075. [PMID: 35218780 DOI: 10.1016/j.chemosphere.2022.134075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/05/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Food safety is crucial in today's competitive trading market, as it directly affects human health and promotes seafood exports. The effects of thermal processing (boiling, frying, grilling, and microwave cooking) on pesticide residues (PR) in P. vannamei were assessed. The PR in raw and processed shrimp ranged from 0.007 to 0.703 μg/kg for uncooked/raw, not detected (ND) to 0.917 μg/kg for boiled, ND to 0.506 μg/kg for fried, ND to 0.573 μg/kg for grilled and ND to 0.514 μg/kg for microwave cooked shrimps. The Endrin, endosulfan sulfate, and heptachlor were predominant PR found in the raw and processed shrimp. The PR content in raw and cooked shrimps were below the maximum residue limits (MRL) set by the Codex Alimentarius Commission (2021) and the European Commission (86/363/1986 and 57/2007). The estimated daily intake (EDI) of PR from raw and processed shrimps were below the ADI prescribed by CAC. The hazard quotient (HQ) and hazard ratio (HR) values were <1, indicating no non-carcinogenic or carcinogenic health implications through shrimp consumption. The estimated maximum allowable shrimp consumption rate (CRlim) suggests an adult can eat >100 shrimp meals/month, which is over the USEPA's (2000)recommendation of >16 meals/month without health issues. The Effect of thermal processing was detected in the following order: boiling < grilling < frying < microwave cooking. The processing factor (PF < 0.7), paired t-test (t < 0.05), Tukey post hoc (p < 0.05) test, Bray-Curtis similarity index, and matrix plot exhibited that all the four thermal processing methods have a considerable impact on pesticides in the processed shrimps. But frying (59.4%) and microwave cooking (60.3%) reduced PR far beyond boiling (48.8%) and grilling (51.3%). Hence, we recommend frying and microwave processing are better methods for minimizing PR in seafood than boiling or grilling.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam, 611002, Tamil Nadu, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| |
Collapse
|
14
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Keerthana M, Arumugam N, Almansour AI, Perumal K. Distribution and ecological risk assessment of heavy metals using geochemical normalization factors in the aquatic sediments. CHEMOSPHERE 2022; 294:133708. [PMID: 35093419 DOI: 10.1016/j.chemosphere.2022.133708] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Thamirabharani river acquires a noticeable quantity of sewage and agriculture waste from local inhabitants. The distribution of heavy metals in the surface sediments of the Thamirabharani river was analyzed using Inductively Coupled Plasma- Mass Spectrometry (ICP-MS) to study the ecological risks. The heavy metal concentrations in the sediments ranged from 0.098 ± 0.03(Cd) to 159.181 ± 13.36 mg kg-1 (Fe). The Cd, Zn, Ni, Fe, and Mn concentrations in the sediments were above the US Environmental Protection Agency-Sediment Quality Guidelines. The fact that Cd, Co, and Cu concentrations at sites 4 and 5 exceeded the background values (BGVs) of 0.2, 13, and 32 mg kg-1 suggests anthropogenic activity, notably in the downstream of the river. The sediment contaminated with Cd is more evident, particularly in the estuarine region. The potential ecological risk index (150
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendren Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
15
|
Ulaganathan A, Robinson JS, Rajendran S, Geevaretnam J, Shanmugam S, Natarajan A, Abdulrahman I A, Karthikeyan P. Potentially toxic elements contamination and its removal by aquatic weeds in the riverine system: A comparative approach. ENVIRONMENTAL RESEARCH 2022; 206:112613. [PMID: 34968432 DOI: 10.1016/j.envres.2021.112613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Thamirabarani river acquires large untreated sewage effluents from the Tirunelveli and Thoothukudi districts of South Tamil Nadu. This study examined the concentration of trace elements in water, sediment, and phytoaccumulation potential of aquatic weeds viz., A. cristata, E. crassipes, S. natans, and P. stratiotes, growing along Srivaikundam dam of Thamirabarani river. The Pb, As, Hg, Cd, and Ni concentrations in water were slightly higher than the US Food and Drug Administration (USFDA) drinking water guidelines; however, their accumulation in sediment was below WHO's sediment quality guideline. This study concludes that the phytoaccumulation factor (PAF) and translocation factor (TF) was >1 in E. crassipes and A. cristata, representing them as hyperaccumulators, suitable for phytoremediation in polluted localities. E. crassipes, A. cristata, and S. natans accumulated (100-500 fold) higher trace elements concentrations than that present in the water. Also, the concentrations of trace elements found in the aquatic weeds were below the recommended levels for the critical plant range (CRP). These selected aquatic weeds are more suitable for plant hybridization to be modified as superbug plants.
Collapse
Affiliation(s)
- Arisekar Ulaganathan
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Jeya Shakila Robinson
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Shalini Rajendran
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | | - Sundhar Shanmugam
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | - Arumugam Natarajan
- Department of Chemistry, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Almansour Abdulrahman I
- Department of Chemistry, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Perumal Karthikeyan
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
16
|
Xu Y, Peng K, Jiang F, Cui Y, Han D, Liu H, Hong H, Tian X. Geographical discrimination of swimming crabs (Portunus trituberculatus) using stable isotope and multi-element analyses. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ulaganathan A, Robinson JS, Rajendran S, Geevaretnam J, Pandurangan P, Durairaj S. Effect of different thermal processing methods on potentially toxic metals in the seafood, Penaeus vannamei, and the related human health risk assessment. J Food Compost Anal 2022; 105:104259. [DOI: 10.1016/j.jfca.2021.104259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Cumbo V, Galluzzo FG, Cammilleri G, Mascetti A, Lo Cascio G, Giangrosso IE, Pulvirenti A, Seminara S, Ferrantelli V. Trace elements in stomach oil of Scopoli's shearwater (Calonectris diomedea) from Linosa's colony. MARINE POLLUTION BULLETIN 2022; 174:113242. [PMID: 34906783 DOI: 10.1016/j.marpolbul.2021.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Calonectris diomedea is a colonial Procellariiform breeding on Mediterranean islands. The stomach oil produced during chick rearing is a peculiar trait of this species. The composition of the stomach oil is likely to reflect the composition of the prey ingested and might reveal the contaminants uptake with prey becoming a possible tool for the marine pollution monitoring. We examined the concentration of 15 trace elements by ICP-MS and direct mercury analyser. The principal component analysis revealed a heterogeneous pattern of metal concentration, showing a significant separation between samples collected 20 and 70 days after hatching. The data obtained in this work give preliminary information on the feeding habits and breeding ecology of Linosa's colony of Scopoli's shearwater. The trace metals variability found suggest that the stomach oil may have a role as trophic markers to understand predator-prey relationships and to have evidence on the accumulation of pollutants in the latter.
Collapse
Affiliation(s)
- Valentina Cumbo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Francesco Giuseppe Galluzzo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | | | - Giovanni Lo Cascio
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Innocenzo Ezio Giangrosso
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Andrea Pulvirenti
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy
| | - Salvatore Seminara
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Vincenzo Ferrantelli
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| |
Collapse
|
19
|
Shalini R, Jeyasekaran G, Shakila RJ, Sundhar S, Arisekar U, Jawahar P, Aanand S, Sivaraman B, Malini AH, Surya T. Dietary intake of trace elements from commercially important fish and shellfish of Thoothukudi along the southeast coast of India and implications for human health risk assessment. MARINE POLLUTION BULLETIN 2021; 173:113020. [PMID: 34649206 DOI: 10.1016/j.marpolbul.2021.113020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of eight trace elements (chromium, cobalt, copper, zinc, arsenic, cadmium, mercury and lead) in14 commercially important fish and shellfish collected from Thoothukudi along the southeast coast of India was investigated using inductively coupled plasma mass spectrometry in order to assess the health risks associated with their consumption. The concentration of trace elements ranged from 0.001 to 39.5 μg/g. The estimated weekly intake of cadmium in seven fish and shellfish (0.0081-0.0996 mg/kg body weight) were above the provisional tolerable weekly intake set by the Joint FAO/WHO Expert Committee on Food Additives. The risk assessment analysis indicated that there was non- carcinogenic risk upon lifetime consumption of rock crab, C. natator (TTHQ >1) and carcinogenic risks upon lifetime consumption of S. jello, P. semisulcatus, P. sanguinolentus C. natator, Uroteuthis duvaceli, Sepia pharaonis and Cistopus indicus due to cadmium exposure indicating a potential health risk to the exposed consumers.
Collapse
Affiliation(s)
- Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, India
| | | | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, India
| | - Shanmugam Sundhar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, India
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, India
| | - Paulraj Jawahar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, India
| | - Samraj Aanand
- Erode Centre for Sustainable Aquaculture, Erode, India
| | - Balasubramanian Sivaraman
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, India
| | - Asha Hema Malini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, India
| | - Tamizhselvan Surya
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, India
| |
Collapse
|
20
|
Jamila N, Khan N, Hwang IM, Park YM, Hyun Lee G, Choi JY, Cho MJ, Park KS, Kim KS. Elemental Analysis of Crustaceans by Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) and Direct Mercury Analysis. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1895188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nargis Jamila
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - In Min Hwang
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Yu Min Park
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Ga Hyun Lee
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Ji Yeon Choi
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Min Ja Cho
- National Institute of Food and Drug Safety Evaluation, Cheongju, Republic of Korea
| | - Kyung Su Park
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyong Su Kim
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
21
|
García Barcia L, Pinzone M, Lepoint G, Pau C, Das K, Kiszka JJ. Factors affecting mercury concentrations in two oceanic cephalopods of commercial interest from the southern Caribbean. MARINE POLLUTION BULLETIN 2021; 168:112408. [PMID: 33965692 DOI: 10.1016/j.marpolbul.2021.112408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) concentrations have significantly increased in oceans during the last century. This element accumulates in marine fauna and can reach toxic levels. Seafood consumption is the main pathway of methylmercury (MeHg) toxicity in humans. Here, we analyzed total Hg (T-Hg) concentrations in two oceanic squid species (Ommastrephes bartramii and Thysanoteuthis rhombus) of an increasing commercial interest off Martinique, French West Indies. Stable isotope ratios reveal a negative linear relationship between δ15N or δ13C in diamondback squid samples. No significant trend was observed between δ34S values and T-Hg concentrations, contrasting with the sulfate availability and sulfide abundance hypotheses. This adds to a growing body of evidence suggesting Hg methylation via sulfate-reducing bacteria is not the main mechanism driving Hg bioavailability in mesopelagic organisms. All squid samples present T-Hg levels below the maximum safe consumption limit (0.5 ppm), deeming the establishment of a commercial squid fishery in the region safe for human consumption.
Collapse
Affiliation(s)
- Laura García Barcia
- Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st, North Miami, FL 33181, USA.
| | - Marianna Pinzone
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Gilles Lepoint
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Cédric Pau
- Comité Régional des Pêches Maritimes et des Élevages Marins, Martinique, French West Indies, France
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Jeremy J Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st, North Miami, FL 33181, USA
| |
Collapse
|
22
|
Ikem A, Ayodeji OJ, Wetzel J. Human health risk assessment of selected metal(loid)s via crayfish ( Faxonius virilis; Procambarus acutus acutus) consumption in Missouri. Heliyon 2021; 7:e07194. [PMID: 34169162 PMCID: PMC8207206 DOI: 10.1016/j.heliyon.2021.e07194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/02/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Farmed crustaceans are an important component in addressing the rising animal protein demand. The present study determined the concentrations of fourteen elements (Ag, As, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sn, Pb, and Zn) in the edible abdominal muscle of cultured freshwater crayfish species (Faxonius virilis; Procambarus acutus acutus) from Missouri. Also, this paper describes the dietary intake and the human health risks from the consumption of crayfish muscle in the adult population. Overall, 172 animals were captured between February 2017 and January 2018 for assessment. Concentrations of metals (Ag, Be, Cd, Cu, Co, Cr, Fe, Mn, Ni, Pb, Sn, Mo, and Zn) and metalloid (As) in the muscle tissue were determined after microwave-assisted acid digestion by ICP - OES. Health indices (EDI/EWI: estimated daily/weekly intakes; THQ: target hazard quotient; TTHQ: total target hazard quotient; ILCR: incremental lifetime cancer risk; and ∑ILCR: cumulative lifetime cancer risk) were calculated and compared to thresholds. Of all samples, the highest concentrations (mg kg -1 wet weight) of metal(loid)s in muscle were Ag (0.11), As (3.15), Be (0.21), Cd (0.11), Co (0.32), Cr (1.22), Cu (107), Fe (23.0), Mn (8.54), Mo (0.62), Ni (2.65), Pb (1.76), Sn (5.91), and Zn (19.2). In both species, the average As, Cd, and Zn concentrations were below the legal limits. However, the levels of Cu, Pb, and As, in some samples, were in exceedance of the maximum levels. In both species, a significant correlation (p < 0.05) was observed between the carapace length (CL) and animal body weight (BW). In P. acutus, CL, BW, and animal total length were homogenous (p > 0.05) among the sexes. Non-parametric Kruskal-Wallis test results indicated significant differences (p < 0.05) in the levels of As, Be, and Zn in F. virilis, and Be and Cr in P. a. acutus among the genders. Significant inter-species differences (p < 0.05) were observed in the levels of Be, Ni, and Pb and the growth factors. The EDI/EWI values were below the permissible limits. THQ and TTHQ values, being below 1.0, indicated no probabilistic health risk. Regarding carcinogenic risk, only As and Ni indicated cancer risk (ILCR >10-5 and ∑ILCR >10-5) to the adult population. High metals/metalloid exposure from crayfish muscle consumption posed potential health hazards to the adult population.
Collapse
Affiliation(s)
- Abua Ikem
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, Missouri 65101, United States
- Cooperative Research Programs, Lincoln University, Jefferson City, Missouri 65101, United States
| | - Olukayode James Ayodeji
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79416, United States
| | - James Wetzel
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, Missouri 65101, United States
- Cooperative Research Programs, Lincoln University, Jefferson City, Missouri 65101, United States
| |
Collapse
|
23
|
Arisekar U, Jeya Shakila R, Shalini R, Jeyasekaran G, Sivaraman B, Surya T. Heavy metal concentrations in the macroalgae, seagrasses, mangroves, and crabs collected from the Tuticorin coast (Hare Island), Gulf of Mannar, South India. MARINE POLLUTION BULLETIN 2021; 163:111971. [PMID: 33503565 DOI: 10.1016/j.marpolbul.2021.111971] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the concentration of heavy metals in the macroalgae, seagrasses, mangroves, and crabs collected from Hare Island, Gulf of Mannar Marine Biosphere Reserve. The concentration of heavy metals ranged between 0.06 (Hg)-259 (Fe) μg/g in macroalgae, 0.09 (Pb)-377 (Fe) μg/g in seagrasses, 0.112 (Cd)-122 (Fe) μg/g in mangroves, and 0.11 (Cd) -240 (Fe) μg/g in crabs. The levels of heavy metals in the analyzed samples were found below the maximum residual limits (MRLs) prescribed by various National and International agencies. The result suggests that exposure to the analyzed metals through macroalgae consumption does not cause potential health risks to consumers (target hazard quotient (THQ), estimated exposure dose (EED), and hazard index (HI) <1). Hence, this study concludes that macroalgae that grow in the Gulf of Mannar regions are safe for human consumption and are suitable to prepare food supplements and bioceutical products.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India.
| | - Rajendren Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India
| | - Geevartnam Jeyasekaran
- Director of Research Tamil Nadu Fisheries University, Nagapattinam 611 002, Tamil Nadu, India
| | - Balasubramanium Sivaraman
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India
| | - Thamizhselvan Surya
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
24
|
Arisekar U, Shakila RJ, Shalini R, Sivaraman B, Jeyasekaran G, Asha Hema Malini N. Heavy metal concentration in reef-associated surface sediments, Hare Island, Gulf of Mannar Marine Biosphere Reserve (southeast coast of India): The first report on pollution load and biological hazard assessment using geochemical normalization factors and hazard indices. MARINE POLLUTION BULLETIN 2021; 162:111838. [PMID: 33220913 DOI: 10.1016/j.marpolbul.2020.111838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, reef-associated surface sediment samples were collected from Hare Island in the Gulf of Mannar Marine Biosphere Reserve, Bay of Bengal and analyzed for heavy metal concentration. The sediment quality was evaluated based on the geochemical, biological, and ecological hazard indices. The mean concentration of heavy metals in the sediments ranged from 0.02 (Cd) to 26,262.87 mg/kg (Fe). Except for Cd and Hg, all other elements were found to be below the sediment quality guidelines and contamination level. The biological and ecological hazard (BEHI) revealed that most sediment samples (80%) fell under the low-risk category with 9% probability of toxicity to the marine flora and fauna. The overall contamination level of heavy metals in Hare Island suggested that the sediment could be grouped under low-risk category. Hence, this study recommends the need for a routine monitoring program in this region to maintain a clean and sustainable ecosystem in future.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India.
| | - Rajendren Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India
| | - Balasubramanium Sivaraman
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India
| | | | - Narayanan Asha Hema Malini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|