1
|
Carvalhal Silva H, Montero N, Belzunce-Segarra MJ, Menchaca I. Assessment of the effects of dredging on metal levels in port waters using DGT passive samplers and spot sampling. MARINE POLLUTION BULLETIN 2024; 205:116653. [PMID: 38964188 DOI: 10.1016/j.marpolbul.2024.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Aiming at assessing the effect of dredging activities on the levels of metals in Bilbao Port (northern Spain), dissolved and labile metal concentrations in the water were concurrently measured, before, during, and after dredging activities by spot sampling and Diffusive Gradients in Thin-films (DGTs) passive samplers, respectively. Most of the dissolved metal results were below the quantification limits (Cd, <0.06-0.26 μg/L; Co, <5 μg/L; Cu, <5-15 μg/L; Fe, <10-48 μg/L; Mn, <10-22 μg/L; Ni, <2.6-7 μg/L; Pb, <0.39-0.8 μg/L; Zn, <9-24 μg/L). In contrast, DGT results for all sampling times and stations were obtained (Cd, 0.02-0.12 μg/L; Co, 0.08-0.15 μg/L; Cu, 0.5-2.8 μg/L; Fe, 1.0-3.6 μg/L; Mn, 4.7-23.5 μg/L; Ni, 0.5-0.9 μg/L; Pb, 0.15-0.28 μg/L; Zn, 2.6-7.2 μg/L), enabling to determine those metals affected by dredging. Only labile-Pb concentration surpassed momentarily the DGT-Environmental Quality Standard, enabling to rule out biological effects on biota. DGTs are a promising technique for facilitating decision-making during dredging operations.
Collapse
Affiliation(s)
- H Carvalhal Silva
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain; Future Industries Institute, University of South Australia (UniSA), Mawson Lakes Blvd, Adelaide 5095, Australia.
| | - N Montero
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| | - M J Belzunce-Segarra
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| | - I Menchaca
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, Pasaia 20110, Spain
| |
Collapse
|
2
|
Lenoble V, Cindrić AM, Briand JF, Pedrotti ML, Lacerda AL, Muniategui-Lorenzo S, Fernández-González V, Moscoso-Pérez CM, Andrade-Garda JM, Casotti R, Murano C, Donnarumma V, Frizzi S, Hannon C, Joyce H, Nash R, Frias J. Bioaccumulation of trace metals in the plastisphere: Awareness of environmental risk from a European perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123808. [PMID: 38521396 DOI: 10.1016/j.envpol.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
The term "Plastisphere" refers to the biofilm layer naturally formed by microorganisms attaching to plastic surfaces. This layer possesses the capability to adsorb persistent organic and inorganic pollutants, particularly trace metals, which are the focus of this research study. Immersion experiments were concurrently conducted in five locations spanning four European countries (France, Ireland, Spain, and Italy) utilising eight distinct polymers. These immersions, repeated every three months over a one-year period, aimed to evaluate the baseline bioaccumulation of 12 trace metals. The study underscores the intricate nature of metal bioaccumulation, influenced by both micro-scale factors (such as polymer composition) and macro-scale factors (including geographical site and seasonal variations). Villefranche Bay in France exhibited the lowest metals bioaccumulation, whereas Naples in Italy emerged as the site where bioaccumulation was often the highest for the considered metals. Environmental risk assessment was also conducted in the study. The lightweight nature of certain plastics allows them to be transported across significant distances in the ocean. Consequently, evaluating trace metal concentrations in the plastisphere is imperative for assessing potential environmental repercussions that plastics, along with their associated biota, may exert even in locations distant from their point of emission.
Collapse
Affiliation(s)
- Véronique Lenoble
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France.
| | - Ana-Marija Cindrić
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Zagreb, Croatia.
| | | | - Maria Luiza Pedrotti
- Laboratoire d'Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France.
| | - Ana Luzia Lacerda
- Laboratoire d'Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
| | - Soledad Muniategui-Lorenzo
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. A Coruña 15071, Spain.
| | - Veronica Fernández-González
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. A Coruña 15071, Spain.
| | - Carmen Ma Moscoso-Pérez
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. A Coruña 15071, Spain.
| | - José M Andrade-Garda
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. A Coruña 15071, Spain.
| | | | - Carola Murano
- Stazione Zoologica Anton Dohrn, Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| | - Vincenzo Donnarumma
- Institute of Marine Sciences - National Research Council ISMAR-CNR. Forte Santa Teresa Pozzuolo di Lerici, 19032 La Spezia, Italy.
| | - Sébastien Frizzi
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Colin Hannon
- Marine & Freshwater Research Centre, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Haleigh Joyce
- Marine & Freshwater Research Centre, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Róisín Nash
- Marine & Freshwater Research Centre, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland.
| | - João Frias
- Marine & Freshwater Research Centre, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland.
| |
Collapse
|
3
|
González-Sánchez JM, Panagiotopoulos C, Antich C, Papillon L, Garcia N, Van Wambeke F, Misson B. What happens to biomass burning-emitted particles in the ocean? A laboratory experimental approach based on their tracers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167770. [PMID: 37858832 DOI: 10.1016/j.scitotenv.2023.167770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Wildfires, controlled burns, and biofuel combustion (biomass burning or BB) are major contributors to particulate matter in the atmosphere and thus have an impact on climate, human health, and ecosystems. Once emitted, the particulate matter derived from BB can be taken up by the oceans. However, the fate and impact of BB in the marine biological carbon pump, and carbon cycle are largely unknown. This work presents the first attempt to investigate the bioavailability of two BB tracers, levoglucosan and galactosan, in seawater inoculated with marine prokaryotes. Levoglucosan and galactosan were incubated with a marine bacterial inoculum and monitored for six weeks under controlled laboratory conditions. Along with the anhydrosugar concentrations, multiple chemical and biological parameters were monitored over time. The results indicate that levoglucosan and galactosan can be assimilated by marine prokaryotes as their concentrations decreased by 97 ± 4 % and 36 ± 21 % (n = 3) of their initial values. However, this decrease occurred only after a 9 and 15 days from the beginning of the experiment, respectively. The decrease in the levoglucosan and galactosan concentrations was accompanied by an increase in both heterotrophic prokaryotic production, and abundance. These results demonstrate that these anhydrosugars have the potential to be assimilated by heterotrophic prokaryotes and thus contribute to the microbial food web functioning. Under our experimental conditions, levoglucosan exhibited a bacterial growth efficiency of 17 ± 5 % (n = 3), suggesting that most of the levoglucosan is mineralized into CO2. Prokaryotic diversity analyses revealed the predominance of a few bacterial genera from the Roseobacter clade that were selected after the addition of the anhydrosugars. The presence of this widespread marine bacterial clade reflects its ability to process semilabile compounds (here levoglucosan and galactosan) originating from BB and contribute to the dissolved organic matter pool in surface seawaters.
Collapse
Affiliation(s)
| | - Christos Panagiotopoulos
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France; Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Candice Antich
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Laure Papillon
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nicole Garcia
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - France Van Wambeke
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
4
|
Yan J, Li F. Effects of sediment dredging on freshwater system: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119612-119626. [PMID: 37962757 DOI: 10.1007/s11356-023-30851-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
As a common geo-engineering method to control internal load of nutrients and pollutants, sediment dredging has been used in many freshwater basins and has achieved certain effects. However, dredging can disturb water bodies and substrates and cause secondary pollution. It negatively affects the water environment system mainly from the following aspects. Dredging suddenly changes the hydrological conditions and many physical indicators of the water body, which will cause variations in water physicochemical properties. For example, changes in pH, dissolved oxygen, redox potential, transparency, and temperature can lead to a series of aquatic biological responses. On the other hand, sediment resuspension and deep-layer sediment exposure can affect the cycling of nutrients (e.g., nitrogen, phosphorus), the release and valence conversion of heavy metals, and the desorption and degradation of organic pollutants in the overlying water. This can further affect the community structure of aquatic organisms. The aim of this paper is to analyze the relevant literature on freshwater sediment dredging, and to summarize the current knowledge of the potential environmental risks caused by the dredging and utilization of freshwater sediments. Based on this, the paper attempts to propose suggestions to mitigate these adverse environmental impacts. These are significant contributions to the development of environmentally friendly freshwater sediment dredging technologies.
Collapse
Affiliation(s)
- Jiale Yan
- College of Economics and Management, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Irvine Valley College, Irvine, CA, 92612, USA
| | - Fang Li
- College of Economics and Management, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
5
|
Grundy JS, Lambert MK, Burgess RM. Passive Sampling-Based versus Conventional-Based Metrics for Evaluating Remediation Efficacy at Contaminated Sediment Sites: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10151-10172. [PMID: 37364241 PMCID: PMC10404352 DOI: 10.1021/acs.est.3c00232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Passive sampling devices (PSDs) are increasingly used at contaminated sites to improve the characterization of contaminant transport and assessment of ecological and human health risk at sediment sites and to evaluate the effectiveness of remedial actions. The use of PSDs after full-scale remediation remains limited, however, in favor of evaluation based on conventional metrics, such as bulk sediment concentrations or bioaccumulation. This review has three overall aims: (1) identify sites where PSDs have been used to support cleanup efforts, (2) assess how PSD-derived remedial end points compare to conventional metrics, and (3) perform broad semiquantitative and selective quantitative concurrence analyses to evaluate the magnitude of agreement between metrics. Contaminated sediment remedies evaluated included capping, in situ amendment, dredging and monitored natural recovery (MNR). We identify and discuss 102 sites globally where PSDs were used to determine remedial efficacy resulting in over 130 peer-reviewed scientific publications and numerous technical reports and conference proceedings. The most common conventional metrics assessed alongside PSDs in the peer-reviewed literature were bioaccumulation (39%), bulk sediments (40%), toxicity (14%), porewater grab samples (16%), and water column grab samples (16%), while about 25% of studies used PSDs as the sole metric. In a semiquantitative concurrence analysis, the PSD-based metrics agreed with conventional metrics in about 68% of remedy assessments. A more quantitative analysis of reductions in bioaccumulation after remediation (i.e., remediation was successful) showed that decreases in uptake into PSDs agreed with decreases in bioaccumulation (within a factor of 2) 61% of the time. Given the relatively good agreement between conventional and PSD-based metrics, we propose several practices and areas for further study to enhance the utilization of PSDs throughout the remediation of contaminated sediment sites.
Collapse
Affiliation(s)
- James S Grundy
- Oak Ridge Institute for Science and Education c/o U.S. Environmental Protection Agency, ORD/CEMM, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island 02882, United States
- U.S. Environmental Protection Agency, OLEM, Office of Superfund Remediation and Technology Innovation, Edison, New Jersey 08837, United States
| | - Matthew K Lambert
- U.S. Environmental Protection Agency, OLEM, Office of Superfund Remediation and Technology Innovation, Washington, District of Columbia 20460, United States
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island 02882, United States
| |
Collapse
|
6
|
Soetan O, Nie J, Viteritto M, Feng H. Evaluation of sediment dredging in remediating toxic metal contamination - a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27489-x. [PMID: 37184798 DOI: 10.1007/s11356-023-27489-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Toxic metal pollution is a leading environmental concern for aquatic systems globally, and remedial dredging has been widely employed to mitigate its harmful impacts. In terms of the short-term impacts of remedial dredging, mixed results are reported in several studies. Despite its immediate negative impacts including saturation of water with toxic metals, increased turbidity, and sediment resuspension, positive impacts can be recorded over a stabilization period of 6-24 months after dredging. Nevertheless, the sustainability of these recorded positive effects cannot be ascertained as some studies have reported long-term regression in remediated sites' conditions. Evaluation of success determinants, site-measure compatibility, and determination of supplementary measures are keys to achieving and sustaining the projected benefits of remedial dredging and justifying its overall cost. This multicomponent study reviewed published literatures that documented the outcomes of short- and long-term dredging projects in toxic metal-polluted systems globally with a broad goal of examining how sediment removal impacts toxic metal dynamics in the aquatic system and understanding why the sustenance of positive impacts is controversial. In the meantime, this study also explored the preventative and remedial management strategies for attaining and sustaining positive dredging outcomes. The purpose of this study is to provide key recommendations for decision-making and policy development in aquatic toxic metal remediation.
Collapse
Affiliation(s)
- Oluwafemi Soetan
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, USA
| | - Jing Nie
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, USA
| | - Michael Viteritto
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, USA
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, USA.
| |
Collapse
|
7
|
Castrec J, Pillet M, Receveur J, Fontaine Q, Le Floch S, Churlaud C, Lejeune P, Gobert S, Thomas H, Marengo M. Active and passive biomonitoring of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in small Mediterranean harbours. MARINE POLLUTION BULLETIN 2023; 187:114578. [PMID: 36645999 DOI: 10.1016/j.marpolbul.2023.114578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Pollution particularly affects coastal ecosystems due to their proximity to anthropic sources. Among those environments, harbours are subjected to marine traffic but also to accidental and chronic pollution. These areas are thus exposed to complex mixtures of contaminants such as trace elements and organic contaminants which can impact marine species, habitats, and ecosystem services. The monitoring of these compounds is thus a crucial issue for assessment of environmental health. In this context, the aim of the present work was to evaluate the chemical contamination of harbours in Corsica (NW Mediterranean) by measuring the bioaccumulation of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in mussels, limpets, and sea cucumbers. The human health risks associated with seafood consumption were also assessed. Results reveal a relatively low contamination in the Corsican harbours studied compared to larger Mediterranean ports and suggest that the potential health risk for consumers eating seafood is low.
Collapse
Affiliation(s)
- Justine Castrec
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France.
| | - Marion Pillet
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | | | - Quentin Fontaine
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | | | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266, CNRS- La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Pierre Lejeune
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | - Sylvie Gobert
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France; Université de Liège, Centre MARE, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMRi 7266, CNRS- La Rochelle Université, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Michel Marengo
- Station de Recherches Sous-marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| |
Collapse
|
8
|
Layglon N, Abdou M, Massa F, Castellano M, Bakker E, Povero P, Tercier-Waeber ML. Speciation of Cu, Cd, Pb and Zn in a contaminated harbor and comparison to environmental quality standards. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115375. [PMID: 35751235 DOI: 10.1016/j.jenvman.2022.115375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The water column of harbors contains significant amounts of (priority) hazardous trace metals that may be released into coastal areas of high societal and economic interests where they may disturb their fragile equilibria. To deepen our understanding of the processes that influence the transport of the various metal fractions and allow for a more rigorous environmental risk assessment, it is important to spatially monitor the relevant chemical speciation of these metals. It is of particular interest to assess their so-called dynamic fraction, which comprises the dissolved chemical forms that are potentially bioavailable to living organisms. In this study this was achieved in the Genoa Harbor (NW Italy) for copper (Cu), lead (Pb), cadmium (Cd) and zinc (Zn) by applying a multi-method approach. For the first time in this system the dynamic fractions of the target metals (CuDyn, CdDyn, PbDyn, ZnDyn) were observed in real-time on-board by voltammetry using innovative electrochemical sensing devices. Trace metals in the operationally defined dissolved <0.2 μm and <0.02 μm fractions were equally quantified through sampling/laboratory-based techniques. The obtained results showed a clear spatial trend for all studied metals from the enclosed contaminated part of the harbor towards the open part. The highest CuDyn and CdDyn fractions were found in the inner part of the harbor while the highest PbDyn fraction was found in the open part. The proportion of ZnDyn was negligible in the sampled area. Small and coarse colloids were involved in Cu, Cd and Zn partitioning while only coarse colloids played an important role in Pb partitioning. The determined concentrations were compared to the Environmental Quality Standards (EQS) established by the EU and those determined by the Australia and New Zealand to trigger for 99 and 95% species protection values. The results of this work allow us to highlight gaps in the EQS for which metal concentration thresholds are excessively high or non-existent and should urgently be revised. They also reflect the need to quantify the potentially bioavailable fraction of hazardous trace metals instead of just their total dissolved concentrations. The data support the establishment of environmental quality standards and guidelines based on realistic risk assessment to protect aquatic life and resources and ultimately human health.
Collapse
Affiliation(s)
- Nicolas Layglon
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland.
| | - Melina Abdou
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland; CIIMAR, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | | | | | - Eric Bakker
- University of Geneva, Sciences II, 30 Quai E.-Ansermet, 1221, Geneva 4, Switzerland
| | - Paolo Povero
- University of Genoa, DISTAV-DCCI, 16132, Genoa, Italy
| | | |
Collapse
|
9
|
Djaoudi K, Onrubia JAT, Boukra A, Guesnay L, Portas A, Barry-Martinet R, Angeletti B, Mounier S, Lenoble V, Briand JF. Seawater copper content controls biofilm bioaccumulation and microbial community on microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152278. [PMID: 34902408 DOI: 10.1016/j.scitotenv.2021.152278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The adsorption of trace metals on microplastics (MPs) is affected by the presence of surficial biofilms but their interactions are poorly understood. Here, we present the influence of Cu levels in real seawater (Toulon Bay, NW Mediterranean Sea) on microbial communities and Cu content of the resulting biofilms grown during incubation experiments on high density polyethylene. Two sets of incubation experiments were run with seawater supplied with MPs, sampled in two sites with contrasting Cu levels: Pt12 (most contaminated site) and Pt41P (less contaminated site). For each incubation experiment, 5 treatments were considered differing in Cu concentrations, ranging between 30 and 400 nM and between 6 and 60 nM, for Pt12 and Pt41p, respectively. A control experiment (filtered at 0.2 μm) was run in parallel for each incubation experiment. We observed that, at the time scale of the incubation period, both prokaryotic and eukaryotic richness and diversity were higher in the biofilms formed from the most contaminated site. In addition, we showed that Cu levels are shaping biofilm communities, evidencing co-occurrence patterns between prokaryotes and eukaryotes with diatoms playing a central role. These differences in biofilm formation were reflected in the amount of bioaccumulated Cu per dry weight of MPs, exhibiting higher values in the most contaminated site. Within this site, the increase of Cu seawater content enhanced its bioaccumulation onto MPs until reaching saturation. This study strongly suggests a striking link between seawater copper content, biofilm community shaping and the resulting Cu bioaccumulation onto MPs.
Collapse
Affiliation(s)
- Kahina Djaoudi
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Javier Angel Tesán Onrubia
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Amine Boukra
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Lucas Guesnay
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | - Aurélie Portas
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | | | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
| | - Stéphane Mounier
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | | |
Collapse
|
10
|
Paix B, Layglon N, Le Poupon C, D'Onofrio S, Misson B, Garnier C, Culioli G, Briand JF. Integration of spatio-temporal variations of surface metabolomes and epibacterial communities highlights the importance of copper stress as a major factor shaping host-microbiota interactions within a Mediterranean seaweed holobiont. MICROBIOME 2021; 9:201. [PMID: 34641951 PMCID: PMC8507236 DOI: 10.1186/s40168-021-01124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although considered as holobionts, macroalgae and their surface microbiota share intimate interactions that are still poorly understood. Little is known on the effect of environmental parameters on the close relationships between the host and its surface-associated microbiota, and even more in a context of coastal pollutions. Therefore, the main objective of this study was to decipher the impact of local environmental parameters, especially trace metal concentrations, on an algal holobiont dynamics using the Phaeophyta Taonia atomaria as a model. Through a multidisciplinary multi-omics approach combining metabarcoding and untargeted LC-MS-based metabolomics, the epibacterial communities and the surface metabolome of T. atomaria were monitored along a spatio-temporal gradient in the bay of Toulon (Northwestern Mediterranean coast) and its surrounding. Indeed, this geographical area displays a well-described trace metal gradient particularly relevant to investigate the effect of such pollutants on marine organisms. RESULTS Epibacterial communities of T. atomaria exhibited a high specificity whatever the five environmentally contrasted collecting sites investigated on the NW Mediterranean coast. By integrating metabarcoding and metabolomics analyses, the holobiont dynamics varied as a whole. During the occurrence period of T. atomaria, epibacterial densities and α-diversity increased while the relative proportion of core communities decreased. Pioneer bacterial colonizers constituted a large part of the specific and core taxa, and their decrease might be linked to biofilm maturation through time. Then, the temporal increase of the Roseobacter was proposed to result from the higher temperature conditions, but also the increased production of dimethylsulfoniopropionate (DMSP) at the algal surface which could constitute of the source of carbon and sulfur for the catabolism pathways of these taxa. Finally, as a major result of this study, copper concentration constituted a key factor shaping the holobiont system. Thus, the higher expression of carotenoids suggested an oxidative stress which might result from an adaptation of the algal surface metabolome to high copper levels. In turn, this change in the surface metabolome composition could result in the selection of particular epibacterial taxa. CONCLUSION We showed that associated epibacterial communities were highly specific to the algal host and that the holobiont dynamics varied as a whole. While temperature increase was confirmed to be one of the main parameters associated to Taonia dynamics, the originality of this study was highlighting copper-stress as a major driver of seaweed-epibacterial interactions. In a context of global change, this study brought new insights on the dynamics of a Mediterranean algal holobiont submitted to heavy anthropic pressures. Video abstract.
Collapse
Affiliation(s)
- Benoît Paix
- Université de Toulon, Laboratoire MAPIEM, EA, 4323, Toulon, France
- Present adress: Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Sébastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, EA, 4323, Toulon, France.
- Present address: Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), UMR CNRS-IRD-Avignon Université-Aix-Marseille Université, Avignon, France.
| | | |
Collapse
|
11
|
Sartori D, Macchia S, Layglon N, D'Onofrio S, Misson B, Piccione ME, Bertolotto RM, Scuderi A, Pilato F, Giuliani S, Pellegrini D, Gaion A. Elutriate preparation affects embryo development test with Paracentrotus lividus: An in-depth study on the differences between two protocols and three different sediment/water mixing times. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112010. [PMID: 33550081 DOI: 10.1016/j.ecoenv.2021.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Coastal areas are under continuous and increasing pressure from different human activities. A mixture of contaminants (e.g. hydrocarbons, pesticides, persistent organic pollutants (POPs), emerging contaminants, and others), originating mainly from populated, industrialised and agricultural areas, can reach the marine environment through different means such as wastewater discharge, soil runoffs, leaching from agriculture, and volatilisation/deposition. In this context, marine sediments have increasingly been considered repositories for a variety of pollutants that can accumulate and be stored for long periods, acting as a secondary source of contaminants during subsequent dredging operation or vessel manoeuvring. Chemical and ecotoxicological analyses of sediments are routinely conducted to evaluate the potential hazard/risk to the environment, either on bulk sediment or elutriate. In general, sediment elutriates are commonly prepared according to ASTM Guide even if alternative protocols are proposed by USACE for the various condition that they have to represent. The goal of the present study was to determine if the toxicological properties of ASTMprepared elutriates are comparable to those obtained from the USACE protocol. Sediment coming from 3 harbours (Olbia, Cagliari, and Toulon), as part of the "Se.D.Ri.Port" Interreg Project, were processed to obtain elutriates according to ASTM Guide and USACE Dredging Elutriate protocol and tested with the sea urchin Paracentrotus lividus embryo development test. Moreover, the significance of different stirring times of water/sediment mixture (1 h, 3 h, and 24 h) was tested with both the ASTM and USACE protocol. In addition to the biological analysis, for each sediment sample, heavy metals concentration, granulometry, and organic matter were determined. Even if for the ports of Toulon and Cagliari, the ASTM and USACE elutriates showed comparable results with P. lividus bioassay, for the port of Olbia the two protocols showed different criticalities. Preliminary results show that for the site Olbia elutriates prepared with the USACE protocol resulted in higher toxicity than elutriates obtained with ASTM (p < 0.001). In conclusion, differences in preparation protocols appear to be significant and can lead to different results in biological testing. To overcome this problem and to obtain more reliable evaluations of risk to the environment, standardisation and regulation must be the next goals in sediment management procedure.
Collapse
Affiliation(s)
- Davide Sartori
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy.
| | - Simona Macchia
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy
| | - Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Sebastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, France
| | - Maria Elena Piccione
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy
| | - Rosa Maria Bertolotto
- Agenzia Regionale per la Protezione dell'Ambiente Ligure, ARPAL, Via Bombrini 8, 16149 Genova, Italy
| | - Alice Scuderi
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy
| | - Fabiano Pilato
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy
| | - Silvia Giuliani
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy
| | - David Pellegrini
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123 Livorno, Italy
| | - Andrea Gaion
- University Centre South Devon, Vantage Point, Long Road, Paignton TQ4 7EJ, United Kingdom
| |
Collapse
|
12
|
Quantification of Microplastics in North-Western Mediterranean Harbors: Seasonality and Biofilm-Related Metallic Contaminants. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9030337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Mediterranean Sea is one of the most impacted basins in terms of microplastics pollution. Land-based activities are the major sources of plastic litter to the ocean, with harbors probably representing significant hotspots. In the framework of the SPlasH! project (Stop alle Plastiche in H2O, Interreg Marittimo project), microplastics were sampled in three north-western Mediterranean harbors during summer and winter. In this study, the areal concentrations of microplastics ranged from 5576 to 379,965 items·km−2. A decreasing gradient was observed from the inner to the outer zones of the studied harbors, pointing out these enclosed systems as hotspots regarding microplastic pollution. During summer, the areal concentrations of microplastics were higher than in winter, which could be explained by an enhancement of port activities leading to MPs production. The investigation of microplastics size classes distribution in the surface waters revealed that microplastics within the size range between 300 µm and 500 µm were the least represented. In this study, we assessed trace metal (Pb, Fe, Cu, V, Cd and As) bioaccumulation by the biofilm which developed on the surface of microplastics. The results highlighted that concentrations within the biofilm were higher than those in the surrounding waters. This result strongly suggested trace metal bioaccumulation on microplastics through biofilm formation. When trace metal concentrations were normalized over the corresponding surface of microplastics and macroplastics, higher values were obtained for microplastics, evidencing their enhanced capacities to bioaccumulate contaminants when compared to macroplastics.
Collapse
|
13
|
Coclet C, Garnier C, D’Onofrio S, Durrieu G, Pasero E, Le Poupon C, Omanović D, Mullot JU, Misson B, Briand JF. Trace Metal Contamination Impacts Predicted Functions More Than Structure of Marine Prokaryotic Biofilm Communities in an Anthropized Coastal Area. Front Microbiol 2021; 12:589948. [PMID: 33679628 PMCID: PMC7933014 DOI: 10.3389/fmicb.2021.589948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022] Open
Abstract
Trace metal (TM) contamination in marine coastal areas is a worldwide threat for aquatic communities. However, little is known about the influence of a multi-chemical contamination on both marine biofilm communities' structure and functioning. To determine how TM contamination potentially impacted microbial biofilms' structure and their functions, polycarbonate (PC) plates were immerged in both surface and bottom of the seawater column, at five sites, along strong TM contamination gradients, in Toulon Bay. The PC plates were incubated during 4 weeks to enable colonization by biofilm-forming microorganisms on artificial surfaces. Biofilms from the PC plates, as well as surrounding seawaters, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe prokaryotic community diversity, structure and functions, and to determine the relationships between bacterioplankton and biofilm communities. Our results showed that prokaryotic biofilm structure was not significantly affected by the measured environmental variables, while the functional profiles of biofilms were significantly impacted by Cu, Mn, Zn, and salinity. Biofilms from the contaminated sites were dominated by tolerant taxa to contaminants and specialized hydrocarbon-degrading microorganisms. Functions related to major xenobiotics biodegradation and metabolism, such as methane metabolism, degradation of aromatic compounds, and benzoate degradation, as well as functions involved in quorum sensing signaling, extracellular polymeric substances (EPS) matrix, and biofilm formation were significantly over-represented in the contaminated site relative to the uncontaminated one. Taken together, our results suggest that biofilms may be able to survive to strong multi-chemical contamination because of the presence of tolerant taxa in biofilms, as well as the functional responses of biofilm communities. Moreover, biofilm communities exhibited significant variations of structure and functional profiles along the seawater column, potentially explained by the contribution of taxa from surrounding sediments. Finally, we found that both structure and functions were significantly distinct between the biofilm and bacterioplankton, highlighting major differences between the both lifestyles, and the divergence of their responses facing to a multi-chemical contamination.
Collapse
Affiliation(s)
- Clément Coclet
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Sébastien D’Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Gaël Durrieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Emilie Pasero
- Microbia Environnement Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruðer Bošković Institute, Zagreb, Croatia
| | | | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | | |
Collapse
|