1
|
Hirai J. Optimal input DNA thresholds for genome skimming in marine crustacean zooplankton. PeerJ 2025; 13:e19054. [PMID: 40028195 PMCID: PMC11871894 DOI: 10.7717/peerj.19054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Crustacean zooplanktons are key secondary and tertiary producers in marine ecosystems, yet their genomic resources remain poorly understood. To advance biodiversity research on crustacean zooplankton, this study evaluated the effectiveness of genome skimming, a method that assembles genetic regions, including mitogenome, from shotgun genome sequencing data. Because the small amount of DNA available is a limitation in zooplankton genetics, different input DNA amounts (1 pg-10 ng) were prepared for library construction for genome skimming using two large species: Euphausia pacifica (Euphausiacea) and Calanus glacialis (Copepoda). Additionally, de novo assembly was used to obtain long contigs from short reads because reference-guided assembly can not be applied to all crustacean zooplankton. Evaluation of the raw sequence reads showed increased proportions of high-quality and distinct reads (low duplication levels) for large DNA inputs. By contrast, low sequence quality and high sequence duplication were observed for ≤ 10 pg DNA samples, owing to increased DNA amplification cycles. Complete mitogenomes, including all 37 genes, were successfully retrieved for ≥ 10 pg (E. pacifica) and ≥ 100 pg (C. glacialis) of DNA. Despite the large estimated genome sizes of these zooplankton species, only ≥ 1 and ≥ 3 M reads were sufficient for mitogenome assembly for E. pacifica and C. glacialis, respectively. Nuclear ribosomal repeats and histone 3 were identified in the assembled contigs. As obtaining sufficient DNA amounts (≥ 100 pg) is feasible even from small crustacean zooplankton, genome skimming is a powerful approach for robust phylogenetics and population genetics in marine zooplankton.
Collapse
Affiliation(s)
- Junya Hirai
- Atmosphere and Ocean Research Institute, University of Tokyo, Kahiwa, Chiba, Japan
| |
Collapse
|
2
|
Roncalli V, Ascione D, Lauritano C, Carotenuto Y. The Chemical Defensome: A Survey of Environmental Sensing and Response Genes in Copepods. Int J Mol Sci 2025; 26:1546. [PMID: 40004013 PMCID: PMC11855160 DOI: 10.3390/ijms26041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Highly conserved among eukaryotes, the chemical defensome protects organisms against chemical stressors and helps to reestablish the altered homeostatic state. The defensome includes genes such as transporters (e.g., adenosine triphosphate ATP-binding cassette), phase I and phase II detoxification enzymes, and antioxidant enzymes. During their life cycle, planktonic copepods, the most abundant and ubiquitous metazoans on Earth, are exposed to many environmental stressors that impair their survival and fitness. Here, using high-quality publicly available transcriptomic data, defensome genes were searched in copepods belonging to different orders and living in different environments (e.g., Antarctic, Subarctic, Mediterranean). Gene expression responses were investigated in four calanoids exposed to different stresses to identify a common and species-specific detoxification system. Our results confirm that the defensome is highly conserved among copepods but also report differences in the relative contribution of genes among species living in different habitats, suggesting a fitness adaptation to environmental pressures. The genes provided here can be used as biomarkers of chemical defense and can also be tested in other planktonic organisms to assess the "health" of marine organisms, which is useful for understanding environmental adaptations and they can be used to assess changes and make predictions at the population and community levels.
Collapse
Affiliation(s)
- Vittoria Roncalli
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.A.); (Y.C.)
| | - Daniela Ascione
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.A.); (Y.C.)
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Ylenia Carotenuto
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.A.); (Y.C.)
| |
Collapse
|
3
|
Hansen BH, Tarrant AM, Lenz PH, Roncalli V, Almeda R, Broch OJ, Altin D, Tollefsen KE. Effects of petrogenic pollutants on North Atlantic and Arctic Calanus copepods: From molecular mechanisms to population impacts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106825. [PMID: 38176169 DOI: 10.1016/j.aquatox.2023.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods. In this review, we summarize the current knowledge of the toxicity of petroleum on North Atlantic and Arctic Calanus copepods. We also review how recent development of high-quality transcriptomes from RNA-sequencing of copepods have identified genes regulating key biological processes, like molting, diapause and reproduction in Calanus copepods, to suggest linkages between exposure, molecular mechanisms and effects on higher levels of biological organization. We found that the available ecotoxicity threshold data for these copepods provide valuable information about their sensitivity to acute petrogenic exposures; however, there is still insufficient knowledge regarding underlying mechanisms of toxicity and the potential for long-term implications of relevance for copepod ecology and phenology. Copepod transcriptomics has expanded our understanding of how key biological processes are regulated in cold-water copepods. These advances can improve our understanding of how pollutants affect biological processes, and thus provide the basis for new knowledge frameworks spanning the effect continuum from molecular initiating events to adverse effects of regulatory relevance. Such efforts, guided by concepts such as adverse outcome pathways (AOPs), enable standardized and transparent characterization and evaluation of knowledge and identifies research gaps and priorities. This review suggests enhancing mechanistic understanding of exposure-effect relationships to better understand and link biomarker responses to adverse effects to improve risk assessments assessing ecological effects of pollutant mixtures, like crude oil, in Arctic areas.
Collapse
Affiliation(s)
| | - Ann M Tarrant
- Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Petra H Lenz
- University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | | | - Rodrigo Almeda
- EOMAR-ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Ole Jacob Broch
- SINTEF Ocean, Fisheries and New Biomarine Industry, 7465 Trondheim, Norway
| | - Dag Altin
- BioTrix, 7020 Trondheim, Norway; Norwegian University of Science and Technology, Research Infrastructure SeaLab, 7010 Trondheim, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), 0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), N-1433 Ås, Norway
| |
Collapse
|
4
|
Rotolo F, Roncalli V, Cieslak M, Gallo A, Buttino I, Carotenuto Y. Transcriptomic analysis reveals responses to a polluted sediment in the Mediterranean copepod Acartia clausi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122284. [PMID: 37543074 DOI: 10.1016/j.envpol.2023.122284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Marine sediments are regarded as sinks for several classes of contaminants. Characterization and effects of sediments on marine biota now require a multidisciplinary approach, which includes chemical and ecotoxicological analyses and molecular biomarkers. Here, a gene expression study was performed to measure the response of adult females of the Mediterranean copepod Acartia clausi to elutriates of polluted sediments (containing high concentrations of polycyclic aromatic hydrocarbons, PAHs, and heavy metals) from an industrial area in the Southern Tyrrhenian Sea (Bagnoli-Coroglio). Functional annotation of the A. clausi transcriptome generated as reference here, showed a good quality of the assembly and great homology with other copepod and crustacean sequences in public databases. This is one of the few available transcriptomic resources for this widespread copepod species of great ecological relevance in temperate coastal areas. Differential expression analysis between females exposed to the elutriate and those in control seawater identified 1000 differentially expressed genes, of which 743 up- and 257 down-regulated. Within the up-regulated genes, the most represented functions were related to proteolysis (lysosomal protease, peptidase, cathepsin), response to stress and detoxification (heat-shock protein, superoxide dismutase, glutathione-S-transferase, cytochrome P450), and cytoskeleton structure (α- and β-tubulin). Down-regulated genes were mostly involved with ribosome structure (ribosomal proteins) and DNA binding (histone proteins, transcription factors). Overall, these results suggest that processes such as transcription, translation, protein degradation, metabolism of biomolecules, reproduction, and xenobiotic detoxification were altered in the copepod in response to polluted elutriates. In conclusion, our results contribute to gaining information on the transcriptomic responses of copepods to polluted sediments. They will also prompt the selection of genes of interest to be used as biomarkers of exposure to PAHs and heavy metals in molecular toxicology studies on copepods, and in general, in comparative functional genomic studies on marine zooplankton.
Collapse
Affiliation(s)
- Flavio Rotolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - Vittoria Roncalli
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Matthew Cieslak
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East-West Rd, Honolulu, HI, 96822, USA
| | - Alessandra Gallo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Isabella Buttino
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - Ylenia Carotenuto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
5
|
Yuan J, Zhang X, Li S, Liu C, Yu Y, Zhang X, Xiang J, Li F. Convergent evolution of barnacles and molluscs sheds lights in origin and diversification of calcareous shell and sessile lifestyle. Proc Biol Sci 2022; 289:20221535. [PMID: 36100022 PMCID: PMC9470267 DOI: 10.1098/rspb.2022.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
The calcareous shell and sessile lifestyle are the representative phenotypes of many molluscs, which happen to be present in barnacles, a group of unique crustaceans. The origin of these phenotypes is unclear, but it may be embodied in the convergent genetics of such distant groups (interphylum). Herein, we perform comprehensive comparative genomics analysis in barnacles and molluscs, and reveal a genome-wide strong convergent molecular evolution between them, including coexpansion of biomineralization and organic matrix genes for shell formation, and origination of lineage-specific orphan genes for settlement. Notably, the expanded biomineralization gene encoding alkaline phosphatase evolves a novel, highly conserved motif that may trigger the origin of barnacle shell formation. Unlike molluscs, barnacles adopt novel organic matrices and cement proteins for shell formation and settlement, respectively, and their calcareous shells have potentially originated from the cuticle system of crustaceans. Therefore, our study corroborates the idea that selection pressures driving convergent evolution may strongly act in organisms inhabiting similar environments regardless of phylogenetic distance. The convergence signatures shed light on the origin of the shell and sessile lifestyle of barnacles and molluscs. In addition, notable non-convergence signatures are also present and may contribute to morphological and functional specificities.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
6
|
Das S, Ouddane B, Souissi S. Responses of the copepod Eurytemora affinis to trace metal exposure: A candidate for sentinel to marine sediment resuspension effects. MARINE POLLUTION BULLETIN 2022; 181:113854. [PMID: 35772260 DOI: 10.1016/j.marpolbul.2022.113854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Our study reports the ability of Eurytemora affinis to indicate certain responses in 96 h when exposed to resuspended sediment from a polluted site (PS, Seine estuary, France), less polluted site (LPS, Canche estuary, France) and dissolved trace metals. Mortality from dissolved trace metal was highest (57.5 %) followed by PS (38.59 %) > LPS (24.04 %). The exposure to PS sediment resulted in significantly lower no. of early larval stage (nauplii < 2), sex-ratio (39.24 % of males) and higher ovigerous female (>10). Eurytemora affinis bioaccumulated high concentrations of copper (27.3 mg/kg), nickel (12.8 mg/kg), lead (21.8 mg/kg) and arsenic (13.7 mg/kg) from PS exposure with significantly lower bioaccumulation of metals from LPS. The bioconcentration factor (BCF) was highest from dissolved toxicity (>2000) followed by PS that showed significantly higher BCF for Nickel and Copper, compared to LPS. The responses of E. affinis to different matrices exemplify its role as a sentinel.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187-LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516-LASIRE - Equipe Physico-chimie de l'Environnement, Bâtiment C8, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187-LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| |
Collapse
|
7
|
Park JJC, Kim DH, Kim MS, Sayed AEDH, Hagiwara A, Hwang UK, Park HG, Lee JS. Comparative genome analysis of the monogonont marine rotifer Brachionus manjavacas Australian strain: Potential application for ecotoxicology and environmental genomics. MARINE POLLUTION BULLETIN 2022; 180:113752. [PMID: 35617743 DOI: 10.1016/j.marpolbul.2022.113752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
This is the first study to analyze the whole-genome sequence of B. manjavacas Australian (Aus.) strain through combination of Oxford Nanopore long-read seq, resulting in a total length of 108.1 Mb and 75 contigs. Genome-wide detoxification related gene families in B. manjavacas Aus. strain were comparatively analyzed with those previously identified in other Brachionus spp., including B. manjavacas German (Ger.) strain. Most of the subfamilies in detoxification related families (CYPs, GSTs, and ABCs) were highly conserved and confirmed orthologous relationship with Brachionus spp., and with accumulation of genome data, clear differences between genomic repertoires were demonstrated the marine and the freshwater species. Furthermore, strain-specific genetic variations were present between the Aus. and Ger. strains of B. manjavacas. This whole-genome analysis provides in-depth review on the genomic structural differences for detoxification-related gene families and further provides useful information for comparative ecotoxicological studies and evolution of detoxification mechanisms in Brachionus spp.
Collapse
Affiliation(s)
- Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut 71516, Egypt
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Un-Ki Hwang
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
8
|
Kim DH, Jeong H, Kim MS, Kim S, Souissi S, Park HG, Hagiwara A, Lee JS. Identification and characterization of homeobox gene clusters in harpacticoid and calanoid copepods. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:215-224. [PMID: 34855303 DOI: 10.1002/jez.b.23112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
In this study, we have identified the entire complement of typical homeobox (Hox) genes (Lab, Pb, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) in harpacticoid and calanoid copepods and compared them with the cyclopoid copepod Paracyclopina nana. The harpacticoid copepods Tigriopus japonicus and Tigriopus kingsejongensis have seven Hox genes (Lab, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) and the Pb and Ftz genes are also present in the cyclopoid copepod P. nana. In the Hox gene cluster of the calanoid copepod Eurytemora affinis, all the Hox genes were present linearly in the genome but the Antp gene was duplicated. Of the three representative copepods, the P. nana Hox gene cluster was the most compact due to its small genome size. The Hox gene expression profile patterns in the three representative copepods were stage-specific. The Lab, Dfd, Scr, Pb, Ftz, and Hox3 genes showed a high expression in early developmental stages but Antp, Ubx, Abd-A, and Abd-B genes were mostly expressed in later developmental stages, implying that these Hox genes may be closely associated with the development of segment identity during early development.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, CNRS, UMR 8187 LOG, Université de Lille, Université du Littoral Côte d'Opale, Lille, France
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
9
|
Yuan J, Zhang X, Kou Q, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Xiang J, Li X, Li F. Genome of a giant isopod, Bathynomus jamesi, provides insights into body size evolution and adaptation to deep-sea environment. BMC Biol 2022; 20:113. [PMID: 35562825 PMCID: PMC9107163 DOI: 10.1186/s12915-022-01302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The deep-sea may be regarded as a hostile living environment, due to low temperature, high hydrostatic pressure, and limited food and light. Isopods, a species-rich group of crustaceans, are widely distributed across different environments including the deep sea and as such are a useful model for studying adaptation, migration, and speciation. Similar to other deep-sea organisms, giant isopods have larger body size than their shallow water relatives and have large stomachs and fat bodies presumably to store organic reserves. In order to shed light on the genetic basis of these large crustaceans adapting to the oligotrophic environment of deep-sea, the high-quality genome of a deep-sea giant isopod Bathynomus jamesi was sequenced and assembled. RESULTS B. jamesi has a large genome of 5.89 Gb, representing the largest sequenced crustacean genome to date. Its large genome size is mainly attributable to the remarkable proliferation of transposable elements (84%), which may enable high genome plasticity for adaptive evolution. Unlike its relatives with small body size, B. jamesi has expanded gene families related to pathways of thyroid and insulin hormone signaling that potentially contribute to its large body size. Transcriptomic analysis showed that some expanded gene families related to glycolysis and vesicular transport were specifically expressed in its digestive organs. In addition, comparative genomics and gene expression analyses in six tissues suggested that B. jamesi has inefficient lipid degradation, low basal metabolic rate, and bulk food storage, suggesting giant isopods adopt a more efficient mechanism of nutrient absorption, storage, and utilization to provide sustained energy supply for their large body size. CONCLUSIONS Taken together, the giant isopod genome may provide a valuable resource for understanding body size evolution and adaptation mechanisms of macrobenthic organisms to deep-sea environments.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Kou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin, 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xinzheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Department of Marine Organism Taxonomy & Phylogeny, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
10
|
Kim DH, Byeon E, Kim MS, Lee YH, Park JC, Hagiwara A, Lee JS. The Genome of the Marine Rotifer Brachionus manjavacas: Genome-Wide Identification of 310 G Protein-Coupled Receptor (GPCR) Genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:226-242. [PMID: 35262805 DOI: 10.1007/s10126-022-10102-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The marine rotifer Brachionus manjavacas is widely used in ecological, ecotoxicological, and ecophysiological studies. The reference genome of B. manjavacas is a good starting point to uncover the potential molecular mechanisms of responses to various environmental stressors. In this study, we assembled the whole-genome sequence (114.1 Mb total, N50 = 6.36 Mb) of B. manjavacas, consisting of 61 contigs with 18,527 annotated genes. To elucidate the potential ligand-receptor signaling pathways in marine Brachionus rotifers in response to environmental signals, we identified 310 G protein-coupled receptor (GPCR) genes in the B. manjavacas genome after comparing them with three other species, including the minute rotifer Proales similis, Drosophila melanogaster, and humans (Homo sapiens). The 310 full-length GPCR genes were categorized into five distinct classes: A (262), B (26), C (7), F (2), and other (13). Most GPCR gene families showed sporadic evolutionary processes, but some classes were highly conserved between species as shown in the minute rotifer P. similis. Overall, these results provide potential clues for in silico analysis of GPCR-based signaling pathways in the marine rotifer B. manjavacas and will expand our knowledge of ligand-receptor signaling pathways in response to various environmental signals in rotifers.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jun Chul Park
- Départment Des Sciences, Université Sainte-Anne, Church Point, NS, B0W 1M0, Canada
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
11
|
Barrick A, Laroche O, Boundy M, Pearman JK, Wiles T, Butler J, Pochon X, Smith KF, Tremblay LA. First transcriptome of the copepod Gladioferens pectinatus subjected to chronic contaminant exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106069. [PMID: 34968986 DOI: 10.1016/j.aquatox.2021.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Contaminants are often at low concentrations in ecosystems and their effects on exposed organisms can occur over long periods of time and across multiple generations. Alterations to subcellular mechanistic pathways in response to exposure to contaminants can provide insights into mechanisms of toxicity that methods measuring higher levels of biological may miss. Analysis of the whole transcriptome can identify novel mechanisms of action leading to impacts in exposed biota. The aim of this study was to characterise how exposures to copper, benzophenone and diclofenac across multiple generations altered molecular expression pathways in the marine copepod Gladioferens pectinatus. Results of the study demonstrated differential gene expression was observed in cultures exposure to diclofenac (569), copper (449) and benzophenone (59). Pathways linked to stress, growth, cellular and metabolic processes were altered by exposure to all three contaminants with genes associated with oxidative stress and xenobiotic regulation also impacted. Protein kinase functioning, cytochrome P450, transcription, skeletal muscle contraction/relaxation, mitochondrial phosphate translocator, protein synthesis and mitochondrial methylation were all differentially expressed with all three chemicals. The results of the study also suggested that using dimethyl sulfoxide as a dispersant influenced the transcriptome and future research may want to investigate it's use in molecular studies. Data generated in this study provides a first look at transcriptomic response of G. pectinatus exposed to contaminants across multiple generations, future research is needed to validate the identified biomarkers and link these results to apical responses such as population growth to demonstrate the predictive capacity of molecular tools.
Collapse
Affiliation(s)
- Andrew Barrick
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand.
| | - Olivier Laroche
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Boundy
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - John K Pearman
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Tanja Wiles
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Juliette Butler
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Xavier Pochon
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Louis A Tremblay
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Glutathione S-Transferases in Marine Copepods. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The glutathione S-transferase (GST) is a complex family of phase II detoxification enzymes, known for their ability to catalyze the conjugation of the reduced form of glutathione (GSH) to a wide variety of endogenous and exogenous electrophilic compounds for detoxification purposes. In marine environments, copepods are constantly exposed to multiple exogenous stressors, thus their capability of detoxification is key for survival. Full identification of the GST family in copepods has been limited only to few species. As for insects, the GST family includes a wide range of genes that, based on their cellular localization, can be divided in three classes: cytosolic, microsomal, and mitochondrial. The role of GSTs might have class-specific features, thus understanding the nature of the GST family has become crucial. This paper covers information of the GST activity in marine copepods based on studies investigating gene expression, protein content, and enzymatic activity. Using published literature and mining new publicly available transcriptomes, we characterized the multiplicity of the GST family in copepods from different orders and families, highlighting the possible role of these genes as biomarker for ocean health status monitoring.
Collapse
|
13
|
Park JC, Lee JS. Genome-wide identification of heat shock proteins in harpacticoid, cyclopoid, and calanoid copepods: Potential application in marine ecotoxicology. MARINE POLLUTION BULLETIN 2021; 169:112545. [PMID: 34111604 DOI: 10.1016/j.marpolbul.2021.112545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Constant evolution of omics-technologies has provided access to identification of various important gene families. Recently, genome assemblies on widely used ecotoxicological model species, including rotifers and copepods have been completed and representative detoxification-related gene families have been discovered for biomarker genes. However, despite ubiquitous presence of stress-response proteins, limited information on full genome-wide report on heat shock proteins (Hsps) is available. Various studies have demonstrated multiple cellular functions of Hsps in living organisms as an important biomarker in response to abiotic and biotic stressors, however, full genome-wide identification of Hsps, particularly in aquatic invertebrates, has not been reported. This is the first study to report the entire Hsps and basal gene expression levels in three regional-specific copepods: Tigriopus japonicus and kingsejongensis, Paracyclopina nana, and Eurytemora affnis, and how each Hsp family gene is regulated at a basal level.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
14
|
Promotion of the Development of Sentinel Species in the Water Column: Example Using Body Size and Fecundity of the Egg-Bearing Calanoid Copepod Eurytemora affinis. WATER 2021. [DOI: 10.3390/w13111442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of sentinel species in aquatic ecosystems is mostly based on benthic organisms; however, organisms living in water column such as zooplankton have received less attention, except for some cladocerans. In this paper, a new ecological indicator based on simple measurements of the size and fecundity of egg-bearing calanoid copepods is developed. The well-studied estuarine copepod Eurytemora affinis is used to illustrate this new framework. A large database obtained from laboratory experiments developed under different conditions is used to define a reference regression line between clutch size (CS) and prosome length (PL). The same database allowed one to confirm that the coefficient of variation (CV) of CS is an adequate estimator of the accumulated stress at population level. The CV of PL shows very little variability in all experimental and field conditions. The values of CS and PL obtained from the Seine, Loire, Gironde, Scheldt and Elbe estuaries in Europe are compared to the reference regression line. A quality index (QI) is calculated as a percentage of difference between the observed and the predicted CS. The QI classified 19 samples collected in the Seine estuary between 2004 and 2010 into four classes according to the physiological condition of the copepod female. A single sampling from June 2004 (5.26%) showed a very good condition, whereas 57.9% of the sampling dates confirmed good conditions. On the other hand, four sampling dates were associated to very bad conditions and three sampling dates indicated bad conditions. Seven additional samples obtained from other European estuaries between 2006 and 2009 were also used. Females showing poor conditions were observed in the early spring of 2005 and 2008 as well as during the month of November. These years were characterized by very strong climatic anomalies with a very cold late winter in 2005 and a warm winter in 2008. Therefore, it seems that the QI perfectly reflected the strong stress caused by the sudden change in hydro-climatic conditions that have certainly affected the physiology of copepod females and probably the availability of food. The new indicator is very simple to calculate and can be generalised to several aquatic ecosystems (fresh water and brackish water) by targeting the dominating egg-bearing calanoid copepods. As in the case of E. affinis, the development of sentinel species based on copepods or cladocerans can enrich ecological and ecotoxicological studies given their capacity to integrate the variability of their habitats’ quality at the individual and population levels.
Collapse
|