1
|
James C, Bainbridge Z, Lewis S, Clech-Goods C, Mann R, Huggins R, Orr D, Welk K, Liu S, Agnew G, Bartley R, Bramley R, Buckle A, Cogle L, Cross M, Davis A, Devlin M, Eyre BD, Faithful J, Furnas M, Godfrey P, Gruber R, Hawdon A, Howley C, Hunter H, Kennard M, Laxton E, Mackay S, McJannet D, Nash M, O'Brien D, Oudyn F, Pearson R, Rohde K, Tink M, Moss A. Compilation of riverine water quality data from the Great Barrier Reef catchment area, northeastern Australia. Sci Data 2025; 12:291. [PMID: 39966392 PMCID: PMC11836364 DOI: 10.1038/s41597-025-04534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
This manuscript describes the collation of available water quality data from the freshwater reaches of surface streams within the Great Barrier Reef catchment area, northeastern Australia. This compilation represents one of the most comprehensive online datasets for historical tropical and subtropical freshwater quality around the world. We document the criteria for selection of the data and associated publications as well as the processes of data cleaning used to produce a qualitative assessment of the datasets. The final compilation includes 41 individual datasets that collectively report 466 sites and contain over 26,000 discrete water quality sample records totaling more than 350,000 unique water quality results. Finally, we outline the nuances of the data that end users need to take into account when combining them for spatial and temporal analyses. The dataset ensures that these valuable water quality data collected over the past four decades are preserved for the next generations of researchers, practitioners, management agencies and policy makers.
Collapse
Affiliation(s)
- Cassandra James
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Australia.
| | - Zoe Bainbridge
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Australia
| | - Stephen Lewis
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Australia
| | - Celine Clech-Goods
- Water Quality and Investigations (Science Division), Department of the Environment, Tourism, Science and Innovation, Brisbane, Australia
| | - Reinier Mann
- Water Quality and Investigations (Science Division), Department of the Environment, Tourism, Science and Innovation, Brisbane, Australia
| | - Raethea Huggins
- Water Quality and Investigations (Science Division), Department of the Environment, Tourism, Science and Innovation, Brisbane, Australia
| | - David Orr
- Water Quality and Investigations (Science Division), Department of the Environment, Tourism, Science and Innovation, Brisbane, Australia
| | - Kylee Welk
- Water Quality and Investigations (Science Division), Department of the Environment, Tourism, Science and Innovation, Brisbane, Australia
| | - Shuci Liu
- Water and Catchments (Science Division), Department of the Environment, Tourism, Science and Innovation, Brisbane, Australia
| | - Gordon Agnew
- Waterways and Catchment Management Team, Sunshine Coast Council, Nambour, Australia
| | | | | | - Alicia Buckle
- Terrain Natural Resource Management, Innisfail, Australia
| | - Lex Cogle
- Formerly Department of Natural Resources and Management, Mareeba, Australia
| | - Matthew Cross
- Inorganic Chemistry, Queensland Health Forensic and Scientific Services, Brisbane, Australia
| | - Aaron Davis
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Australia
| | - Michelle Devlin
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, NR33, UK
| | - Bradley D Eyre
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
| | - John Faithful
- Formerly JCU TropWATER; now WSP Australia P/L, Townsville, Australia
| | - Miles Furnas
- Australian Institute of Marine Science, Townsville, Australia
| | - Paul Godfrey
- Formerly Australian Rivers Institute, Griffith University, Brisbane, Australia
| | - Renee Gruber
- Australian Institute of Marine Science, Townsville, Australia
| | | | | | - Heather Hunter
- Formerly Australian Rivers Institute, Griffith University, Brisbane, Australia
- Formerly Department of Environment and Resource Management, Brisbane, Australia
| | - Mark Kennard
- Australian Rivers Institute, Griffith University, Brisbane, Australia
| | - Emma Laxton
- J.H. & E.S. Laxton - Environmental Consultants, Sydney, Australia
| | - Stephen Mackay
- Formerly Australian Rivers Institute, Griffith University, Brisbane, Australia
| | | | - Michael Nash
- Formerly Terrain NRM; Aquasea Enterprises, Ingham, Australia
| | - Dominique O'Brien
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Australia
| | - Fred Oudyn
- Chemistry Centre, Department of the Environment, Tourism, Science and Innovation, Brisbane, Australia
| | - Richard Pearson
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Australia
| | - Ken Rohde
- Water & Catchments - Science Division, Department of the Environment, Tourism, Science and Innovation, Mackay, Australia
| | - Michelle Tink
- TropWATER Laboratory, James Cook University, Townsville, Australia
| | - Andrew Moss
- Aquatic Ecosystem Health (Science Division), Department of the Environment, Tourism, Science and Innovation, Brisbane, Australia
| |
Collapse
|
2
|
Hook SE, Smith RA, Waltham N, Warne MSJ. Pesticides in the Great Barrier Reef catchment area: Plausible risks to fish populations. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1256-1279. [PMID: 37994614 DOI: 10.1002/ieam.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Waterways that drain the Great Barrier Reef catchment area (GBRCA) transport pollutants to marine habitats, provide a critical corridor between freshwater and marine habitats for migratory fish species, and are of high socioecological value. Some of these waterways contain concentrations of pesticide active ingredients (PAIs) that exceed Australian ecotoxicity threshold values (ETVs) for ecosystem protection. In this article, we use a "pathway to harm" model with five key criteria to assess whether the available information supports the hypothesis that PAIs are or could have harmful effects on fish and arthropod populations. Strong evidence of the first three criteria and circumstantial weaker evidence of the fourth and fifth criteria are presented. Specifically, we demonstrate that exceedances of Australian and New Zealand ETVs for ecosystem protection are widespread in the GBRCA, that the PAI contaminated water occurs (spatially and temporally) in important habitats for fisheries, and that there are clear direct and indirect mechanisms by which PAIs could cause harmful effects. The evidence of individuals and populations of fish and arthropods being adversely affected species is more circumstantial but consistent with PAIs causing harmful effects in the freshwater ecosystems of Great Barrier Reef waterways. We advocate strengthening the links between PAI concentrations and fish health because of the cultural values placed on the freshwater ecosystems by relevant stakeholders and Traditional Owners, with the aim that stronger links between elevated PAI concentrations and changes in recreationally and culturally important fish species will inspire improvements in water quality. Integr Environ Assess Manag 2024;20:1256-1279. © 2023 Commonwealth of Australia and The Commonwealth Scientific and Industrial Research Organisation. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Rachael A Smith
- Office of the Great Barrier Reef, Queensland, Department of Environment and Science, Brisbane, Queensland, Australia
| | - Nathan Waltham
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Michael St J Warne
- Reef Catchments Science Partnership, School of Earth and Environmental Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Water Quality and Investigations, Department of Environment and Science, Brisbane, Queensland, Australia
- Centre for Agroecology, Water and Resilience, Coventry University, West Midlands, UK
| |
Collapse
|
3
|
Daley JS, Stout JC, Brooks AP. Prioritising gully remediation in a Great Barrier Reef catchment: An approach using two independent methods of assessing erosion activity in 22,300 gullies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120688. [PMID: 38552511 DOI: 10.1016/j.jenvman.2024.120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
The strategic reduction and remediation of degraded land is a global environmental priority. This is a particular priority in the Great Barrier Reef catchment area, Australia, where gully erosion a significant contributor to land degradation and water quality deterioration. Urgent action through the prioritisation and remediation of gully erosion sites is imperative to safeguard this UNESCO World Heritage site. In this study, we analyze a comprehensive dataset of 22,311 mapped gullies within a 3480 km2 portion of the lower Burdekin Basin, northeast Australia. Utilizing high-resolution lidar datasets, two independent methods - Minimum Contemporary Estimate (MCE) and Lifetime Average Estimate (LAE) - were developed to derive relative erosion rates. These methods, employing different data processing approaches and addressing different timeframes across the gully lifetime, yield erosion rates varying by up to several orders of magnitude. Despite some expected divergence, both methods exhibit strong, positive correlations with each other and additional validation data. There is a 43% agreement between the methods for the highest yielding 2% of gullies, although 80.5% of high-yielding gullies identified by either method are located within a 1 km proximity of each other. Importantly, distributions from both methods independently reveal that ∼80% of total volume of gully erosion in the study area is produced from only 20% of all gullies. Moreover, the top 2% of gullies generate 30% of the sediment loss and the majority of gullies do not significantly contribute to the overall catchment sediment yield. These results underscore the opportunity to achieve significant environmental outcomes through targeted gully management by prioritising a small cohort of high yielding gullies. Further insights and implications for management frameworks are discussed in the context of the characteristics of this cohort. Overall, this research provides a basis for informed decision-making in addressing gully erosion and advancing environmental conservation efforts.
Collapse
Affiliation(s)
- James S Daley
- Coastal and Marine Research Centre, Griffith University, Gold Coast, 4215, Australia.
| | - Justin C Stout
- Waterways Centre for Freshwater Management, University of Canterbury, Christchurch, 8041, New Zealand
| | - Andrew P Brooks
- Coastal and Marine Research Centre, Griffith University, Gold Coast, 4215, Australia
| |
Collapse
|
4
|
Kroon FJ, Crosswell JR, Robson BJ. The effect of catchment load reductions on water quality in the crown-of-thorn starfish outbreak initiation zone. MARINE POLLUTION BULLETIN 2023; 195:115255. [PMID: 37688804 DOI: 10.1016/j.marpolbul.2023.115255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/11/2023]
Abstract
Crown-of-Thorns Starfish (CoTS) population outbreaks contribute to coral cover decline on Indo-Pacific reefs. On the Great Barrier Reef (GBR), enhanced catchment nutrient loads are hypothesised to increase phytoplankton food for CoTS larvae in the outbreak initiation zone. This study examines whether catchment load reductions will improve water quality in this zone during the larval period. We defined the i) initiation zone's spatial extent; ii) larval stage's temporal extent; and iii) water quality thresholds related to larval food, from published information. We applied these to model simulations, developed to quantify the effect of catchment load reductions on GBR water quality (Baird et al., 2021), and found a consistently weak response of chlorophyll-a, total organic nitrogen and large zooplankton concentrations in the initiation zone. Model results indicate marine and atmospheric forcing are more likely to control the planktonic biomass in this zone, even during major flooding events purported to precede CoTS outbreaks.
Collapse
Affiliation(s)
- Frederieke J Kroon
- Australian Institute of Marine Science, Townsville, Qld 4810, Australia.
| | | | - Barbara J Robson
- Australian Institute of Marine Science, Townsville, Qld 4810, Australia; AIMS@JCU.
| |
Collapse
|
5
|
Bahadori M, Chen C, Lewis S, Wang J, Shen J, Hou E, Rashti MR, Huang Q, Bainbridge Z, Stevens T. The origin of suspended particulate matter in the Great Barrier Reef. Nat Commun 2023; 14:5629. [PMID: 37699913 PMCID: PMC10497579 DOI: 10.1038/s41467-023-41183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
River run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.
Collapse
Affiliation(s)
- Mohammad Bahadori
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Chengrong Chen
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Stephen Lewis
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Jupei Shen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, PR China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mehran Rezaei Rashti
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zoe Bainbridge
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Tom Stevens
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
6
|
Tebbett SB, Bellwood DR, Johnson ER, Chase TJ. Occurrence and accumulation of heavy metals in algal turf particulates and sediments on coral reefs. MARINE POLLUTION BULLETIN 2022; 184:114113. [PMID: 36099683 DOI: 10.1016/j.marpolbul.2022.114113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Algal turfs form a critical interface on coral reefs that interacts with several key ecosystem processes. While we know these turfs have a remarkable propensity to accumulate sediments, which can have a range of ecosystem impacts, their role as sinks for heavy metals remains largely unexamined. Here we quantified the concentration of 15 metals in algal turf sediments from Lizard Island and Orpheus Island on the Great Barrier Reef, and specifically explored how the loads of arsenic, cobalt, iron and lead were related to turf length. Metal composition differed markedly between the two islands, with the composition at Orpheus Island suggesting closer links to terrestrial sediment sources. Furthermore, metal loads increased significantly with turf length, suggesting that longer turfs can accumulate these pollutants on reefs. Given that algal turfs are a crucial component of herbivorous/detritivorous trophic pathways, this could represent a key juncture at which these metals enter food chains.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Erin R Johnson
- Department of Geography and the Environment, Villanova University, 800 E. Lancaster Avenue, Villanova, PA 19085, United States of America
| | - Tory J Chase
- Department of Geography and the Environment, Villanova University, 800 E. Lancaster Avenue, Villanova, PA 19085, United States of America
| |
Collapse
|
7
|
Tebbett SB, Streit RP, Morais J, Schlaefer JA, Swan S, Bellwood DR. Benthic cyanobacterial mat formation during severe coral bleaching at Lizard Island: The mediating role of water currents. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105752. [PMID: 36115331 DOI: 10.1016/j.marenvres.2022.105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial mats are increasingly recognised as a symptom of coral reef change. However, the spatial distribution of cyanobacterial mats during coral bleaching has received limited attention. We explored cyanobacterial mat distribution during a bleaching event at Lizard Island and considered hydrodynamics as a potential modifier. During bleaching cyanobacterial mats covered up to 34% of the benthos at a transect scale, while some quadrats (1 m2) were covered almost entirely (97.5%). The spatial distribution of cyanobacterial mats was limited to areas with slower water currents. Coral cover declined by 44% overall, although cyanobacterial mats were not spatially coupled to the magnitude of coral loss. Overall, the marked increase in cyanobacterial mat cover was an ephemeral spike, not a sustained change, with cover returning to 0.4% within 6 months. Cyanobacterial mats clearly represent dynamic space holders on coral reefs, with a marked capacity to rapidly exploit change, if conditions are right.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Robert P Streit
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jodie A Schlaefer
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Hobart, Tasmania, 7000, Australia
| | - Sam Swan
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
8
|
Hammerman NM, Roff G, Lybolt T, Eyal G, Pandolfi JM. Unraveling Moreton Bay reef history: An urban high-latitude setting for coral development. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.884850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-latitude habitats have become increasingly recognized as a potential climate refuge for coral communities, supporting both tropical and sub-tropical corals. Despite the increasing interest in the ecology of high-latitude corals, our current knowledge of their temporal dynamics is limited, especially within urbanized settings. Here, we examined the entire history of a high-latitude coral reef ecosystem in an urbanized setting. We surveyed Holocene fossil and modern coral communities along a water quality gradient in Moreton Bay, southeast Queensland, Australia, representing near-river (Wellington Point), intermediate (Peel Island) and near-oceanic (Myora Reef) environmental conditions. Reef accretion occurred during three discrete episodes from 7,400 to 5,800, 4,900 to 3,000, and 2,100 to 300 years BP, each separated by roughly 1,000-year hiatuses, where conditions were probably not favorable enough for reef accretion to occur. Episodic reef initiation and termination suggests strong environmental controls over reef development. Eastern Australian Holocene reef growth and cessation has been linked previously to sea level fluctuations and climatic regimes (e.g., ENSO). Within each reef building episode, there were few changes in coral assemblages over time. The fast growing and branching Acropora had a relative abundance greater than 90% in ten of the 13 sediment cores and all the submerged terrace excavations. However, substantial modification of adjacent coastal catchments from European colonization in the mid 1800’s resulted in increased sediment and nutrient discharge into the bay. This perturbation coincided with a greater abundance of stress-tolerant coral species (e.g., Dipsastraea, Goniastrea, and Goniopora) and the near extirpation of Acropora in the modern coral communities of near-river and intermediate sites due to poor water quality. In contrast, the modern coral assemblage at the near-oceanic site (Myora Reef) continues to be dominated by Acropora, likely due to the consistent oceanic input, resulting in lower sediment loading and higher water quality. In order for conditions for reef growth to improve, especially within the near-river portions of the bay, further sediment and nutrient runoff from anthropogenic land-use changes need to be mitigated. Given the historical abundance of Acropora, we recommend this genus be used as an indicator of natural resource management success in the bay.
Collapse
|
9
|
D'Olivo JP, McCulloch M. Impact of European settlement and land use changes on Great Barrier Reef river catchments reconstructed from long-term coral Ba/Ca records. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154461. [PMID: 35278559 DOI: 10.1016/j.scitotenv.2022.154461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The increase in sediment and nutrient loads entering the coastal waters of the Great Barrier Reef (GBR) and the associated degradation of water quality represents a major threat to coral reefs. Although the strengthening of preventative management strategies remains a priority, there is a general lack of terrestrial runoff baseline information with respect to the spatial and temporal severity of disturbances associated with ongoing European-style land use practices. Here we use new and existing high-resolution coral Ba/Ca and luminescence records from the central Cairns region to the southern GBR shelf to reconstruct sediment fluxes discharged into the GBR from before European settlement in the 1860s to the present-day. Since the commencement of European settlement in the 1860s we document a tripling of flood-plume suspended sediment loads delivered by the Burdekin River to the GBR lagoon relative to 'natural' pre-European baseline levels. We show that this is indicative of a much more extreme degradation of the river catchments than hitherto appreciated with intensified discharge events particularly from the central and southern catchments carrying higher sediment loads. More-over from the 1930s onwards the Burdekin River, the largest source of both sediment and freshwater to the GBR, has also exhibited a progressive northwards expansion of its flood plume. This, together with increased variability of freshwater inputs indicated by coral luminescence records, now shows that the inner GBR not only continues to be impacted by increasing sediment/nutrient loads but is also subject to higher intensity river discharge events due to the loss of ground cover causing increased overland runoff and erosion.
Collapse
Affiliation(s)
- Juan Pablo D'Olivo
- Institute of Geological Sciences, Freie Universität Berlin, Berlin 12249, Germany.
| | - Malcolm McCulloch
- The ARC Centre of Excellence for Coral Reef Studies, Faculty of Engineering and Mathematical Sciences, University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
10
|
Robson BJ, Lewis S, Kroon F, Fabricius K, Warne M, Wolanski E. Jon Brodie Memorial: The sources, fates and consequences of pollutants in tropical shelf systems. MARINE POLLUTION BULLETIN 2022; 179:113669. [PMID: 35468473 DOI: 10.1016/j.marpolbul.2022.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Barbara J Robson
- Australian Institute of Marine Science, Australia; AIMS@JCU, Australia.
| | - Stephen Lewis
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Australia
| | | | | | | | - Eric Wolanski
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Australia
| |
Collapse
|
11
|
Multidecadal Land-Use Changes and Implications on Soil Protection in the Calore River Basin Landscape (Southern Italy). GEOSCIENCES 2022. [DOI: 10.3390/geosciences12040156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Southern Italy, studies dealing with the analysis of multidecadal land-use changes at the basin scale are scarce. This is an important gap, considering the deep interrelationships between land-use changes, soil erosion, and river dynamics, and hazards at the basin scale and the proneness of Southern Italy to desertification. This study provides a contribution in filling this gap by analyzing the land-use changes occurring in an inner area of Southern Italy, i.e., the Calore River basin, between 1960 and 2018. Working to this aim, we conducted a GIS-aided comparison and analysis of three land-use maps of the study area from 1960, 1990, and 2018, respectively. We analyzed land-use changes at the basin, physiographic unit, and land-use class scale. We also interpreted the results in terms of variations in soil protection against erosion. Most of the detected land-use changes occurred between 1960 and 1990 and mainly consisted of the afforestation of agricultural lands. The latter was mainly concentrated in the alluvial plains and, to a lesser extent, on mountainous reliefs. In contrast, between 1990 and 2018, the land-use remained unchanged in more than 90% of the studied landscape. Artificial surfaces increased by about six times over a period of ~60 years; notwithstanding, they currently occupy about 4% of the basin area. The detected changes led to an overall increase in soil protection against erosion at the basin scale.
Collapse
|
12
|
Taucare G, Bignert A, Kaserzon S, Thai P, Mann RM, Gallen C, Mueller J. Detecting long temporal trends of photosystem II herbicides (PSII) in the Great Barrier Reef lagoon. MARINE POLLUTION BULLETIN 2022; 177:113490. [PMID: 35255347 DOI: 10.1016/j.marpolbul.2022.113490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The Marine Monitoring Program (MMP) was established in 2005 to monitor the inshore health of the Great Barrier Reef (GBR) and evaluate progress towards water quality objectives in Reef Water Quality Improvement Plans. The MMP provides information on the magnitude and spatial extent of pesticide contamination, reports on temporal variability, and provides a risk assessment for the biota in the GBR lagoon. However, long-term trends in pesticide contamination of inshore marine waters over the entire monitoring period (2005-2018) have not been assessed. We used up to 14 years of monitoring data for five PSII herbicides (ametryn, atrazine, diuron, tebuthiuron, and hexazinone) to conduct temporal trend analyses at 11 inshore monitoring sites. The trend analyses suggested increasing significant trends (p < 0.05) for the five PSII herbicides concentrations at several monitoring sites. Power analysis indicated that monitoring sites with over 10 years of monitoring data had convincing results with 80% power.
Collapse
Affiliation(s)
- Grechel Taucare
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Anders Bignert
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Sweden
| | - Sarit Kaserzon
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Phong Thai
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Reinier M Mann
- Queensland Department of Environment and Science, Brisbane, Australia
| | - Christie Gallen
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jochen Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
13
|
Thornton CM, Elledge AE. Leichhardt, land clearing and livestock: the legacy of European agriculture in the Brigalow Belt bioregion of central Queensland, Australia. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Duarte de Paula Costa M, Lovelock CE, Waltham NJ, Moritsch MM, Butler D, Power T, Thomas E, Macreadie PI. Modelling blue carbon farming opportunities at different spatial scales. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113813. [PMID: 34607133 DOI: 10.1016/j.jenvman.2021.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
There is a growing interest in including blue carbon ecosystems (i.e., mangroves, tidal marshes and seagrasses) in climate mitigation programs in national and sub-national policies, with restoration and conservation of these ecosystems identified as potential activities to increase carbon accumulation through time. However, there is still a gap on the spatial scales needed to produce carbon offsets comparable with terrestrial or agricultural ecosystems. Here, we used the Coastal Blue Carbon InVEST 3.7.0 model to estimate future net carbon sequestration in blue carbon ecosystems along Australia's Great Barrier Reef (hereafter GBR) catchments, considering different management scenarios (i.e., reintroduction of tidal exchange through the removal of barriers, sea level rise, restoring low lying land) at three different spatial scales: whole GBR coastline, regional (14,000-16,300 ha), and local (335-370 ha) scales. The focus of the restoration (i.e., tidal marshes and/or mangroves) was dependent on data availability for each scenario. Furthermore, we also estimated the monetary value of carbon sequestration under each management scenario and spatial scale assessed in the study. We found that large scale restoration of tidal marshes could potentially sequester an additional ∼800,000 tonnes of CO2e by 2045 (potentially generating AU$12 million based on the average Australia carbon price), with greater opportunities when sea level rise is accounted for in the modelling. Also, we found that regional and local projects would generate up to 23 tonnes CO2e ha-1 by the end of the crediting period. Our results can guide future decisions in the blue carbon market and financing schemes, however, the return on investment is dependent on the carbon price and funding scheme available for project implementation.
Collapse
Affiliation(s)
- Micheli Duarte de Paula Costa
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC, 3125, Australia.
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nathan J Waltham
- Centre for Tropical Water and Aquatic Ecosystem Research, College of Science and Engineering, James Cook University, Cairns, QLD, 4870, Australia
| | - Monica M Moritsch
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, Santa Cruz, CA, 95060, USA; School of Life and Environmental Sciences, Deakin University, Warrnambool Campus, Warrnambool, VIC, 3280, Australia
| | - Don Butler
- Department of Environment and Science, Brisbane, QLD, 4000, Australia
| | - Trent Power
- Catchment Solutions, Mackay, QLD, 4750, Australia
| | - Evan Thomas
- Department of Environment and Science, Brisbane, QLD, 4000, Australia
| | - Peter I Macreadie
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC, 3125, Australia
| |
Collapse
|
15
|
McCloskey GL, Baheerathan R, Dougall C, Ellis R, Bennett FR, Waters D, Darr S, Fentie B, Hateley LR, Askildsen M. Modelled estimates of dissolved inorganic nitrogen exported to the Great Barrier Reef lagoon. MARINE POLLUTION BULLETIN 2021; 171:112655. [PMID: 34265552 DOI: 10.1016/j.marpolbul.2021.112655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Measuring stream pollutant loads across the Great Barrier Reef (GBR) catchment area (GBRCA) is challenging due to the spatial extent, climate variability, changing land use and evolving land management practices, and cost. Thus, models are used to estimate baseline pollutant loads. The eWater Source modelling framework is coupled with agricultural paddock scale models and the GBR Dynamic SedNet plugin to simulate dissolved inorganic nitrogen (DIN) generation and transport processes across the GBRCA. Catchment scale monitoring of flow and loads are used to calibrate the models, and performance is assessed qualitatively and quantitatively. Modelling indicates almost half (47%) of the total modelled DIN load exported to the GBR lagoon is from the Wet Tropics, and almost half of the total modelled DIN load is from sugarcane areas. We demonstrate that using locally developed, customised models coupled with a complementary monitoring program can produce reliable estimates of pollutant loads.
Collapse
Affiliation(s)
- G L McCloskey
- Department of Resources, Queensland Government, Australia.
| | - R Baheerathan
- Department of Resources, Queensland Government, Australia
| | - C Dougall
- Department of Resources, Queensland Government, Australia
| | - R Ellis
- Department of Environment and Science, Queensland Government, Australia
| | - F R Bennett
- Department of Environment and Science, Queensland Government, Australia
| | - D Waters
- Department of Resources, Queensland Government, Australia
| | - S Darr
- Department of Resources, Queensland Government, Australia
| | - B Fentie
- Department of Environment and Science, Queensland Government, Australia
| | - L R Hateley
- Department of Resources, Queensland Government, Australia
| | - M Askildsen
- Department of Resources, Queensland Government, Australia
| |
Collapse
|
16
|
Bainbridge Z, Lewis S, Stevens T, Petus C, Lazarus E, Gorman J, Smithers S. Measuring sediment grain size across the catchment to reef continuum: Improved methods and environmental insights. MARINE POLLUTION BULLETIN 2021; 168:112339. [PMID: 33962086 DOI: 10.1016/j.marpolbul.2021.112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/17/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Sediments collected within freshwater, estuarine and marine habitats were used to trial various chemical and physical pre-treatments to develop a systematic protocol for grain-size analysis using laser diffraction. Application of this protocol mitigates the influence of bio-physical processes that may transform grain-size distributions, enabling the characterisation and quantification of 'primary' mineral sediments across the complex freshwater-marine continuum to be more reliably assessed. Application of the protocol to two Great Barrier Reef (Australia) river catchments and their estuaries reveals the ecologically relevant <20 μm fraction comprises a larger component of exported sediment than existing methods indicate. These findings are highly relevant when comparing measured data to grain-size-specific modelled sediment loads and water-quality targets. Finally, adoption of the protocol also improves the environmental interpretation of the influence of 'terrigenous sediment' in marine settings, including quantification of newly-delivered flood plume sediment.
Collapse
Affiliation(s)
- Zoe Bainbridge
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia.
| | - Stephen Lewis
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Thomas Stevens
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Caroline Petus
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Emily Lazarus
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Jessica Gorman
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Scott Smithers
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia; Earth and Environmental Sciences, College of Science and Engineering, James Cook University, Townsville 4811, Australia
| |
Collapse
|
17
|
Baird ME, Mongin M, Skerratt J, Margvelashvili N, Tickell S, Steven ADL, Robillot C, Ellis R, Waters D, Kaniewska P, Brodie J. Impact of catchment-derived nutrients and sediments on marine water quality on the Great Barrier Reef: An application of the eReefs marine modelling system. MARINE POLLUTION BULLETIN 2021; 167:112297. [PMID: 33901977 DOI: 10.1016/j.marpolbul.2021.112297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Water quality of the Great Barrier Reef (GBR) is determined by a range of natural and anthropogenic drivers that are resolved in the eReefs coupled hydrodynamic - biogeochemical marine model forced by a process-based catchment model, GBR Dynamic SedNet. Model simulations presented here quantify the impact of anthropogenic catchment loads of sediments and nutrients on a range of marine water quality variables. Simulations of 2011-2018 show that reduction of anthropogenic catchment loads results in improved water quality, especially within river plumes. Within the 16 resolved river plumes, anthropogenic loads increased chlorophyll concentration by 0.10 (0.02-0.25) mg Chl m-3. Reductions of anthropogenic loads following proposed Reef 2050 Water Quality Improvement Plan targets reduced chlorophyll concentration in the plumes by 0.04 (0.01-0.10) mg Chl m-3. Our simulations demonstrate the impact of anthropogenic loads on GBR water quality and quantify the benefits of improved catchment management.
Collapse
Affiliation(s)
- Mark E Baird
- CSIRO Oceans and Atmosphere, Hobart 7001, Australia.
| | | | | | | | | | | | | | - Robin Ellis
- Science Division, Department of Environment and Science, Queensland Government, Brisbane, Australia
| | - David Waters
- Science Division, Department of Environment and Science, Queensland Government, Brisbane, Australia
| | - Paulina Kaniewska
- Office of the Great Barrier Reef, Department of Environment and Science, Queensland Government, Brisbane, Australia
| | - Jon Brodie
- James Cook University, Townsville 4811, Australia
| |
Collapse
|