1
|
Debroas D. Global analysis of the metaplasmidome: ecological drivers and spread of antibiotic resistance genes across ecosystems. MICROBIOME 2025; 13:77. [PMID: 40108678 PMCID: PMC11921664 DOI: 10.1186/s40168-025-02062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/09/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Plasmids act as vehicles for the rapid spread of antibiotic resistance genes (ARGs). However, few studies of the resistome at the community level distinguish between ARGs carried by mobile genetic elements and those carried by chromosomes, and these studies have been limited to a few ecosystems. This is the first study to focus on ARGs carried by the metaplasmidome on a global scale. RESULTS This study shows that only a small fraction of the plasmids reconstructed from 27 ecosystems representing 9 biomes are catalogued in public databases. The abundance of ARGs harboured by the metaplasmidome was significantly explained by bacterial richness. Few plasmids with or without ARGs were shared between ecosystems or biomes, suggesting that plasmid distribution on a global scale is mainly driven by ecology rather than geography. The network linking plasmids to their hosts shows that these mobile elements have thus been shared between bacteria across geographically distant environmental niches. However, certain plasmids carrying ARGs involved in human health were identified as being shared between multiple ecosystems and hosted by a wide variety of hosts. Some of these mobile elements, identified as keystone plasmids, were characterised by an enrichment in antibiotic resistance genes (ARGs) and CAS-CRISPR components which may explain their ecological success. The ARGs accounted for 9.2% of the recent horizontal transfers between bacteria and plasmids. CONCLUSIONS By comprehensively analysing the plasmidome content of ecosystems, some key habitats have emerged as particularly important for monitoring the spread of ARGs in relation to human health. Of particular note is the potential for air to act as a vector for long-distance transport of ARGs and accessory genes across ecosystems and continents. Video Abstract.
Collapse
Affiliation(s)
- Didier Debroas
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Santos da Costa B, Peixoto RS, da Conceição Neto OC, da Silva Pontes L, Tavares E Oliveira TR, Tavares Teixeira CB, de Oliveira Santos IC, Silveira MC, Silva Rodrigues DC, Pribul BR, Rocha-de-Souza CM, D 'Alincourt Carvalho-Assef AP. Polymyxin resistance in Enterobacter cloacae complex in Brazil: phenotypic and molecular characterization. Braz J Microbiol 2024; 55:3541-3550. [PMID: 39210190 PMCID: PMC11712032 DOI: 10.1007/s42770-024-01464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Enterobacter cloacae complex isolates have been reported as an important nosocomial multidrug resistance pathogen. In the present study, we investigated antimicrobial susceptibility and the colistin-resistance rates, their genetic determinants and clonality among clinical E. cloacae complex isolates from different Brazilian states. For this, an initial screening was carried out on 94 clinical isolates of E. clocacae complex received between 2016 and 2018 by LAPIH-FIOCRUZ, using EMB plates containing 4 μg/mL of colistin, followed MIC determination, resulting in the selection of 26 colistin-resistant isolates from the complex. The presence of carbapenemases encoding genes (blaKPC, blaNDM and blaOXA-48), plasmidial genes for resistance to polymyxins (mcr1-9) and mutations in chromosomal genes (pmrA, pmrB, phoP and phoQ) described as associated with resistance to polymyxin were screened by PCR and DNA sequencing. Finally, the hsp60 gene was sequenced to identify species of the E. cloacae complex and genetic diversity was evaluated by PFGE and MLST. The results have shown that among 94 E. cloacae complex isolates, 19 (20.2%) were colistin-resistant. The resistant strains exhibited MIC ranging from 4 to 128 µg / mL and E. hormaechei subsp. steigerwaltii was the prevalent species in the complex (31,6%), followed by E. cloacae subsp. cloacae (26,3%). The antimicrobials with the highest susceptibility rate were gentamicin (21%) and tigecycline (26%). Carbapenemases encoding genes (blaKPC n = 5, blaNDM n = 1) were detected in 6 isolates and mcr-9 in one. Among the modifications found in PmrA, PmrB, PhoP e PhoQ (two-component regulatory system), only the S175I substitution in PmrB found in E. cloacae subsp cloacae isolates were considered deleterious (according to the prediction of PROVEAN). By PFGE, 13 profiles were found among E. cloacae complex isolates, with EcD the most frequent. Furthermore, by MLST 10 ST's, and 1 new ST, were identified in E. cloacae. In conclusion, no prevalence of clones or association among carbapenemase production and polymyxin resistance was found between the E. cloacae. Thereby, the results suggest that the increased polymyxin-resistance is related to the selective pressure exerted by the indiscriminate use in hospitals. Lastly, this study highlights the urgent need to elucidate the mechanism involved in the resistance to polymyxin in the E. cloacae complex and the development of measures to control and prevent infections caused by these multiresistant bacteria.
Collapse
Affiliation(s)
- Bianca Santos da Costa
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Renata Stavracakis Peixoto
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Orlando Carlos da Conceição Neto
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Leilane da Silva Pontes
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Thamirys Rachel Tavares E Oliveira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Camila Bastos Tavares Teixeira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Ivson Cassiano de Oliveira Santos
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Melise Chaves Silveira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Daiana Cristina Silva Rodrigues
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Bruno Rocha Pribul
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
- Coleção de Culturas de Bactérias de Origem Hospitalar (CCBH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro,RJ, 436521045900, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
- Coleção de Culturas de Bactérias de Origem Hospitalar (CCBH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro,RJ, 436521045900, Brazil
| | - Ana Paula D 'Alincourt Carvalho-Assef
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil.
| |
Collapse
|
3
|
Stehling EG, Furlan JPR, Lopes R, Chodkowski J, Stopnisek N, Savazzi EA, Shade A. The relationship between water quality and the microbial virulome and resistome in urban streams in Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123849. [PMID: 38522607 DOI: 10.1016/j.envpol.2024.123849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Urban streams that receive untreated domestic and hospital waste can transmit infectious diseases and spread drug residues, including antimicrobials, which can then increase the selection of antimicrobial-resistant bacteria. Here, water samples were collected from three different urban streams in the state of São Paulo, Brazil, to relate their range of Water Quality Indices (WQIs) to the diversity and composition of aquatic microbial taxa, virulence genes (virulome), and antimicrobial resistance determinants (resistome), all assessed using untargeted metagenome sequencing. There was a predominance of phyla Proteobacteria, Actinobacteria, and Bacteroidetes in all samples, and Pseudomonas was the most abundant detected genus. Virulence genes associated with motility, adherence, and secretion systems were highly abundant and mainly associated with Pseudomonas aeruginosa. Furthermore, some opportunistic pathogenic genera had negative correlations with WQI. Many clinically relevant antimicrobial resistance genes (ARGs) and efflux pump-encoding genes that confer resistance to critically important antimicrobials were detected. The highest relative abundances of ARGs were β-lactams and macrolide-lincosamide-streptogramin. No statistically supported relationship was detected between the abundance of virulome/resistome and collection type/WQI. On the other hand, total solids were a weak predictor of gene abundance patterns. These results provide insights into various microbial outcomes given urban stream quality and point to its ecological complexity. In addition, this study suggests potential consequences for human health as mediated by aquatic microbial communities responding to typical urban outputs.
Collapse
Affiliation(s)
- Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| | - João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| | - Ralf Lopes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.
| | - John Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University (MSU) - East Lansing, United States.
| | - Nejc Stopnisek
- Department of Microbiology and Molecular Genetics, Michigan State University (MSU) - East Lansing, United States; National Laboratory of Health, Environment and Food - Maribor, Slovenia.
| | | | - Ashley Shade
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France.
| |
Collapse
|
4
|
Sacramento AG, Fuga B, Fontana H, Cardoso B, Esposito F, Vivas R, Malta JAO, Sellera FP, Lincopan N. Successful expansion of hospital-associated clone of vanA-positive vancomycin-resistant Enterococcus faecalis ST9 to an anthropogenically polluted mangrove in Brazil. MARINE POLLUTION BULLETIN 2024; 198:115844. [PMID: 38056291 DOI: 10.1016/j.marpolbul.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Mangrove ecosystems are hotspots of biodiversity, but have been threatened by anthropogenic activities. Vancomycin-resistant enterococci (VRE) are nosocomial bacteria classified as high priority by the World Health Organization (WHO). Herein, we describe the identification and genomic characteristics of a vancomycin-resistant Enterococcus faecalis strain isolated from a highly impacted mangrove ecosystem of the northeastern Brazilian, in 2021. Genomic analysis confirmed the existence of the transposon Tn1546-vanA and clinically relevant antimicrobial resistance genes, such as streptogramins, tetracycline, phenicols, and fluoroquinolones. Virulome analysis identified several genes associated to adherence, immune modulation, biofilm, and exoenzymes production. The UFSEfl strain was assigned to sequence type (ST9), whereas phylogenomic analysis with publicly available genomes from a worldwide confirmed clonal relatedness with a hospital-associated Brazilian clone. Our findings highlight the successful expansion of hospital-associated VRE in a mangrove area and shed light on the need for strengthening genomic surveillance of WHO priority pathogens in these vital ecosystems.
Collapse
Affiliation(s)
- Andrey G Sacramento
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Roberto Vivas
- Microbiology Laboratory, Sergipe Urgent Care Hospital (HUSE), Aracaju, Brazil
| | - Judson A O Malta
- Postgraduate Program in Development and Environment (PRODEMA), Federal University of Sergipe, São Cristóvão, Brazil
| | - Fábio P Sellera
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil; Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Cahill N, Hooban B, Fitzhenry K, Joyce A, O'Connor L, Miliotis G, McDonagh F, Burke L, Chueiri A, Farrell ML, Bray JE, Delappe N, Brennan W, Prendergast D, Gutierrez M, Burgess C, Cormican M, Morris D. First reported detection of the mobile colistin resistance genes, mcr-8 and mcr-9, in the Irish environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162649. [PMID: 36906027 DOI: 10.1016/j.scitotenv.2023.162649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The emergence and dissemination of mobile colistin resistance (mcr) genes across the globe poses a significant threat to public health, as colistin remains one of the last line treatment options for multi-drug resistant infections. Environmental samples (157 water and 157 wastewater) were collected in Ireland between 2018 and 2020. Samples collected were assessed for the presence of antimicrobial resistant bacteria using Brilliance ESBL, Brilliance CRE, mSuperCARBA and McConkey agar containing a ciprofloxacin disc. All water and integrated constructed wetland influent and effluent samples were filtered and enriched in buffered peptone water prior to culture, while wastewater samples were cultured directly. Isolates collected were identified via MALDI-TOF, were tested for susceptibility to 16 antimicrobials, including colistin, and subsequently underwent whole genome sequencing. Overall, eight mcr positive Enterobacterales (one mcr-8 and seven mcr-9) were recovered from six samples (freshwater (n = 2), healthcare facility wastewater (n = 2), wastewater treatment plant influent (n = 1) and integrated constructed wetland influent (piggery farm waste) (n = 1)). While the mcr-8 positive K. pneumoniae displayed resistance to colistin, all seven mcr-9 harbouring Enterobacterales remained susceptible. All isolates demonstrated multi-drug resistance and through whole genome sequencing analysis, were found to harbour a wide variety of antimicrobial resistance genes i.e., 30 ± 4.1 (10-61), including the carbapenemases, blaOXA-48 (n = 2) and blaNDM-1 (n = 1), which were harboured by three of the isolates. The mcr genes were located on IncHI2, IncFIIK and IncI1-like plasmids. The findings of this study highlight potential sources and reservoirs of mcr genes in the environment and illustrate the need for further research to gain a better understanding of the role the environment plays in the persistence and dissemination of antimicrobial resistance.
Collapse
Affiliation(s)
- Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland.
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Alexandra Chueiri
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - James E Bray
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Niall Delappe
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Wendy Brennan
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Deirdre Prendergast
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland; National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front Cell Infect Microbiol 2023; 12:1065796. [PMID: 36726644 PMCID: PMC9884834 DOI: 10.3389/fcimb.2022.1065796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.
Collapse
Affiliation(s)
| | | | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
7
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
8
|
Sellera FP, Cardoso B, Fuentes-Castillo D, Esposito F, Sano E, Fontana H, Fuga B, Goldberg DW, Seabra LAV, Antonelli M, Sandri S, Kolesnikovas CKM, Lincopan N. Genomic Analysis of a Highly Virulent NDM-1-Producing Escherichia coli ST162 Infecting a Pygmy Sperm Whale ( Kogia breviceps) in South America. Front Microbiol 2022; 13:915375. [PMID: 35755998 PMCID: PMC9231830 DOI: 10.3389/fmicb.2022.915375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Carbapenemase-producing Enterobacterales are rapidly spreading and adapting to different environments beyond hospital settings. During COVID-19 lockdown, a carbapenem-resistant NDM-1-positive Escherichia coli isolate (BA01 strain) was recovered from a pygmy sperm whale (Kogia breviceps), which was found stranded on the southern coast of Brazil. BA01 strain belonged to the global sequence type (ST) 162 and carried the blaNDM–1, besides other medically important antimicrobial resistance genes. Additionally, genes associated with resistance to heavy metals, biocides, and glyphosate were also detected. Halophilic behavior (tolerance to > 10% NaCl) of BA01 strain was confirmed by tolerance tests of NaCl minimal inhibitory concentration, whereas halotolerance associated genes katE and nhaA, which encodes for catalase and Na+/H+ antiporter cytoplasmic membrane, respectively, were in silico confirmed. Phylogenomics clustered BA01 with poultry- and human-associated ST162 lineages circulating in European and Asian countries. Important virulence genes, including the astA (a gene encoding an enterotoxin associated with human and animal infections) were detected, whereas in vivo experiments using the Galleria mellonella infection model confirmed the virulent behavior of the BA01 strain. WHO critical priority carbapenemase-producing pathogens in coastal water are an emerging threat that deserves the urgent need to assess the role of the aquatic environment in its global epidemiology.
Collapse
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | | | - Lourdes A V Seabra
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | | | | | | | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
The Municipal Sewage Discharge May Impact the Dissemination of Antibiotic-Resistant Escherichia coli in an Urban Coastal Beach. WATER 2022. [DOI: 10.3390/w14101639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To determine the potential of the recreational marine environment as a dissemination vector of antibiotic-resistant microorganisms, the dissemination of antibiotic-resistant E. coli strains isolated from an urban coastal beach was studied. Sixty-nine and thirteen E. coli strains were isolated from the seawater and sand, respectively, in Fujiazhuang bathing beach, China. The average Antibacterial Resistance Index (ARI) value detected in the seawater is approximately three times that in beach sand. All the isolates from the sand were grouped into one cluster and only the isolates from the municipal sewage outlet were classified into three antibiogram clusters that were observed in the hetero-sites of the E. coli isolates. The E. coli strains with multiple antibiotic resistance (58% of total) were prevalent in the seawater, whereas the isolates from the sand were not detected with multiple antibiotic resistance. A significant association (p < 0.05) between all phenotypic and relative genotypic resistance profiles was observed in the isolates, except in the quinolones resistance genotype. The presence of a class 1 integron was significantly correlated with the resistance of E. coli to sulfonamides, streptomycin, and levofloxacin (p < 0.01). This study revealed that the municipal sewage discharge may impact the dissemination of antibiotic-resistant strains in the urban coastal beach, and that the class 1 integrons play an important role in mediating the resistance of E. coli to sulfonamide antibiotics.
Collapse
|