1
|
Castro G, Fernández-Fernández V, Cobo-Golpe M, Ramil M, Blázquez-Blázquez E, Cerrada ML, Bernabé I, Martínez Urreaga J, de la Orden MU, Rodriguez I. The fingerprint of pesticides in agricultural used polyethylene. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 200:114767. [PMID: 40158255 DOI: 10.1016/j.wasman.2025.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The widespread use of polyethylene (PE) materials in agriculture through mulch films, tunnels, greenhouse covers, irrigation pipes and tying tapes has been instrumental in increasing crop productivity and reducing water demand. However, it raised concerns regarding the interaction between PE and pesticides sprayed on crops. This research strives to study the fingerprint of pesticides in agricultural PE by analyzing new items, end-of-life agricultural plastics and a range of samples corresponding to the recycling of aged PE, from sized and washed flakes to second-hand pellets and plant protection tubes elaborated from recycled plastic. Total concentrations determined for a selection of fungicides and insecticides in the abovementioned materials varied between 4.7 ng g-1 and 4179 ng g-1, with the fungicides cyprodinil and difenoconazole showing the highest concentrations. Furthermore, transformation products of pesticides phased out more than 40 years ago, e.g., p,p'-DDE, were found in some PE items. The survival of pesticides at temperatures above the melting point of this polymer was confirmed in laboratory-scale melting experiments, as well as through the analysis of second-hand pellets. Experiments carried out using pesticide-polluted dripline pipes confirmed the migration of these compounds from PE to flowing water.
Collapse
Affiliation(s)
- Gabriela Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.
| | - Victoria Fernández-Fernández
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain
| | - Miguel Cobo-Golpe
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain
| | - María Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain
| | | | - María L Cerrada
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - I Bernabé
- Department of Industrial and Environmental Chemical Engineering, E.T.S.I. Industriales, Universidad Politécnica de Madrid, Spain
| | - J Martínez Urreaga
- Department of Industrial and Environmental Chemical Engineering, E.T.S.I. Industriales, Universidad Politécnica de Madrid, Spain; Research Group "Polímeros: Caracterización y Aplicaciones" (U. A. del ICTP-CSIC), E.T.S.I. Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - M U de la Orden
- Department of Organic Chemistry, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Spain; Research Group "Polímeros: Caracterización y Aplicaciones" (U. A. del ICTP-CSIC), E.T.S.I. Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isaac Rodriguez
- Department of Analytical Chemistry, Nutrition and Food Sciences. Aquatic One Health Research Center (ARCUS). Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
García-Pimentel MM, Moltó V, Fernández-Galindo B, Campillo JA, León VM. Sorption and dissipation of current-use pesticides and personal-care products on high-density polyethylene microplastics in seawater. ENVIRONMENTAL RESEARCH 2025; 280:121887. [PMID: 40404087 DOI: 10.1016/j.envres.2025.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Sorption kinetics and the desorption of three current-use pesticides (CUPs: methyl-chlorpyrifos - m-CPF -, pendimethalin and propyzamide) and three personal-care products (PCPs: triclosan - TCS-, tonalide and galaxolide) on high-density polyethylene (HDPE) in seawater were characterised in this study. Sorption kinetic equilibrium and mass balance were determined for all contaminants, evidencing simultaneous dissipation processes (degradation, volatilization, etc.) after 72 h, particularly for propyzamide, pendimethalin, galaxolide and tonalide. However, they were lower than 24 % for TCS and m-CPF, getting the steady-state for all considered analytes in 24 h. The concentration of contaminants sorbed on HDPE increased with the hydrophobicity from 13.9 ng g-1 to 35.1 ng g-1 for m-CPF and TCS, respectively. No clear effect of temperature was observed for m-CPF sorption, and apparently the sorption of TCS was higher at 15 °C than at 25 °C, but it can be affected by the higher dissipation at 25 °C for this compound. This study confirmed the desorption of TCS and m-CPF from HDPE, being higher than 30 % in all cases during the first 24 h, especially for the highest tested concentrations (200 ng L-1). Sorption of TCS and m-CPF were favoured (4-7 times) on HDPE with the highest specific surface (estimated in an increase of 49-fold times).
Collapse
Affiliation(s)
- M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - V Moltó
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - B Fernández-Galindo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
3
|
Svigruha R, Fodor I, Németh Z, Farkas A, Pirger Z, Ács A. Short-term and long-term effects of microplastics and organic UV-filters on the invertebrate model species Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4841-4855. [PMID: 39891809 PMCID: PMC11850500 DOI: 10.1007/s11356-025-36008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
There is an ongoing debate regarding the role of microplastics (MPs) in enhancing the effects of various chemical compounds, highlighting the need for more detailed analyses. In this study, neonates of the water flea (Daphnia magna) were exposed to polystyrene MPs (PS-MPs; 3 µm; exposure concentration, 1.25 mg/L), a mixture of seven organic UV-filters (avobenzone, ethylhexyl triazone, homosalate, iscotrizinol, octinoxate, octisalate, and octocrylene; each at a low environmental concentration of 200 ng/L), or the combination of both pollutants for 3, 7, or 21 days. Results showed that PS-MPs alone decreased the body size of daphnids, while all treatments increased heart rate by the end of the 21-day exposure. On days 3 and 21, both PS-MPs and PS-MPs + UV-filters reduced swimming speed and total distance travelled. Additionally, PS-MPs increased the time of the first egg production, but decreased the egg number in the first production, total egg number, maximum egg number, and total neonate number during the 21-day treatment. Similarly, UV-filters or the combined pollutants increased the time of the first egg production and decreased the total neonate number. All treatments increased multixenobiotic resistance activity on days 3 and 7, while only UV-filters elevated CYP450 activity on day 3. PS-MPs or combined pollutants increased GST activity during early exposure but showed no effect on day 21. CAT activity was also affected by treatments in a time-dependent manner. These findings demonstrate that chronic exposure to PS-MPs and UV-filters, applied individually or in combination at a low environmental concentration, moderately impacts development, heart rate, and swimming activity in D. magna, while significantly altering reproduction and key cellular functions such as membrane transport activity, metabolism, and antioxidant defense. Co-exposure did not reveal a clear pattern of synergism or antagonism, suggesting that joint toxicity risks of these xenobiotics typically emerge at concentrations higher than low environmental levels. Future studies should explore potential interactions more thoroughly and assess transgenerational effects on reproduction and cellular defense pathways.
Collapse
Affiliation(s)
- Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary.
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary.
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zoltán Németh
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| |
Collapse
|
4
|
Maja V, Sanja V, Tajana S, Branko K, Jelena MJ, Jasmina A, Aleksandra T. Assessing the interaction between 4-methylbenzylidene camphor and microplastic fibers in aquatic environments: Adsorption kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177383. [PMID: 39505040 DOI: 10.1016/j.scitotenv.2024.177383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Wastewater treatment plants play a crucial role in managing environmental pollutants, but they often release persistent contaminants like synthetic microplastic fibers (MPFs) into ecosystems. These microplastics, mainly from the textile industry and domestic washing of synthetic fabrics, are a major type of microplastic found in aquatic environments. Some harmful chemicals have an affinity for these microplastics, making them vectors for contaminants. This study investigates the adsorption of 4-methylbenzylidene camphor (4-MBC), an organic UV filter, onto microplastic fibers from two different sources. Batch experiments conducted at room temperature (25 °C) under laboratory conditions assessed the adsorption kinetics and mechanisms. Morphological and visual characterization of the microplastic fibers was done using optical microscopy and scanning electron microscopy (SEM), revealing diverse shapes, types, and colors. Physico-chemical properties were confirmed through thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). The data matched well with the PSO kinetic model and Langmuir isotherm, indicating monolayer chemisorption with equilibrium achieved within 24 h. The adsorption mechanisms involved electrostatic attraction, hydrogen bonding, and π-π interactions. Both types of microplastic fibers exhibited a tendency to adsorb 4-MBC, indicating the significance of this research in understanding the interactions between this compound and various fiber types emphasizing the need for further research under the different environmental conditions.
Collapse
Affiliation(s)
- Vujić Maja
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia.
| | - Vasiljević Sanja
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Simetić Tajana
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Kordić Branko
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Molnar Jazić Jelena
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Agbaba Jasmina
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Tubić Aleksandra
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| |
Collapse
|
5
|
Pei J, Zhang Y, Zhang R, Liu N, Yu W, Wei P, Wang Y, Yu K. Dynamic impact of different human activities on the distribution of organic ultraviolet absorbers in coastal aquatic environments: A case study in Beibu Gulf, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177309. [PMID: 39481554 DOI: 10.1016/j.scitotenv.2024.177309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The increasing environmental concern surrounding organic ultraviolet absorbers (OUVAs) has prompted heightened attention, particularly their presence in personal care products (organic ultraviolet filters, OUVFs) and industrial products (organic ultraviolet stabilizers, OUVSs). This study investigates the impact of human activities and environmental factors on the occurrence, spatiotemporal distribution, and ecological risk of eight commonly utilized OUVFs and OUVSs in the coastal region of Beibu Gulf, South China Sea. The study area is characterized by multiple functional zones with distinct human activities. Results reveal elevated concentrations of OUVAs during summer compared to winter, attributed to increased residential usage, tourist activities, industrial releases, and intensified ultraviolet (UV) radiation. Interestingly, the proportion of OUVFs increases during summer, while OUVSs decrease. Correlation analysis between OUVAs and sampling sites reveals that tourism and domestic wastewater are the main contributors to OUVF contamination in summer, whereas mariculture and port trade significantly impact OUVS contamination in winter. The ecological risk assessment indicates predominantly low or medium risk levels for most OUVAs in both local seawater and freshwater ecosystems. Nevertheless, OUVFs, with a particular focus on 4-methylbenzylidene camphor (4-MBC), and OUVSs, specifically 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P), exhibit a heightened risk compared to alternative substances. These findings provide crucial insights into the development of targeted mitigation strategies for OUVAs, taking into account the varying contamination levels of OUVFs and OUVSs resulting from diverse human activities, aiming to protect the health of aquatic ecosystems in diverse functional zones.
Collapse
Affiliation(s)
- Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yingyuan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Nai Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenfeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pan Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Bridson JH, Masterton H, Knight B, Paris CF, Abbel R, Northcott GL, Gaw S. Quantification of additives in beached plastic debris from Aotearoa New Zealand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175251. [PMID: 39098406 DOI: 10.1016/j.scitotenv.2024.175251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Plastics have become an essential part of modern society. Their properties can be easily manipulated by incorporating additives to impart desirable attributes, such as colour, flexibility, or stability. However, many additives are classified as hazardous substances. To better understand the risk of plastic pollution within marine ecosystems, the type and concentration of additives in plastic debris needs to be established. We report the quantification of thirty-one common plastic additives (including plasticisers, antioxidants, and UV stabilisers) in beached plastic debris collected across Aotearoa New Zealand. Additives were isolated from the plastic debris by solvent extraction and quantified using high-resolution liquid chromatography-mass spectrometry. Twenty-five of the target additives were detected across 200 items of debris, with plasticisers detected at the highest frequency (99 % detection frequency). Additives were detected in all samples, with a median of four additives per debris item. A significantly higher number of additives were detected per debris item for polyvinyl chloride (median = 7) than polyethylene or polypropylene (median = 4). The additives bis(2-ethylhexyl) phthalate, diisononyl phthalate, diisodecyl phthalate, and antioxidant 702 were detected at the highest concentrations (up to 196,930 μg/g). The sum concentration of additives per debris item (up to 320,325 μg/g) was significantly higher in polyvinyl chloride plastics (median 94,716 μg/g) compared to other plastic types, primarily due to the presence of phthalate plasticisers. Non-target analysis was consistent with the targeted analysis, indicating a higher number and concentration of additives in polyvinyl chloride debris items compared to all other polymer types. Feature identification indicated the presence of more additives than previously detected in the targeted analysis, including plasticisers (phthalate and non-phthalate), processing aids, and nucleating agents. This study highlights phthalates and polyvinyl chloride as key targets for consideration in ecotoxicology and risk assessments, and the development of policies to reduce the impacts of plastic pollution.
Collapse
Affiliation(s)
- James H Bridson
- Scion, Titokorangi Drive, Rotorua 3046, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Ben Knight
- Sustainable Coastlines, Wynyard Quarter, Auckland 1010, New Zealand
| | | | - Robert Abbel
- Scion, Titokorangi Drive, Rotorua 3046, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
7
|
Xian H, Li Z, Bai R, Ye R, Feng Y, Zhong Y, Liang B, Huang Y, Guo J, Wang B, Dai M, Tang S, Ren X, Chen X, Chen D, Yang X, Huang Z. From cradle to grave: Deciphering sex-specific disruptions of the nervous and reproductive systems through interactions of 4-methylbenzylidene camphor and nanoplastics in adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134298. [PMID: 38626679 DOI: 10.1016/j.jhazmat.2024.134298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 μg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.
Collapse
Affiliation(s)
- Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Shuqin Tang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Shatin 999077, Hong Kong, SAR China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Pantoja JCD, de Oliveira AEP, Ferreira MAP, da Costa LP, Nunes ZMP, da Rocha RM. First register of microplastic contamination in oysters (Crassostrea gasar) farmed in Amazonian estuaries. MARINE POLLUTION BULLETIN 2024; 201:116182. [PMID: 38382321 DOI: 10.1016/j.marpolbul.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
The present study investigated the contamination of oysters farmed in Amazonian estuaries by microplastics (MPs). A total of 120 adult oysters (Crassostrea gasar) were collected from four sites along the Mangrove Coast of Pará/Brazil: S1, S2, S3 and S4, with 30 oyster for each. Overall, 58.33 % of the oyster samples contained microplastics, with mean concentrations of 0.23 MPs/g and 1.9 MPs/ind. The concentration of microplastics varied among the four sites, where S1 and S3 had the highest values while S4 had the lowest. PA fibers were the majority of particles (91 %), followed by PS fragments (9 %). The hepatopancreas and the gonad concentrated more microplastics than the rest of the body. As an important species for aquaculture in Amazon, we recommend additional regulation to reduce human exposure to microplastics, such as the installation of depuration facilities and constant monitoring of the contamination of oysters from farms in the region.
Collapse
Affiliation(s)
- Juliana Caroline Dias Pantoja
- Laboratory of Cellular Ultrastructure, Institute of Biological Sciences, Sala 328, Federal University of Pará, Av. Augusto Corrêa n°. 01, Guamá, Belem, Pará 66075-900, Brazil.
| | - Antonio Elivelton Paiva de Oliveira
- Laboratory of Developmental Biology and Immunohistochemistry, Institute of Biological Sciences, Sala 330, Federal University of Pará, Av. Augusto Corrêa n°. 01, Guamá, Belém, Pará 66075-900, Brazil
| | - Maria Auxiliadora Pantoja Ferreira
- Laboratory of Developmental Biology and Immunohistochemistry, Institute of Biological Sciences, Sala 330, Federal University of Pará, Av. Augusto Corrêa n°. 01, Guamá, Belém, Pará 66075-900, Brazil
| | - Luiz Pereira da Costa
- Laboratório de Pré-Embalados e Metrologia Científica - COPREM/INMETRO, Universidade Federal do Sergipe - UFS, Brazil
| | - Zélia Maria Pimentel Nunes
- Institute for Coastal Studies, Federal University of Pará, Alameda Leandro Ribeiro - Aldeia, Bragança, PA 68600-000, Brazil
| | - Rossineide Martins da Rocha
- Laboratory of Cellular Ultrastructure, Institute of Biological Sciences, Sala 328, Federal University of Pará, Av. Augusto Corrêa n°. 01, Guamá, Belem, Pará 66075-900, Brazil
| |
Collapse
|
9
|
Couteau C, Philippe A, Galharret JM, Metay E, Coiffard L. UV filters in everyday cosmetic products, a comparative study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2976-2986. [PMID: 38079041 DOI: 10.1007/s11356-023-31330-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Today, UV filters are found as contaminants in a variety of biological fluids and environment, e.g. in vegetable crops and surface water. This is because UV filters are widely used in everyday products. In this context, we focused this study on cosmetic products, in order to assess the importance of this source of contamination. The study of 742 cosmetic products, excluding actual sunscreen products, but including hygiene, personal care and make-up products and perfumes revealed that the most common UV filters present are butyl methoxydibenzoylmethane (90 products or 12.1% of products tested), octyl methoxycinnamate (75 products or 10.1% of products tested), octocrylene (62 products or 8.3% of products tested), octyl salicylate (43 products or 5.8% of products tested) and titanium dioxide (33 products or 4.4% of products tested). Very few UV filters are found in the hygiene products (only in 12 shampoos/conditioners and in 2 shower gels) and deodorants and toothpastes are completely free of them. Conversely, make-up and perfumes are frequently formulated with at least one UV filter. Seventy-five of the two hundred and forty-four (or 30.7%) skincare products studied contained at least one UV filter. 49.1 of the makeup products studied and 74.3% of perfumes contained it.
Collapse
Affiliation(s)
- Céline Couteau
- Faculté de Pharmacie, Université de Nantes, 9 rue Bias, 44000, Nantes, France
| | - Anne Philippe
- Université de Nantes - Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 cedex 3, Nantes, France
| | - Jean-Michel Galharret
- Université de Nantes - Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 cedex 3, Nantes, France
| | - Emilie Metay
- Faculté de Pharmacie, Université de Nantes, 9 rue Bias, 44000, Nantes, France
| | - Laurence Coiffard
- Faculté de Pharmacie, Université de Nantes, 9 rue Bias, 44000, Nantes, France.
| |
Collapse
|
10
|
Doust SN, Haghshenas SA, Bishop EE, Risk MJ, Downs CA. Fine-scale geographic risk assessment of oxybenzone sunscreen pollution within Hanauma Bay using hydrodynamic characterization and modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167614. [PMID: 37804976 DOI: 10.1016/j.scitotenv.2023.167614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Hanauma Bay's coral reef system is threatened by sunscreen pollution. Understanding the hydrodynamic nature of the bay is crucial for understanding the transport and fate of pollutants within the bay. This study conducted a comprehensive hydrodynamic analysis, revealing significant aspects of current patterns and their influence on sunscreen pollutant behavior. The analysis demonstrated the formation of flows that drive currents parallel to the shoreline, resulting in increased pollutant retention time over sensitive reef areas. Direct flushing currents were identified as playing a role in reducing pollution buildup. Particle dynamics analysis highlighted the importance of considering temporal dynamics and their implications for pollutant pathways, particularly through the swash zone during high tide phases. The study identified primary current patterns near the reef area and emphasized the circular behavior within the water body, affecting corals' susceptibility to bleaching in the southwestern part of Hanauma bay. To understand where oxybenzone concentrations were a threat to wildlife, we created a geographic model that integrated ecological risk assessment with hydrodynamic behavior in a given system, which we designate the Risk Quotient Plume - the geographic area where the concentration is above the threat level for a chemical. The study found high oxybenzone concentrations throughout the bay, threatening coral, fish, and algae populations. Oxybenzone's distribution indicated a serious threat to the entire back reef habitat and a hinderance to coral restoration efforts. The study also emphasizes the need to consider the hydrodynamic behavior of pollutants and their interaction with microplastics in the bay. Overall, the findings provide insights into hydrodynamics and pollutant dispersion in Hanauma Bay, supporting effective pollution management and conservation strategies.
Collapse
Affiliation(s)
- Shadan Nasseri Doust
- Institute of Geophysics, University of Tehran, North Kargar Ave., Tehran 1439951113, Islamic Republic of Iran
| | - S Abbas Haghshenas
- Institute of Geophysics, University of Tehran, North Kargar Ave., Tehran 1439951113, Islamic Republic of Iran.
| | - Elizabeth E Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI 96825-07610, United States of America
| | - Michael J Risk
- School of Geography and Geology, McMaster University, N0G 1R0, Canada
| | - C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, United States of America.
| |
Collapse
|
11
|
Jessieleena A, Rathinavelu S, Velmaiel KE, John AA, Nambi IM. Residential houses - a major point source of microplastic pollution: insights on the various sources, their transport, transformation, and toxicity behaviour. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67919-67940. [PMID: 37131007 PMCID: PMC10154189 DOI: 10.1007/s11356-023-26918-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Municipal wastewater has been considered as one of the largest contributors and carriers of microplastics to the aquatic environment. However, the various residential activities that generate municipal wastewater are equally significant whenever the source of microplastics in aquatic system is accounted. However, so far, only municipal wastewater has received wide attention in previous review articles. Hence, this review article is written to address this gap by highlighting, firstly, the chances of microplastics arising from the usage of personal care products (PCPs), laundry washing, face masks, and other potential sources. Thereafter, the various factors influencing the generation and intensity of indoor microplastic pollution and the evidence available on the possibility of microplastic inhalation by humans and pet animals are explained. Followed by that, the removal efficiency of microplastics observed in wastewater treatment plants, the fate of microplastics present in the effluent and biosolids, and their impact on aquatic and soil environment are explored. Furthermore, the impact of aging on the characteristics of microsized plastics has been explored. Finally, the influence of age and size of microplastics on the toxicity effects and the factors impacting the retention and accumulation of microplastics in aquatic species are reviewed. Furthermore, the prominent pathway of microplastics into the human body and the studies available on the toxicity effects observed in human cells upon exposure to microplastics of different characteristics are explored.
Collapse
Affiliation(s)
- Angel Jessieleena
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Sasikaladevi Rathinavelu
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Kiruthika Eswari Velmaiel
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Anju Anna John
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India
| | - Indumathi M Nambi
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu 600 036, Chennai, India.
| |
Collapse
|
12
|
Fischer C, Göen T. Development and Validation of a DLLME-GC-MS-MS Method for the Determination of Benzotriazole UV Stabilizer UV-327 and Its Metabolites in Human Blood. J Anal Toxicol 2023; 47:136-146. [PMID: 35861396 DOI: 10.1093/jat/bkac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
2-(5-Chloro-benzotriazol-2-yl)-4,6-di-(tert-butyl)phenol (UV-327) is used as an ultraviolet (UV) absorber in plastic materials and coatings. To investigate its metabolism and to assess human exposure, analytical methods are necessary for the determination of UV-327 and its metabolites in human biological specimens. The method thus presented targets the determination of UV-327 and several of its predicted metabolites in blood using protein precipitation, dispersive liquid-liquid microextraction (DLLME) and derivatization. The trimethylsilylated analytes and internal standards are separated by gas chromatography and analyzed with tandem mass spectrometry. The DLLME procedure was optimized with respect to the type and volume of disperser and extraction solvents, the pH value of the sample solution and the addition of salt. During method development, an effective ex vivo lactone/hydroxyl carboxylic acid interconversion was observed for two metabolites, each containing a carboxyl group adjacent to the phenolic hydroxyl group. The analytes resulting from interconversion enabled a more sensitive and reliable determination of the metabolites compared to their native structures. Method validation revealed limits of detection between 0.02 and 0.36 µg/L. The mean relative recovery rates ranged from 91% to 118%. Precision and repeatability were demonstrated by relative standard deviations in the range of 0.6-14.2% and 1.1-13.7%, respectively. The presently described procedure enables the sensitive and robust analysis of UV-327 and its metabolites in human blood and allows the elucidation of the human UV-327 metabolism as well as the assessment of exposure in potentially exposed individuals.
Collapse
Affiliation(s)
- Corinna Fischer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany
| |
Collapse
|
13
|
Zhao H, Federigi I, Verani M, Carducci A. Organic Pollutants Associated with Plastic Debris in Marine Environment: A Systematic Review of Analytical Methods, Occurrence, and Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4892. [PMID: 36981806 PMCID: PMC10048819 DOI: 10.3390/ijerph20064892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Plastic pollution has become one of the most serious environmental problems, and microplastics (MPs, particles < 5 mm size) may behave as a vehicle of organic pollutants, causing detrimental effects to the environment. Studies on MP-sorbed organic pollutants lack methodological standardization, resulting in a low comparability and replicability. In this work, we reviewed 40 field studies of MP-sorbed organic contaminants using PRISMA guidelines for acquiring information on sampling and analytical protocols. The papers were also scored for their reliability on the basis of 7 criteria, from 0 (minimum) to 21 (maximum). Our results showed a great heterogeneity of the methods used for the sample collection, MPs extraction, and instruments for chemicals' identification. Measures for cross-contamination control during MPs analysis were strictly applied only in 13% of the studies, indicating a need for quality control in MPs-related research. The most frequently detected MP-sorbed chemicals were polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs). Most of the studies showed a good reliability (>75% of the total score), with 32 papers scoring 16 or higher. On the basis of the collected information, a standardizable protocol for the detection of MPs and MP-sorbed chemicals has been suggested for improving the reliability of MPs monitoring studies.
Collapse
|
14
|
Kim H, Kim D, An YJ. Microplastics enhance the toxicity and phototoxicity of UV filter avobenzone on Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130627. [PMID: 37056007 DOI: 10.1016/j.jhazmat.2022.130627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/19/2023]
Abstract
Microplastics (MPs) and ultraviolet (UV) filters cause pollution in aquatic ecosystems. Moreover, regulations on the use and discharge of UV filters in personal care products are lacking. Therefore, the combined toxicity of MPs (virgin polystyrene (PS) spheres; size: 200 nm) and avobenzone (AVO; a UV filter) on Daphnia magna were assessed. The exposure groups were AVO, AVO + UV irradiation for 6 h [AVO (UV)], AVO with MPs (Mix), and AVO with MPs + UV irradiation for 6 h [Mix (UV)]. The daphnids were exposed to these treatments for 48 h and observed for an additional 6 h. Energy reserves of all treated groups increased compared to that of the control group. Growth in the Mix group was inhibited despite a high food uptake, and food uptake and growth inhibition were validated in the Mix (UV) group. Additionally, the food uptake of the AVO (UV) and Mix (UV) groups decreased during the recovery period, possibly owing to a decrease in the normal feeding ability resulting from an increase in abnormality. These results indicate that the combined toxicity of MPs+AVO can be exacerbated under natural conditions; the complex toxicity should be considered when assessing aquatic environment pollution.
Collapse
Affiliation(s)
- Haemi Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
15
|
Fischer C, Leibold E, Hiller J, Göen T. Human metabolism and excretion kinetics of benzotriazole UV stabilizer UV-327 after single oral administration. Arch Toxicol 2023; 97:165-176. [PMID: 36335248 PMCID: PMC9816242 DOI: 10.1007/s00204-022-03401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
UV-327 (2-(5-chloro-benzotriazol-2-yl)-4,6-di-(tert-butyl)phenol) is used as an ultraviolet (UV) absorber in plastic products and coatings. Due to its ubiquitous distribution in the environment, human exposure is conceivable. In the study presented herein, initial information on the human in vivo metabolism of UV-327 was obtained by single oral administration to three volunteers. Urine and blood samples were collected up to 72 h after exposure. One study participant additionally donated plasma samples. Maximum blood and plasma levels of UV-327 and its two monohydroxylated metabolites UV-327-6-mOH and UV-327-4-mOH were reached 6 h post-exposure. Almost the entire amount found in blood and plasma samples was identified as UV-327, whereas the two metabolites each accounted for only 0.04% of the total amount, indicating that UV-327 is well-absorbed from the intestine, but only partially metabolized. Plasma to blood ratios of UV-327, UV-327-6-mOH, and UV-327-4-mOH ranged from 1.5 to 1.6. Maximum urinary excretion rates of UV-327, UV-327-6-mOH, UV-327-4-mOH, and UV-327-4 + 6-diOH were reached 9-14 h post-exposure. However, only about 0.03% of the orally administered dose of UV-327 was recovered as UV-327 and its metabolites in urine, indicating that biliary excretion may be the major route of elimination of UV-327 and its hydroxylated metabolites. The present study complements the insight in the complex absorption, distribution, metabolism, and elimination (ADME) processes of benzotriazole UV stabilizers (BUVSs).
Collapse
Affiliation(s)
- Corinna Fischer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Edgar Leibold
- BASF SE, Product Safety, Carl-Bosch‑Straße 38, 67056, Ludwigshafen Am Rhein, Germany
| | - Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
16
|
Kook H, Cha M, Park C. Transport of emerging organic ultraviolet (UV) filters in ceramic membranes: Role of polyethylene (PE) microplastics. CHEMOSPHERE 2022; 309:136570. [PMID: 36155025 DOI: 10.1016/j.chemosphere.2022.136570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastics can be considered potential carriers of emerging organic ultraviolet (UV) filters due to their considerable adsorption capacity in wastewater treatment. The adsorption behavior of organic UV filters, which are commonly contained in personal care products to preserve the skin against UV radiation, onto polyethylene (PE) microplastics were systematically studied to investigate their combined effects. Kinetics and isotherm analyses revealed that the adsorption of four organic UV filters onto PE microplastic surfaces followed a multi-rate and a heterogeneous multi-layer pattern. Several factors including salinity, microplastic size, and dosage also influenced the adsorption efficiency due to hydrophobic interactions. A bench-scale cross-flow ceramic membrane filtration experiment was investigated to evaluate the role of PE microplastics on the retention performance of organic UV filters. The retentions for organic UV filters were 34.2%-37.8% in the non-existence of PE microplastics. Conversely, organic UV filter retentions were significantly increased up to 82.2%-97.9% when they were adsorbed onto the PE microplastics, which were almost completely retained by the ceramic membrane. Therefore, organic UV filters can likely migrate and eventually be carried by PE microplastics, thus increasing the retention of both emerging organic UV filters and microplastics prior to discharge from wastewater treatment facilities.
Collapse
Affiliation(s)
- Heejin Kook
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Minju Cha
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
17
|
Couselo-Rodríguez C, González-Esteban P, Diéguez Montes M, Flórez Á. Impacto de los filtros ultravioleta en el entorno natural. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:792-803. [DOI: 10.1016/j.ad.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/24/2022] Open
|
18
|
Couselo-Rodríguez C, González-Esteban PC, Diéguez Montes MP, Flórez Á. [Translated article] Environmental Impact of UV Filters. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:T792-T803. [PMID: 35817152 DOI: 10.1016/j.ad.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/27/2022] [Indexed: 11/24/2022] Open
Abstract
UV filters are used daily by millions of people. Not all of these filters, however, are 100% biodegradable, and many wastewater treatments plants are ill-equipped to filter them properly. As a result, UV filters are increasingly reaching the environment. Various types have been detected in soil, continental water, oceans, and numerous organisms, including algae, corals, fish, mammals, and even land birds. In addition, some filters, benzophenone-3 and octocrylene in particular, are toxic to these organisms. Toxic effects include coral bleaching and interference with metabolic, enzymatic, and reproductive activities in practically all organisms. Preliminary data suggest that UV filters may be bioaccumulating in humans, as they have been detected in urine and breast milk. It should be noted, however, that research into the environmental impact of UV filters holds challenges and limitations.
Collapse
Affiliation(s)
- C Couselo-Rodríguez
- Servicio de Dermatología, Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain; Grupo de Investigación DIPO, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| | | | - M P Diéguez Montes
- Escuela de Enfermería de Pontevedra, Universidad de Vigo, Pontevedra, Spain
| | - Á Flórez
- Servicio de Dermatología, Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain; Grupo de Investigación DIPO, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
19
|
Abstract
Microplastic debris is a persistent, ubiquitous global pollutant in oceans, estuaries, and freshwater systems. Some of the highest reported concentrations of microplastics, globally, are in the Gulf of Mexico (GoM), which is home to the majority of plastic manufacturers in the United States. A comprehensive understanding of the risk microplastics pose to wildlife is critical to the development of scientifically sound mitigation and policy initiatives. In this review, we synthesize existing knowledge of microplastic debris in the Gulf of Mexico and its effects on birds and make recommendations for further research. The current state of knowledge suggests that microplastics are widespread in the marine environment, come from known sources, and have the potential to be a major ecotoxicological concern for wild birds, especially in areas of high concentration such as the GoM. However, data for GoM birds are currently lacking regarding typical microplastic ingestion rates uptake of chemicals associated with plastics by avian tissues; and physiological, behavioral, and fitness consequences of microplastic ingestion. Filling these knowledge gaps is essential to understand the hazard microplastics pose to wild birds, and to the creation of effective policy actions and widespread mitigation measures to curb this emerging threat to wildlife.
Collapse
|