1
|
Kalangutkar N, Mhapsekar S, M M A, Pednekar P. Microplastic pollution in the surface waters of the zuari river, goa, india. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1007. [PMID: 39358618 DOI: 10.1007/s10661-024-13181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Limited research has been conducted on microplastic (MP) contamination in the rivers of Goa. To address this gap, this study examines the levels of MP contamination in the surface water of the Zuari River, Goa. We investigate the abundance, characteristics (size, shape, colour, and polymer composition), and risk assessment of MPs. MPs were detected at all sampling stations in the Zuari River, with concentrations varying from 0.01 particles/L (S3) to 1.38 particles/L (S13). The average abundance of MPs in the water samples was 0.28 ± 0.35 particles/L. MPs were more common in the 0.3-1 mm size range (51.70%) than in the 1-5 mm range (48.30%). The most common MP shapes observed were fibers (37.88%) and fragments (29.66%). FTIR analysis confirmed the presence of polyethylene terephthalate, high-density polyethylene, polypropylene, and polyacrylamide carboxyl-modified MPs. The Pollution Load Index (PLI) showed an average value of 3.8, indicating significant contamination (PLI > 1). Scanning electron microscopy (SEM) revealed various degradation features such as pits, scratches, grooves, and cracks on the MPs surfaces, while energy dispersive X-ray spectroscopy (EDS) detected metals on the MP's surfaces. This study provides key insights into MP pollution in the Zuari River's surface water and lays the groundwork for future research and management strategies in the region.
Collapse
Affiliation(s)
- Niyati Kalangutkar
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Taleigao, 403206, Goa, India.
| | - Shritesh Mhapsekar
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Taleigao, 403206, Goa, India
- Department of Geology, Government College of Arts, Science and Commerce, Sanquelim, 403505, Goa, India
| | - Abhaykrishna M M
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Taleigao, 403206, Goa, India
| | - Pradnesh Pednekar
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Taleigao, 403206, Goa, India
| |
Collapse
|
2
|
Cui T, Liu K, Zhu L, Wang X, Dong X, Jabeen K, Zong C, Wang X, Wei N, He Y, Li Q, Jiao M, Lu J, Bu X, Li D. Is intravenous infusion an unrecognized route for internal microplastic human exposure? A general assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135769. [PMID: 39288522 DOI: 10.1016/j.jhazmat.2024.135769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
As newly recognized environmental pollutants, microplastics (MPs, ≤5 mm in length) have been reported in various human tissues and fluids, including the spleen, liver, heart, blood and blood clots, raising global concerns about their impact on human health. This study investigated the characteristics of MPs in intravenous infusion and the removal of MPs from infusion products by infusion sets fitted with different filters using micro-Fourier Transform Infrared Spectroscopy. MPs were detected in infusion products, with an average abundance of 1.24 ± 1.44 items/unit (2.91 ± 3.91 items/L). The primary types of MPs identified were fragmented particles of polyethene and polypropylene, ranging in size from 15-100 µm. Internal filters in infusion sets played a crucial role in removing MPs, particularly fibrous ones, resulting in a reduction in both abundance and particle size of MPs in the human body. Moreover, this study conducted a general assessment of intravenous microplastic exposure among hospital patients and estimated the global per-person input of MPs via intravenous administration. It is an opportunity for us to gain a deeper understanding of MPs in intravenous infusion and provides guides selecting infusion devices, increasing awareness of associated health risks.
Collapse
Affiliation(s)
- Tiefeng Cui
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xuri Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Changxing Zong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xinghuo Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Nian Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Yinan He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Qingqing Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Meng Jiao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Jungang Lu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xinyu Bu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China.
| |
Collapse
|
3
|
Maharjan KK, Dhungel RP. First-ever study uncovers microplastic contamination in Nepalese table salt. Heliyon 2024; 10:e34621. [PMID: 39082014 PMCID: PMC11284381 DOI: 10.1016/j.heliyon.2024.e34621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Despite numerous studies on microplastic contamination in table salt worldwide, research focusing on Nepalese table salts is remarkably lacking. This study aims to address this gap by investigating microplastic contamination in salt samples collected from all seven provincial zones of Nepal. Our objective is to comprehensively assess the presence and characteristics of microplastics in salt sold within local markets across the country. Five salt packaging companies utilized by Nepalese consumers were identified. The collected salt samples were digested with Fenton's reagent to extract microplastics, which were then observed under a digital microscope. Using an OMAX stereomicroscope at 30× magnification and an OMAX A3503S digital camera, each microplastic was carefully identified and quantified. FTIR analysis was conducted to identify the polymer types. All tested salt samples (100 %) from both Nepalese and Indian packaging companies contained microplastics. Microplastic abundance exhibits variability among the samples, ranging from 80 to 1040 microplastics per kilogram of salt. The average value stands at 381 ± 219 microplastics per kilogram of salt sample. The distribution of microplastic concentrations within the salt samples reveals that the majority fall within the 301-400 microplastics per kilogram salt range, constituting 33 % of the total samples. Color analysis showed diverse contamination sources, while microplastic shapes included fibers (56 %), films (17 %), fragments (16 %) and pellets (11 %). Polymer type analysis confirmed the presence of polyethylene and polypropylene in tested microplastics. The study estimated that Nepalese individuals ingest an average of 1853 microplastics annually, indicating significant exposure from salt consumption. Surprisingly, factors such as storage conditions, date of salt packaging and thickness of packaging material did not significantly affect microplastic presence in the samples, suspecting manufacturing processes as the primary contributors to contamination. Therefore, the raw materials and purification practices for salt need improvement, as existing methods are insufficient to eliminate microplastics. These findings emphasize the need for further research and mitigation efforts to address microplastic contamination in Nepalese salt and its potential health impacts.
Collapse
Affiliation(s)
- Kishor Kumar Maharjan
- Department of Environmental Science, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
- Faculty of Environmental Management, Prince of Songkla University, Thailand
| | - Ram Prasad Dhungel
- NEA Engineering Company (NES) Limited, Trade Tower building, Kathmandu, Nepal
| |
Collapse
|
4
|
Sahu N, Bhowmik M, Lakra RK, Haldar S. Tracing microplastic pollution in Mahi River estuary, Gulf of Khambhat, Gujarat, and their influence on functional traits of macrobenthos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47882-47898. [PMID: 39012532 DOI: 10.1007/s11356-024-34342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
Most maritime habitats contain microplastic (MPs) contamination. The quality of the benthic ecosystem's habitat is declining as MPs accumulate in marine system. The contamination of MPs must therefore be investigated. We studied MPs pollution in the Mahi River, estuary, and macrobenthos. In the present study, the abundance of MPs fragments gradually decreased from the high tide zone to the low tide zone and muddy sediment has high MPs concentrations due to sediment characteristics and particle size. The majority of sediment and biota MPs were fibrous and black. MPs in both silt and biota have identical chemical compositions (modified cellulose), shapes, and colors. A significant source of pollutants and MPs fluxing into the ocean is well within the river system. Perinereis aibuhitensis ingested the most MPs out of 11 species, whereas Amphipods did not show any presence of MPs. Our findings showed that functional characteristics are essential for macrobenthos MPs intake. MPs in macrobenthos are high due to biological functions such as feeding, ecological groups, feeding mechanisms, body size, and bioturbation. MPs in marine sediment and organisms are tracked down to the Mahi River exceeding 50 km. The present work has investigated the idea that the macrobenthos that live in the sediment are ingesting the MPs that are building up there and this ingestion relies on the macrobenthos' functional characteristics.
Collapse
Affiliation(s)
- Nosad Sahu
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
- Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi, 682508, India
| | - Moumita Bhowmik
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Raj Kiran Lakra
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Gao H, Wang H, Wang Y, Lin Y, Yan J, Shen H. Identification and quantification of microplastics in salts by complementary approaches using pyrolysis-gas chromatography/quadrupole-time of flight mass spectrometry (Py-GC/QTOFMS) and laser direct infrared (LDIR) chemical imaging analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123820. [PMID: 38527583 DOI: 10.1016/j.envpol.2024.123820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have been suspected as contaminants in various foodstuffs, including salts, all over the world. Regarding the different sizes and polymer types, the mass concentrations of actual plastic particles in salt are not very clear. The purpose of this study is to develop a scalable method for qualitative and quantitative analysis of MPs and NPs by using Pyrolysis Gas Chromatography Quadrupole-Time of Flight mass spectrometry (Py-GC/QTOFMS) to detect their mass concentrations in salt samples. The targeted and suspected lists of polymers in salts were compiled based on the combined results of the high-resolution mass spectrometry (HRMS) full scanning with auxiliary MS dataset and the laser direct infrared (LDIR) chemical imaging analysis. The seven targeted MPs with polymer standards, i.e., polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polycarbonate (PC), were first subjected to a full MS scanning mode of the Py-GC/QTOFMS analysis. Subsequently, the parental masses of their pyrolysis compounds were used as the seeds to generate the related daughter masses. This process established both retention time and mass-pairs matching for the target MS/MS mode for enabling the identification and quantification of the particles. The suspected MPs with a matching degree >0.65 in the LDIR list were explored either by the full scan MS. Only PVC was identified, and PET was suspected. The Py-GC/QTOFMS result is complementary and comparable to the LDIR detection with the matching degree >0.85. We identified that PVC and PET (suspected) can be measured in both commercial and bulk sea salts, and their concentrations in sea salts are much higher than in rock salts, implying heavy contamination of the seawater.
Collapse
Affiliation(s)
- Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, China
| | - Yuchao Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianbo Yan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, 316021, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China; Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
6
|
Jeong J, Im J, Choi J. Integrating aggregate exposure pathway and adverse outcome pathway for micro/nanoplastics: A review on exposure, toxicokinetics, and toxicity studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116022. [PMID: 38309230 DOI: 10.1016/j.ecoenv.2024.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Micro/nanoplastics (MNPs) have emerged as a significant environmental concern due to their widespread distribution and potential adverse effects on human health and the environment. In this study, to integrate exposure and toxicity pathways of MNPs, a comprehensive review of the occurrence, toxicokinetics (absorption, distribution, and excretion [ADE]), and toxicity of MNPs were investigated using the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks. Eighty-five papers were selected: 34 papers were on detecting MNPs in environmental samples, 38 papers were on the ADE of MNPs in humans and fish, and 36 papers were related to MNPs toxicity using experimental models. This review not only summarizes individual studies but also presents a preliminary AEP-AOP framework. This framework offers a comprehensive overview of pathways, enabling a clearer visualization of intricate processes spanning from environmental media, absorption, distribution, and molecular effects to adverse outcomes. Overall, this review emphasizes the importance of integrating exposure and toxicity pathways of MNPs by utilizing AEP-AOP to comprehensively understand their impacts on human and ecological organisms. The findings contribute to highlighting the need for further research to fill the existing knowledge gaps in this field and the development of more effective strategies for the safe management of MNPs.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
7
|
Bhatia SK, Kumar G, Yang YH. Understanding microplastic pollution: Tracing the footprints and eco-friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169926. [PMID: 38199349 DOI: 10.1016/j.scitotenv.2024.169926] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microplastics (MPs) pollution has emerged as a critical environmental issue with far-reaching consequences for ecosystems and human health. These are plastic particles measuring <5 mm and are categorized as primary and secondary based on their origin. Primary MPs are used in various products like cosmetics, scrubs, body wash, and toothpaste, while secondary MPs are generated through the degradation of plastic products. These have been detected in seas, rivers, snow, indoor air, and seafood, posing potential risks to human health through the food chain. Detecting and quantifying MPs are essential to understand their distribution and abundance in the environment. Various microscopic (fluorescence microscopy, scanning electron microscopy) and spectroscopy techniques (FTIR, Raman spectroscopy, X-ray photoelectron spectroscopy) have been reported to analyse MPs. Despite the challenges in scalable removal methods, biological systems have emerged as promising options for eco-friendly MPs remediation. Algae, bacteria, and fungi have shown the potential to adsorb and degrade MPs in wastewater treatment plants (WWTPs) offering hope for mitigating this global crisis. This review examines the sources, impacts, detection, and biological removal of MPs, highlighting future directions in this crucial field of environmental conservation. By fostering global collaboration and innovative research a path towards a cleaner and healthier planet for future generations can be promised.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Yoon S, Song H, Dang YM, Ha JH. Elimination microplastic particles in brine process water for ensuring the safety of brined cabbage. Heliyon 2024; 10:e25984. [PMID: 38390085 PMCID: PMC10881328 DOI: 10.1016/j.heliyon.2024.e25984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Various studies have investigated the presence of microplastics (MPs) in food and their potential hazardous impact on human health. The frequency of human exposure to MPs, particularly through the consumption of manufactured food and drinking water, is increasing. However, data regarding MP contamination in brine and brined cabbage used for the production of kimchi are limited. Here, we quantified MPs in brine process water during the production of brined cabbage. Pretreatment of the brine process water by performing a filtration step resulted in an MP-removal efficiency of 98.7-100%; 3671 ± 174 MP particles were observed in brining process water that was not filtered. A glass filter, STS filter, and Si Filter showed significant MP-removal efficiency, decreasing the number of MP particles in brining process water to 2,361, 2,775, and 3,490, respectively (p < 0.05). Our results provide data on how filtering of brine can effectively safeguard kimchi from MP contamination and e can be produced. However, to overcome the limitations of our laboratory-scale study, additional technologies should be used in the future for large-scale filtration processes.
Collapse
Affiliation(s)
- Sora Yoon
- Hygienic Safety Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Hyeyeon Song
- Hygienic Safety Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Yun-Mi Dang
- Hygienic Safety Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| |
Collapse
|
9
|
Zhu Y, Che R, Zong X, Wang J, Li J, Zhang C, Wang F. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120039. [PMID: 38218169 DOI: 10.1016/j.jenvman.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/15/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs) are widely found in the natural environment, including soil, water and the atmosphere, which are essential for human survival. In the recent years, there has been a growing concern about the potential impact of MPs/NPs on human health. Due to the increasing interest in this research and the limited number of studies related to the health effects of MPs/NPs on humans, it is necessary to conduct a systematic assessment and review of their potentially toxic effects on human organs and tissues. Humans can be exposed to microplastics through ingestion, inhalation and dermal contact, however, ingestion and inhalation are considered as the primary routes. The ingested MPs/NPs mainly consist of plastic particles with a particle size ranging from 0.1 to 1 μm, that distribute across various tissues and organs within the body, which in turn have a certain impact on the nine major systems of the human body, especially the digestive system and respiratory system, which are closely related to the intake pathway of MPs/NPs. The harmful effects caused by MPs/NPs primarily occur through potential toxic mechanisms such as induction of oxidative stress, generation of inflammatory responses, alteration of lipid metabolism or energy metabolism or expression of related functional factors. This review can help people to systematically understand the hazards of MPs/NPs and related toxicity mechanisms from the level of nine biological systems. It allows MPs/NPs pollution to be emphasized, and it is also hoped that research on their toxic effects will be strengthened in the future.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinhan Wang
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
10
|
He Y, Yin R. The reproductive and transgenerational toxicity of microplastics and nanoplastics: A threat to mammalian fertility in both sexes. J Appl Toxicol 2024; 44:66-85. [PMID: 37382358 DOI: 10.1002/jat.4510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are extensively distributed in the environment. However, a comprehensive review and in-depth discussion on the effects of MPs and NPs to reproductive capacity and transgenerational toxicity on mammals, especially on humans, is lacked. It is suggested that microplastics and nanoplastics could accumulate in mammalian reproductive organs and exert toxic effects on the reproductive system for both sexes. For males, the damage of microplastics consists of abnormal testicular and sperm structure, decreased sperm vitality, and endocrine disruption, which were caused by oxidative stress, inflammation, apoptosis of testicular cells, autophagy, abnormal cytoskeleton, and abnormal hypothalamic-pituitary-testicular axis. For females, the damage of microplastics includes abnormal ovary and uterus structure and endocrine disruption, which were caused by oxidative stress, inflammation, granulosa cell apoptosis, hypothalamic-pituitary-ovary axis abnormalities, and tissue fibrosis. For transgenerational toxicity, premature mortality existed in the rodent offspring after maternal exposure to microplastics. Among the surviving offspring, metabolic disorders, reproductive dysfunction, immune, neurodevelopmental, and cognitive disorders were detected, and these events directly correlated with transgenerational translocation of MPs and NPs. Studies on human-derived cells or organoids demonstrated that transgenerational toxicity studies for both sexes are yet in the phase of exploring suitable experimental models, and more detailed research on the threat of MPs and NPs to human fertility is still urgently needed. Further studies will help assess the MPs and NPs threat to public fertility and reproductive health risks.
Collapse
Affiliation(s)
- Yuchong He
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
- The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Provincial, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ruocheng Yin
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
11
|
Feng Y, Tu C, Li R, Wu D, Yang J, Xia Y, Peijnenburg WJ, Luo Y. A systematic review of the impacts of exposure to micro- and nano-plastics on human tissue accumulation and health. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:195-207. [PMID: 38435355 PMCID: PMC10902512 DOI: 10.1016/j.eehl.2023.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 03/05/2024]
Abstract
Micro- and nano-plastics (MNPs) pollution has become a pressing global environmental issue, with growing concerns regarding its impact on human health. However, evidence on the effects of MNPs on human health remains limited. This paper reviews the three routes of human exposure to MNPs, which include ingestion, inhalation, and dermal contact. It further discusses the potential routes of translocation of MNPs in human lungs, intestines, and skin, analyses the potential impact of MNPs on the homeostasis of human organ systems, and provides an outlook on future research priorities for MNPs in human health. There is growing evidence that MNPs are present in human tissues or fluids. Lab studies, including in vivo animal models and in vitro human-derived cell cultures, revealed that MNPs exposure could negatively affect human health. MNPs exposure could cause oxidative stress, cytotoxicity, disruption of internal barriers like the intestinal, the air-blood and the placental barrier, tissue damage, as well as immune homeostasis imbalance, endocrine disruption, and reproductive and developmental toxicity. Limitedly available epidemiological studies suggest that disorders like lung nodules, asthma, and blood thrombus might be caused or exacerbated by MNPs exposure. However, direct evidence for the effects of MNPs on human health is still scarce, and future research in this area is needed to provide quantitative support for assessing the risk of MNPs to human health.
Collapse
Affiliation(s)
- Yudong Feng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijie Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Willie J.G.M. Peijnenburg
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, the Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Neelavannan K, Sen IS. Microplastics in Freshwater Ecosystems of India: Current Trends and Future Perspectives. ACS OMEGA 2023; 8:34235-34248. [PMID: 37780028 PMCID: PMC10536847 DOI: 10.1021/acsomega.3c01214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Microplastics (MPs)-i.e., plastic particles less than 5 mm in length-are becoming a growing environmental concern due to their potential ecotoxicological impacts on aquatic ecosystems. In India, MPs contamination is a significantly growing problem due to increased plastic production as well as its low rate of recycling. As a result, MPs research work in India has gained considerable attention in the last two decades. The objective of this study is to conduct a comprehensive review of the existing scientific literature on MPs in freshwater ecosystems (e.g., lakes and rivers) of India. A bibliographical search was used to conduct the literature review across a number of databases including ScienceDirect, Google Scholar, and ResearchGate. We found that in comparison to the marine ecosystem the source, transport, and fate of MPs in freshwater ecosystems of India are still underexplored, and we found only 18 relevant papers. This review work reveals that there is no standard procedure for separating MPs from water and sediment samples, and as a result, comparing the results was a challenging task. The larger MPs (>500 μm) in water and sediments were identified most commonly using the attenuated total reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy technique (ATR-FTIR), whereas smaller-sized MPs (<500 μm) were identified using FTIR fitted with a confocal microscope, also known as μ-FTIR imaging or chemical imaging. We found that white-colored fibers and fragments of polypropylene (PP), polyethylene terephthalate (PET), and polyethylene (PE) were the most common polymer types in the freshwater ecosystems of India. Although research on MPs in freshwater ecosystems of India has gained momentum over the past decade, the literature review reveals a limited understanding of the impact of MPs' weathering patterns, the role of biofouling, and the role of water hyacinths on freshwater ecosystem services in India. Furthermore, the fluxes of MPs to the Indian oceans are not constrained, and atmospheric transport in high-altitude mountains, which have already been made fragile by climate change, has not been fully investigated. This study, therefore, calls for additional assessments of MPs in freshwater ecosystems-particularly in the central parts of India.
Collapse
Affiliation(s)
| | - Indra Sekhar Sen
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
13
|
Mazumder D, Quader MFB, Saha S, Islam MA, Sarker RH, Chowdhury AM. An investigation on the prevalence of microplastic in commercial and open pan salts obtained from Cox's Bazar and Maheshkhali region of Bay of Bengal (Bangladesh). Food Sci Nutr 2023; 11:5283-5295. [PMID: 37701207 PMCID: PMC10494635 DOI: 10.1002/fsn3.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 09/14/2023] Open
Abstract
Unrestrained utilization of plastic has reached an intemperate state, menacing environment and human lives. The preliminary focus of this research was to investigate and divulge the contemporary status of microplastics (MPs) in commercialized and open pan salts from Cox's Bazar and Maheshkhali channels. A total of 27 samples were obtained. The samples were analyzed for the prevalence of MPs by FTIR and Raman spectroscopy (RS); the prevailing amount, color, size, and shapes were analyzed by stereomicroscope and SEM. The abundance of high-density polyethylene, polyethylene terephthalate (PET), and low-density polyethylene (LDPE) were detected by FTIR, meanwhile exuberance of cellulose acetate, polypropylene, PET, LDPE, and Nylon 6 were identified by RS. The average quantifications of MPs in Cox's Bazar, Maheshkhali, and packaged salts were found to be 6851.11 ± 538.18, 5638.89 ± 1001.18, and 3405.56 ± 638.57 per kg, respectively. ANOVA resulted in highly significant association between MPs and sampling sites (p = .001*). Post hoc Tukey's test revealed prominent link between commercialized and open pan salts based on the amount of MPs (p = .001*). The most prevalent colors were purple (28%) and blue (27%). The most frequent shapes were fibrous (79%) and fragmented (19.9%) MPs. The smallest MP was detected in commercial salt (1.55 μm), nearly identical and closer to the size of nanoplastics.
Collapse
Affiliation(s)
- Debapriya Mazumder
- Department of Applied Chemistry & Chemical TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - Md. Fahad Bin Quader
- Department of Applied Chemistry & Chemical TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - Suvanker Saha
- Department of Applied Chemistry & Chemical TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - Md. Ashraful Islam
- Department of Applied Chemistry & Chemical TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | | | - Arpan Mitra Chowdhury
- One Health InstituteChattogram veterinary and Animal Sciences UniversityChattogramBangladesh
| |
Collapse
|
14
|
Thiele CJ, Grange LJ, Haggett E, Hudson MD, Hudson P, Russell AE, Zapata-Restrepo LM. Microplastics in European sea salts - An example of exposure through consumer choice and of interstudy methodological discrepancies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114782. [PMID: 36934543 DOI: 10.1016/j.ecoenv.2023.114782] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are contaminants of emerging concern, not least due to their global presence in marine surface waters. Unsurprisingly, microplastics have been reported in salts harvested from numerous locations. We extracted microplastics from 13 European sea salts through 30% H2O2 digestion and filtration over 5-µm filters. Filters were visually inspected at magnifications to x100. A subsample of potential microplastics was subjected to Raman spectroscopy. Particle mass was estimated, and human dose exposure calculated. After blank corrections, median concentrations were 466 ± 152 microplastics kg-1 ranging from 74 to 1155 items kg-1. Traditionally harvested salts contained fewer microplastics than most industrially harvested ones (t-test, p < 0.01). Approximately 14 µg of microplastics (< 12 particles) may be absorbed by the human body annually, of which a quarter may derive from a consumer choosing sea salt. We reviewed existing studies, showing that targeting different particle sizes and incomplete filtrations hinder interstudy comparison, indicating the importance of method harmonisation for future studies. Excess salt consumption is detrimental to human health; the hazardousness of ingesting microplastics on the other hand has yet to be shown. A portion of microplastics may enter sea salts through production processes rather than source materials.
Collapse
Affiliation(s)
- Christina J Thiele
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK.
| | - Laura J Grange
- School of Ocean and Earth Science, Faculty of Environment and Life Sciences, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK; Currently at School of Ocean Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK
| | - Emily Haggett
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Malcolm D Hudson
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Philippa Hudson
- Philippa Hudson, Bournemouth University, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK
| | - Andrea E Russell
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Lina M Zapata-Restrepo
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| |
Collapse
|
15
|
Di Fiore C, Sammartino MP, Giannattasio C, Avino P, Visco G. Microplastic contamination in commercial salt: An issue for their sampling and quantification. Food Chem 2023; 404:134682. [DOI: 10.1016/j.foodchem.2022.134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
16
|
Ziani K, Ioniță-Mîndrican CB, Mititelu M, Neacșu SM, Negrei C, Moroșan E, Drăgănescu D, Preda OT. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023; 15:617. [PMID: 36771324 PMCID: PMC9920460 DOI: 10.3390/nu15030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Microplastics are small plastic particles that come from the degradation of plastics, ubiquitous in nature and therefore affect both wildlife and humans. They have been detected in many marine species, but also in drinking water and in numerous foods, such as salt, honey and marine organisms. Exposure to microplastics can also occur through inhaled air. Data from animal studies have shown that once absorbed, plastic micro- and nanoparticles can distribute to the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys and even the brain (crosses the blood-brain barrier). In addition, microplastics are transport operators of persistent organic pollutants or heavy metals from invertebrate organisms to other higher trophic levels. After ingestion, the additives and monomers in their composition can interfere with important biological processes in the human body and can cause disruption of the endocrine, immune system; can have a negative impact on mobility, reproduction and development; and can cause carcinogenesis. The pandemic caused by COVID-19 has affected not only human health and national economies but also the environment, due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in global use of face masks, which mainly contain polypropylene, and poor waste management have led to worsening microplastic pollution, and the long-term consequences can be extremely devastating if urgent action is not taken.
Collapse
Affiliation(s)
- Khaled Ziani
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | | | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Elena Moroșan
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Doina Drăgănescu
- Department of Pharmaceutical Physics and Informatics, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Olivia-Teodora Preda
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| |
Collapse
|
17
|
Li Y, Lu Q, Xing Y, Liu K, Ling W, Yang J, Yang Q, Wu T, Zhang J, Pei Z, Gao Z, Li X, Yang F, Ma H, Liu K, Zhao D. Review of research on migration, distribution, biological effects, and analytical methods of microfibers in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158922. [PMID: 36155038 DOI: 10.1016/j.scitotenv.2022.158922] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastics have been proven to be one of the critical environmental pollution issues. Moreover, microfibers, the most prominent form of microplastics in the environment, have likewise attracted the attention of various countries. With the increase in global population and industrialization, the production and use of fibers continue to increase yearly. As a result, a large number of microfibers are formed. If fiber products are not used or handled correctly, it will cause direct/indirect severe microfiber environmental pollution. Microfibers will be further broken into smaller fiber fragments when they enter the natural environment. Presently, researchers have conducted extensive research in the identification of microfibers, laying the foundation for further resourcefulness research. This work used bibliometric analysis to review the microfiber contamination researches systematically. First, the primary sources of microfibers and the influencing factors are analyzed. We aim to summarize the influence of the clothing fiber preparation and care processes on microfiber formation. Then, this work elaborated on the migration in/between water, atmosphere, and terrestrial environments. We also discussed the effects of microfiber on ecosystems. Finally, microfibers' current and foreseeable effective treatment, disposal, and resource utilization methods were explained. This paper will provide a structured reference for future microfiber research.
Collapse
Affiliation(s)
- Yifei Li
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingbin Lu
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Kai Liu
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jian Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.
| | - Qizhen Yang
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Tianqi Wu
- Human Resources Department, Yangquan Power Supply Company of State Grid Shanxi Electric Power Company, Yangquan 045000, Shanxi, China
| | - Jiafu Zhang
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Zengxin Pei
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Ziyuan Gao
- State Key Laboratory of Iron and Steel Industry Environmental Protection, No. 33, Xitucheng Road, Haidian District, Beijing 100088, China
| | - Xiaoyan Li
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Fan Yang
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Hongjie Ma
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Kehan Liu
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Ding Zhao
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| |
Collapse
|
18
|
Sridharan S, Kumar M, Saha M, Kirkham MB, Singh L, Bolan NS. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153828. [PMID: 35157873 DOI: 10.1016/j.scitotenv.2022.153828] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Due to the increasing concerns on global ecosystems and human health, the environmental risks posed by microplastics (MPs) and nanoplastics (NPs) have become an important topic of research. Their ecological impacts on various faunal species have been extensively researched and reviewed. However, the majority of those studies perceive these micro(nano)-plastics (MNPs) as a single entity rather than a collective term for a group of chemically distinct polymeric particulates. Each of the plastic polymers can possess unique physical and chemical behavior, which, in turn, can determine the possible environmental impacts. Furthermore, many studies explore the adsorption, absorption, and release of other environmental pollutants by MNPs. But only a handful of them explore the leaching of additives possessed by these polymers. Data on the environmental behavior and toxicity of individual additives associated with different polymer particulates are scarce. Knowledge about the leachability and ecotoxicity of the additives associated with environmental MNPs (unlike large plastic particles) remains limited. The ecological impacts of different MNPs together with their additives and the basis of their toxicity have not been explored yet. The present review systematically explores the potential implications of environmentally predominant polymers and their associated additives and discusses their physicochemical characteristics. The review ultimately aims to provide novel insights on what components precisely make MNPs hazardous to the fauna. The paper also discusses the major challenges proposed in the available literature along with recommendations for future research to throw light on possible solutions to overcome the hazards of MNPs.
Collapse
Affiliation(s)
- Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Mahua Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States of America
| | - Lal Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India.
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA 6009, Australia.
| |
Collapse
|
19
|
Neelavannan K, Achyuthan H, Sen IS, Krishnakumar S, Gopinath K, Dhanalakshmi R, Rajalakshmi PR, Sajeev R. Distribution and characterization of plastic debris pollution along the Poompuhar Beach, Tamil Nadu, Southern India. MARINE POLLUTION BULLETIN 2022; 175:113337. [PMID: 35093779 DOI: 10.1016/j.marpolbul.2022.113337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 05/26/2023]
Abstract
The present study was carried out to determine the characteristics, distribution, and abundance of plastic debris in 25 sediment samples collected from the Poompuhar beach, southeast coast of India. The result reveals that the mean plastic debris abundance was 42 ± 27 particles/m2 dry weight (dw) (1 SD, n = 25) with higher concentrations in the river mouth. The dominant shapes in the study area were fragment (70.7%), followed by fiber (20.7%), and pellet-shaped (8.6%). The dominant colors of the plastic debris were: white-colored (47%) followed by blue (28%) and green (14%). The study further reveals that the dominant polymer type was polyethylene (PE, 63.4%), followed by nylon (PA, 16.9), polyvinyl chloride (PVC, 15.5%), polypropylene (PP, 3.1%), and polystyrene (PS, 1.1%). In the study area, the main source of plastic debris was from land-based fishing and tourism activities, and rainwater runoff from the Cauvery River.
Collapse
Affiliation(s)
- Kannaiyan Neelavannan
- Institute for Ocean Management, Anna University, Chennai 600025, India; Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Hema Achyuthan
- Institute for Ocean Management, Anna University, Chennai 600025, India.
| | - Indra Sekhar Sen
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - S Krishnakumar
- Institute for Ocean Management, Anna University, Chennai 600025, India; Department of Geology, Malankara catholic college, Mariyagiri, Kaliyakkavilai, Kanyakumari 629153, India
| | - Kalpana Gopinath
- Institute for Ocean Management, Anna University, Chennai 600025, India; Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97754, Sweden
| | - R Dhanalakshmi
- Department of Geography, Queen Mary's College, Chennai 600 004, India
| | - P R Rajalakshmi
- Institute for Ocean Management, Anna University, Chennai 600025, India
| | - Riffin Sajeev
- Institute for Ocean Management, Anna University, Chennai 600025, India
| |
Collapse
|
20
|
Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031174. [PMID: 35162198 PMCID: PMC8834762 DOI: 10.3390/ijerph19031174] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
Microplastics (MPs) have been identified as emerging environmental pollutants classified as primary or secondary based on their source. Composition, shape, size, and colour, among other characteristics, are associated with their capacity to access the food chain and their risks. While the environmental impact of MPs has received much attention, the risks for humans derived from their dietary exposure have not been yet assessed. Several institutions and researchers support that the current knowledge does not supply solid data to complete a solid risk characterization of dietary MPs. The aim of this paper is to review the current knowledge about MPs in foods and to discuss the challenges and gaps for a risk analysis. The presence of MPs in food and beverages has been worldwide observed, but most authors considered the current data to be not only insufficient but of questionable quality mainly because of the outstanding lack of consensus about a standardized quantifying method and a unified nomenclature. Drinking water, crustaceans/molluscs, fish, and salt have been identified as relevant dietary sources of MPs for humans by most published studies. The hazard characterization presents several gaps concerning the knowledge of the toxicokinetic, toxicodynamic, and toxicity of MPs in humans that impede the estimation of food safety standards based on risk. This review provides a tentative exposure assessment based on the levels of MPs published for drinking water, crustaceans and molluscs, fish, and salt and using the mean European dietary consumption estimates. The intake of 2 L/day of water, 70.68 g/day of crustaceans/molluscs, 70.68 g/day of fish, and 9.4 g/day of salt would generate a maximum exposure to 33,626, 212.04, 409.94 and 6.40 particles of MPs/day, respectively. The inexistence of reference values to evaluate the MPs dietary intake prevents the dietary MPs risk characterization and therefore the management of this risk. Scientists and Food Safety Authorities face several challenges but also opportunities associated to the occurrence of MPs in foods. More research on the MPs characterization and exposure is needed bearing in mind that any future risk assessment report should involve a total diet perspective.
Collapse
|