1
|
Xu R, Wu NN, Liu S, Chen H, Hao QW, Hu YX, Hong B, Yu S, Xu XR. Spatiotemporal distribution and priority assessment of steroids in the estuarine environment: Implications for environmental risk management. MARINE POLLUTION BULLETIN 2025; 216:117980. [PMID: 40252354 DOI: 10.1016/j.marpolbul.2025.117980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Steroids, known for their endocrine-disrupting capabilities, have become a subject of considerable concern in the scientific community. This research offers a thorough evaluation of steroid contaminants within the Jiulong River Estuary (JRE), examining their spatiotemporal distribution, multimedia distribution, and mass inventory. Seven steroids were detected in water samples, while ten steroids were identified in sediments, with concentrations ranging from 0.2 to 51 ng/L in water and no-detectable (ND) to 12 ng g-1 in sediments. In both water and sediments, natural steroids were the most prevalent throughout both the dry and wet seasons. The distribution of these compounds within the aquatic-sediment system was governed by their hydrophobicity and a suite of environmental factors, such as temperature, salinity, pH, chlorophyll-a, and total organic carbon content. Mass inventory analysis revealed that over 90 % of the total steroid mass inventory was stored in the sediments, underscoring their pivotal role as a repository for these substances within the JRE. Furthermore, this research represents the first comprehensive screening to identify priority contaminants in this region. Utilizing a multi-metric evaluation approach, progesterone and testosterone were identified as high-priority pollutants during the dry season, with progesterone alone ranking as a high-priority pollutant in the wet season. This study provides crucial insights for the management of steroid-related pollution and the assessment of environmental risks in estuarine ecosystems.
Collapse
Affiliation(s)
- Ru Xu
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330039, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hui Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qin-Wei Hao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yong-Xia Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiang-Rong Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
3
|
Tian F, Liu S, Xu R, Wu NN, Liu SS, Cheng YY, Xiong Q, Tang ZZ, Zhang LB, Zhang Z, Chen HG. Ubiquity and ecological risks of conjugated steroids cannot be overlooked: First evidence from estuarine sediments. MARINE POLLUTION BULLETIN 2024; 207:116879. [PMID: 39182404 DOI: 10.1016/j.marpolbul.2024.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Steroids, renowned for endocrine-disrupting capabilities, have garnered significant research interest, predominantly centered on their parent forms. This study was the first to explore the composition, spatiotemporal characteristics, sources, mass inventories, and ecological risks of steroids in free and conjugated forms in estuarine sediments. Seventeen steroids were identified in sediments with the total levels of 1.3-4.3 ng/g. Most natural steroids and metabolites existed in free forms, while synthetic ones predominantly stored in conjugates. Environmental factors exerted limited impacts on steroid distribution. Raw domestic wastewater, drug consumption, and mariculture may be leading steroid sources in estuarine sediments, with total mean mass inventories of 177-219 μg/m2. The predominant contributors to the ecological risk were cortisol, prednisolone, 20α-dihydroprogesterone, 20β-dihydroprogesterone, and progesterone. This research gives the first insight into the understanding of conjugated steroids in the marine environment, and advocates for more studies on the fate and ecotoxicology of conjugated steroids.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang-Shuang Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qian Xiong
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhen-Zhao Tang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lin-Bao Zhang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhe Zhang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hai-Gang Chen
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
4
|
Ducrocq T, Merel S, Miège C. Review on analytical methods and occurrence of organic contaminants in continental water sediments. CHEMOSPHERE 2024; 365:143275. [PMID: 39277038 DOI: 10.1016/j.chemosphere.2024.143275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Various industries produce a myriad of synthetic molecules used to satisfy our needs, but all these molecules are likely to reach aquatic environments. The number of organic contaminants found in rivers and lakes continues to rise, and part of this contamination gets transferred into sediments. Analytical methods to detect problematic substances in the environment often use mass spectrometry coupled with chromatography. Here we reviewed a set of 163 articles and compiled the relevant information into a comprehensive database for analysing organic contaminants in continental sediments including suspended particulate matter and surface and bottom sediments in lakes, rivers and estuaries. We found 1204 compounds detected at least once in sediments, and classified them into 11 categories, i.e. hydrocarbons, flame retardants, polychlorinated biphenyls (PCB), plasticizers, per- and poly-fluoroalkyl substances (PFAS), organochlorines (OCP) and other pesticides, pharmaceuticals, hormones, personal care products (PCP), and other contaminants. Concentrations of these compounds varied from a few ng to several mg/kg of dry sediment. Even hydrophilic compounds were detected in high concentrations. Well-known hydrophobic and persistent contaminants tend to be analysed with mass spectrometry coupled to gas chromatography (GC-MS) whereas contaminants of emerging concern (CEC) are usually analysed with liquid chromatography- mass spectrometry (LC-MS). Suspect screening and non-target analysis (NTA), which use high-resolution mass spectrometry, are still scarcely used on sediment but hold promise for gaining deeper knowledge of organic contamination in aquatic environments.
Collapse
Affiliation(s)
- Tom Ducrocq
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France
| | - Sylvain Merel
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France
| | - Cécile Miège
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France.
| |
Collapse
|
5
|
Olisah C, Rubidge G, Human LRD, Adams JB. Investigation of alkyl, aryl, and chlorinated OPFRs in sediments from estuarine systems: Seasonal variation, spatial distribution and ecological risks assessment. ENVIRONMENTAL RESEARCH 2024; 250:118465. [PMID: 38367839 DOI: 10.1016/j.envres.2024.118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Estuaries in South Africa are very important for biodiversity conservation and serve as focal points for leisure and tourism activities. The organophosphate flame retardants (OPFRs) levels in these aquatic systems haven't been documented in any studies as of yet. Due to the negative effects of persistent organic pollutants in South African estuaries, we examined the occurrence of eight OPFRs in sediments of two estuaries by studying their spatiotemporal distribution, season variation, and ecological risks. The Sundays Estuary (SDE), a semi-urbanized agricultural surrounding system, recorded an ∑8OPFR concentration in sediments that ranged from 0.71 to 22.5 ng/g dw, whereas Swartkops Estuary, a largely urbanized system, recorded a concentration that ranged from 0.61 to 119 ng/g dw. Alkyl-OPFRs were the prevalent homologue in both estuaries compared to the chlorinated and aryl groups. While TBP, TCPP, and TCrP were the most abundant compounds among the homologue groups. There was no distinct seasonal trend of ∑8OPFR concentration in either estuary, with summer and autumn seasons recording the highest concentrations in SDE and SWE, respectively. Ecological risks in the majority of the study sites for the detected compounds were at low (RQ < 0.1) and medium levels (0.1 ≤ RQ < 1) for certain species of fish, Daphnia magna and algae. However, the cumulative RQs for all the compounds had ∑RQs ≥1 for most sites in both estuaries, indicating that these organisms, if present in both estuaries, may be exposed to potential ecological concerns due to accumulated OPFR chemicals. The scope of future studies should be broadened to include research areas that are not only focus on the bioaccumulation patterns of these compounds but also find sustainable ways to reduce them from these estuarine environments.
Collapse
Affiliation(s)
- Chijioke Olisah
- DSI/NRF Research Chair, Shallow Water Ecosystems, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Department of Botany, Institute of Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Department of Chemistry, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic.
| | - Gletwyn Rubidge
- Department of Chemistry, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa
| | - Lucienne R D Human
- Department of Botany, Institute of Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; South African Environmental Observation Network (SAEON) Elwandle Coastal Node PO Box 77000, Gqeberha, 6031, South Africa
| | - Janine B Adams
- DSI/NRF Research Chair, Shallow Water Ecosystems, Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Department of Botany, Institute of Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa
| |
Collapse
|
6
|
Kalinski JCJ, Noundou XS, Petras D, Matcher GF, Polyzois A, Aron AT, Gentry EC, Bornman TG, Adams JB, Dorrington RA. Urban and agricultural influences on the coastal dissolved organic matter pool in the Algoa Bay estuaries. CHEMOSPHERE 2024; 355:141782. [PMID: 38548083 DOI: 10.1016/j.chemosphere.2024.141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.
Collapse
Affiliation(s)
| | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; Department of Pharmaceutical Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Biochemistry, University of California Riverside, Riverside, USA; CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Gwynneth F Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa
| | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Allegra T Aron
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, United States
| | - Emily C Gentry
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Thomas G Bornman
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Environmental Observation Network SAEON, Elwandle Coastal Node, Gqeberha, South Africa; Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Janine B Adams
- DSI/NRF Research Chair, Shallow Water Ecosystems, Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa; Department of Botany, Institute for Coastal and Marine Research CMR, Nelson Mandela University, Gqeberha, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa.
| |
Collapse
|
7
|
Ohoro CR, Adeniji AO, Elsheikh EAE, Al-Marzouqi A, Otim M, Okoh OO, Okoh AI. Influence of physicochemical parameters on PPCP occurrences in the wetlands. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:339. [PMID: 35389105 PMCID: PMC8989856 DOI: 10.1007/s10661-022-09990-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/22/2022] [Indexed: 05/25/2023]
Abstract
There have been many global studies on the occurrence and distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic resources, but reports on the effects of physicochemical properties of water on their concentrations are very scarce. The amounts and removal of these contaminants in various environmental media are dependent on these physicochemical properties, which include pH, temperature, electrical conductivity, salinity, turbidity, and dissolved oxygen. Here, we reviewed the influence of these properties on determination of PPCPs. Reports showed that increase in turbidity, electrical conductivity, and salinity gives increase in concentrations of PPCPs. Also, neutral pH gives higher PPCP concentrations, while decrease in temperature and dissolved oxygen gives low concentration of PPCPs. Nevertheless, it is quite challenging to ascertain the influence of water quality parameters on the PPCP concentration, as other factors like climate change, type of water, source of pollution, persistence, and dilution factor may have great influence on the concentration of PPCPs. Therefore, routine monitoring is suggested as most water quality parameters vary because of effects of climate change.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- Department of Chemistry and Chemical Technology, National University of Lesotho. P.O. Roma, 180, Maseru, Lesotho
| | - Elsiddig A E Elsheikh
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Amina Al-Marzouqi
- Department of Health Sciences Administration, University of Sharjah, Sharjah, United Arab Emirates
| | - Michael Otim
- Department of Health Sciences Administration, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|