1
|
Wang Q, Li S, Ding Y. Characteristics, influencing factors, and ecological risks of microplastics in the north branch tidal marshes of the Yangtze River estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126230. [PMID: 40221114 DOI: 10.1016/j.envpol.2025.126230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Microplastic pollution is a growing global environmental issue, particularly in vulnerable tidal marsh ecosystems, where its environmental behaviour and ecological risks remain poorly understood. This study investigated the microplastic contamination in the north branch tidal marshes of the Yangtze River estuary. Surface sediment samples were collected from 42 stations across 6 transects, revealing an average microplastic abundance of 506.80 ± 386.82 items/kg. The distribution of microplastics was strongly influenced by salinity and vegetation, with seawater intrusion playing a critical role. A significant negative correlation between salinity and microplastic abundance was observed; areas dominated by Phragmites australis (low salinity) had higher microplastic abundance compared to high-salinity areas with sparse vegetation. 12 types of microplastics were identified, with polyethylene and polystyrene being the most abundant (20 % and 19 %, respectively). The most common colours were transparent (26 %) and yellow (23 %), while the predominant shapes were granular (37 %) and fragmentary (32 %). Most microplastics measured under 2000 μm, with the 200-500 μm size range accounting for 49 % of the total. Likely sources of microplastics include aquaculture equipment, industrial products, agricultural cultivation supplies, and daily necessities. Although the ecological risk index for the region is relatively low, the presence of diverse species highlights potential ecological threats.
Collapse
Affiliation(s)
- Qing Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China; School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Songshuo Li
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yongcheng Ding
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
2
|
Chen H, Wang T, Ding Y, Yuan F, Zhang H, Wang C, Wang Y, Wang Y, Song Y, Fu G, Zou X. A catchment-wide microplastic pollution investigation of the Yangtze River: The pollution and ecological risk of tributaries are non-negligible. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133544. [PMID: 38244455 DOI: 10.1016/j.jhazmat.2024.133544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The Yangtze River is an important global channel for plastics and microplastics (MPs) to enter the sea. However, the existing research on MPs in the Yangtze River has primarily focused on the mainstream region, without regarding the occurrence, spatial distribution, and ecological risks associated with tributaries, as well as their relationship with the mainstream. To address this knowledge gap, we conducted a large-scale catchment-wide investigation of the surface water in the Yangtze River, encompassing MPs (48 µm-5 mm) of the mainstream and 15 important tributaries. Tributaries and upstream regions exhibited relatively higher levels of MPs compared with the mainstream and different sections of the river. The distribution of MPs is primarily influenced by the emission of arable land and the pH of water. Notably, the upstream tributary areas demonstrated the highest ecological risks associated with MPs. Further analysis highlighted that the tributaries accounted for a contribution ranging from 16% to 67% in quantity and from 14% to 90% in mass of the microplastics observed in the mainstream. Our results suggest that the pollution of tributaries and their associated ecological risk migration must be effectively regulated.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing 210013, China
| | - Yongcheng Ding
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Feng Yuan
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Hexi Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Chenglong Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Yameng Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Ying Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Yuyang Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Guanghe Fu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Xinqing Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Shu R, Hu W, Gao S, Zhang S, Li Z, Liang B, Yu W. Transfer pattern of microplastics at an individual level: A case study of two typical Sciaenidae fish in coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165570. [PMID: 37482348 DOI: 10.1016/j.scitotenv.2023.165570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Microplastics (MPs) are recognized as global pollutants. The occurrence and distribution of MP transfer at the species level have been reported, but few studies have focused on the individual level. In this study, two typical migratory demersal species (Collichthys lucidus and Larimichthys polyactis, family Sciaenidae) from the coastal waters of the Lvsi fishing ground were selected to analyze the distribution characteristics of MPs in their gastrointestinal tracts and to explore the potential biomagnification of MPs in different body lengths. The results showed that the main MP color found in both species was blue (>80 %), while the main MP shape was fiber (>90 %), and the main MP polymer type was polyethylene terephthalate (PET) (>70 %). Overall, the abundance of MPs in C. lucidus (3.24 ± 1.57 pieces/fish) was higher than that in L. polyactis (2.24 ± 0.56 pieces/fish). The abundance of MPs in C. lucidus with a body length >90 mm was significantly higher than that with a body length <90 mm, and no significant difference was found in L. polyactis. We believe that the shift in feeding habits during the life history of the two species is an important factor that affects the variation in MPs between body lengths. Additionally, there was a significant positive correlation between MPs and the length (weight) of C. lucidus but no correlation in L. polyactis. There was no significant correlation between trophic level and MPs in either species. This indicated that MP bioaccumulation only occurred in C. lucidus, and MP biomagnification did not occur in either species. We suggest that further research be conducted on MPs ingested by more species at an individual level regarding the biomagnification/bioaccumulation phenomenon. This will help further elucidate the characteristics of MP transfer in the food webs of ecosystems and provide theoretical support for understanding MP pollution in coastal waters.
Collapse
Affiliation(s)
- Ruilin Shu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Hu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Shike Gao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Shuo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources in the Yangtze Estuary, Shanghai 200000, China.
| | - Zheng Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Baogui Liang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China.
| |
Collapse
|
4
|
Xu J, Wu G, Wang H, Ding Z, Xie J. Recent Study of Separation and Identification of Micro- and Nanoplastics for Aquatic Products. Polymers (Basel) 2023; 15:4207. [PMID: 37959888 PMCID: PMC10650332 DOI: 10.3390/polym15214207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Micro- and nanoplastics (MNPs) are polymeric compounds widely used in industry and daily life. Although contamination of aquatic products with MNPs exists, most current research on MNPs focuses on environmental, ecological, and toxicological studies, with less on food safety. Currently, the extent to which aquatic products are affected depends primarily on the physical and chemical properties of the consumed MNPs and the content of MNPs. This review presents new findings on the occurrence of MNPs in aquatic products in light of their properties, carrier effects, chemical effects, seasonality, spatiality, and differences in their location within organisms. The latest studies have been summarized for separation and identification of MNPs for aquatic products as well as their physical and chemical properties in aquatic products using fish, bivalves, and crustaceans as models from a food safety perspective. Also, the shortcomings of safety studies are reviewed, and guidance is provided for future research directions. Finally, gaps in current knowledge on MNPs are also emphasized.
Collapse
Affiliation(s)
- Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (G.W.)
| | - Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (G.W.)
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, China;
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (G.W.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.X.); (G.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
5
|
Zhu Z, Gong H, Wang X, Wang X, Guo W, Yan M, Yan M. Microplastics in marine-derived traditional Chinese medicine, potential threat to patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165075. [PMID: 37356768 DOI: 10.1016/j.scitotenv.2023.165075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Microplastics (MPs) contamination is widely found in marine organisms. Marine traditional Chinese medicines (MTCM) are derived from marine organisms, but there are no relevant reports on detecting MPs in MTCM. This study selected samples of MTCM from two representative pharmaceutical companies, Brand F and Brand Z, including mother-of-pearl, stone cassia, seaweed, pumice, oyster, kombu, calcined Concha Arcae, cuttlebone, and clam shell to detect and analyze the presence of MPs. The abundance, type, color, size, and composition of MPs were investigated. Varying degrees of MPs contamination was present in all MTCM. The abundance of MPs in different MTCM ranged from 0.07 to 9.53 items/g. Their type, color, and size are similar, mainly fiber, transparent and size <2 mm. The composition of MPs is primarily made of cotton, cellulose and rayon. This study contributes to the first record of MPs in MTCM. Our results show that microplastic pollution is common in MTCM, which may cause potential risk to patients consuming MTCM.
Collapse
Affiliation(s)
- Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xukun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Wenqian Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Muxian Yan
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
6
|
Ding Y, Zou X, Chen H, Yuan F, Liao Q, Feng Z, Fan Q, Wang Y, Fu G, Yu W. Distribution pattern and influencing factors for the microplastics in continental shelf, slope, and deep-sea surface sediments from the South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119824. [PMID: 35870526 DOI: 10.1016/j.envpol.2022.119824] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Marine microplastic pollution has become a major global concern in recent years and the fate of microplastics in the ocean is a hot issue of research. We investigated microplastic pollution in surface sediments in the northern South China Sea to explore its distribution characteristics and influencing factors across the continental shelf, continental slope, and deep-sea environments. It was found that the microplastic abundance of surface sediments was 130.56 ± 40.48 items/kg. The average abundance of microplastics in all three topographic areas gradually decreased with increasing distance offshore. However, the differences in microplastic diversity indices between the three areas were not significant and were higher than those in other seas of the world, indicating that the waters of the northern South China Sea are rich in microplastics from complex sources, with more pollution input channels. In the continental shelf, fibrous and low density microplastics accounted for the largest amount, with a low degree of microplastic aging, and were mostly transported by suspended-load. These microplastics were mainly influenced by human activities. In the deep sea, microplastics with higher density were the most abundant and the number of fibrous microplastics was fewer, while the average size was larger, mainly influenced by the bottom currents. These microplastics underwent long-term bedload transport. In the continental slope, the main factors affecting the distribution of microplastics were more complex. In addition to pollution by human activities, the slope also receives microplastic materials carried by bottom currents; therefore, the composition of microplastics in the slope combines those characteristics of microplastics in both the continental shelf and deep-sea areas. The findings of this study indicate that the South China Sea is affected by complex pollution sources under the dual effects of human activities and natural conditions; in particular, the pollution situation in the deep-sea area needs extensive attention.
Collapse
Affiliation(s)
- Yongcheng Ding
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Xinqing Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China.
| | - Hongyu Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Feng Yuan
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Qihang Liao
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Ziyue Feng
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Qinya Fan
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Ying Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China
| | - Guanghe Fu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Wenwen Yu
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| |
Collapse
|
7
|
Chen L, Yuan X, Ye Y, Teng J, Zhao J, Wang Q, Zhang B. Characteristics and spatiotemporal distribution of microplastics in sediments from a typical mariculture pond area in Qingduizi Bay, North Yellow Sea, China. MARINE POLLUTION BULLETIN 2022; 176:113436. [PMID: 35158174 DOI: 10.1016/j.marpolbul.2022.113436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) in mariculture environments may have an impact on mariculture and ecosystems. This study sampled the sediments in mariculture ponds and offshore areas in Qingduizi Bay during winter and summer. The abundance, characteristics, spatiotemporal distribution and pollution risk of microplastics were analyzed. The results showed that the abundance of MPs in the mariculture pond and offshore area was 49.2 ± 35.9 items·kg-1 d.w. and 17.1 ± 9.9 items·kg-1 d.w.; the MPs were mainly composed of transparent fibers of thickness 2000-5000 μm, with the main polymers being polyethylene terephthalate (PET) and cellophane (CP). The spatial distribution showed a downward trend from the inside to the outside, but the difference was not significant when comparing different seasons. The pollution load index (PLI) risk assessment showed that all sampling sites were at Hazard Level I. This study can provide valuable information for the risk assessment of microplastic pollution in mariculture areas.
Collapse
Affiliation(s)
- Liang Chen
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Xiutang Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, PR China
| | - Yuheng Ye
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Bin Zhang
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China; School of Food and Biotechnology of Xihua University, Chengdu 610039, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|